5.8 Inverse Trigonometric Functions: Integration and Completing the Square du u = arcsin + C Ú a2 - u2 a du 1 u Ú a 2 + u 2 = a arctan a + C u du 1 Ú u u 2 - a 2 = a arc sec a + C dx x = arcsin + C 2 2 4- x Ex. Ú Ex. dx = 2 Ú 2 + 9x 1 = 3 Ú ( 2) Ú du 2 + ( u) ( 2) 1 2 dx 2 + ( 3x ) 2 Let u = 3x du = 3 dx du = dx 3 3x = arctan +C 3 2 2 Ex. Integrate by substitution. Ú =Ú =Ú dx e -1 2x Ú (e ) x 2 -1 1 du 2 (u ) - 1 u du u = dx (u ) 2 -1 = arc sec u 1 Let u = ex du = ex dx du = dx x e du = dx u + C = arc sec e x 1 +C Ex. Rewriting the integrand as the sum of two quotients. x+2 Ú 4- x 2 Let u = 4 – dx = Ú x2 du = -2x dx du = dx - 2x = 2Ú dx Ú x 4- x 2 dx + Ú 2 4- x 2 dx x du u 2u1 2 =Ú du = -2 -2 u (- 2 x ) x = 2 arcsin 2 2 2 2 -x -1 2 - 4- x 2 Final Answer x - 4 - x + 2 arcsin + C 2 2 Ex. Integrating an improper rational function. 3x - 2 Do long division and then rewrite the Ú x 2 + 4 dx integrand as the sum of two quotients. 12 x + 2 ˆ Ê = Ú Á 3x - 2 ˜dx x +4 ¯ Ë 12 x 2dx = Ú 3 xdx - Ú 2 dx - Ú 2 x +4 x +4 2x dx = Ú 3 xdx - 6 Ú 2 dx - 2 Ú 2 x +4 x +4 3 2 ( ) 3x x 2 = - 6 ln x + 4 - arctan + C 2 2 Ex. Completing the Square dx = Ú x2 - 4x + 7 = = Ú Ú Ú dx 2 ( x - 2) + 3 du (u) 2 + ( 3) dx 2 ( x - 4 x + 4) + 7 - 4 Let u = x – 2 du = dx 2 1 x-2 = arctan +C 3 3 Ex. Completing the square when the leading coefficient is not 1. dx Ú 2 x 2 - 8 x + 10 First, factor out a 1/2 Now complete the square in the denominator. 1 dx 1 dx = Ú 2 = Ú 2 2 x - 4x + 5 2 x - 4x + 5 1 dx 1 dx = Ú 2 = Ú 2 2 x - 4 x + 4 + 5 - 4 2 ( x - 2) + 1 1 du 1 ( x - 2) Let u = x – 2 = = arctan + C 2 Ú du = dx 2 (u ) + 1 2 1 Find the area of the region bounded by the graph of f(x) = 1 3x - x 2 3 9 , the x-axis, and x = , and x = . 2 4 94 2 Ú 32 1 1 2 1 3x - x 2 dx Factor out a neg. inside the rad. 94 Ú 32 94 = Ú 32 94 1 3x - x 2 dx = Ú 32 ( 1 - x - 3x 2 94 1 9ˆ 9 Ê 2 - Á x - 3x + ˜ + 4¯ 4 Ë dx = Ú 32 dx ) 1 2 3ˆ Ê3ˆ Ê Á ˜ -Áx - ˜ 2¯ Ë2¯ Ë 2 dx È x - (3 2 )˘ 1 p p = Íarcsin = arcsin - arcsin 0 = - 0 = ˙ 3 2 ˚3 2 2 6 6 Î 94
© Copyright 2026 Paperzz