Integrate Sqrt[x^2 + 4 x + 8]/(x + 2) In[7]:= Indefinite integrals: Hide steps 8 + 4 x + x2 á 2+x Hx + 2L2 + 4 + 2 logHx + 2L - 2 log âx Hx + 2L2 + 4 + 2 + constant Possible intermediate steps: Take the integral: 8 + 4 x + x2 á 2+x âx x2 + 4 x + 8 For the integrand , complete the square: x+2 Hx + 2L2 + 4 á âx x+2 Hx + 2L2 + 4 For the integrand x+2 u2 + 4 á u âu u2 + 4 For the integrand u , substitute u 2 tanHsL and âu 2 sec2 HsL âs. Then 4à , substitute u x + 2 and âu â x: 1 2 u2 + 4 = u 4 tan2 HsL + 4 = 2 secHsL and s tan-1 K O: 2 cscHsL sec2 HsL â s Factor out constants: 2 à cscHsL sec2 HsL â s For the integrand cscHsL sec2 HsL, use the trigonometric identity sec2 HsL tan2 HsL + 1: 2 à Itan2 HsL + 1M cscHsL â s 2 Untitled-11 Expanding the integrand Itan2 HsL + 1M cscHsL gives cscHsL + tanHsL secHsL: 2 à HcscHsL + tanHsL secHsLL â s Integrate the sum term by term: 2 à cscHsL â s + 2 à tanHsL secHsL â s For the integrand tanHsL secHsL, substitute p secHsL and â p tanHsL secHsLâs: 2 à 1 â p + 2 à cscHsL â s The integral of 1 is p: 2 p + 2 à cscHsL â s The integral of cscHsL is -logHcotHsL + cscHsLL: 2 p - 2 logHcotHsL + cscHsLL + constant Substitute back for p secHsL: 2 secHsL - 2 logHcotHsL + cscHsLL + constant u Substitute back for s tan-1 K O: 2 u2 + 4 - 2 log u2 + 4 + 2 + constant u Substitute back for u x + 2: 2 Hx + 2L2 + 4 + 2 Hx + 2L + 4 - 2 log + constant x+2 Factor the answer a different way: Answer: x2 + 4 x + 8 - 2 log Hx + 2L2 + 4 + 2 + constant Untitled-11 x2 + 4 x + 8 - 2 log + constant x+2 logHxL is the natural logarithm » secHxL is the secant function » -1 tan HxL is the inverse tangent function » cscHxL is the cosecant function » cotHxL is the cotangent function » Plots of the integral: Complex-valued plot È Æ Complex-valued plot È Æ 5 x -3 -2 1 -1 -5 real part imaginary part -10 min max 10 5 x -10 5 -5 10 real part imaginary part -5 min max Alternate forms of the integral: x2 + 4 x + 8 - 2 log x2 + 4 x + 8 + 2 + 2 logHx + 2L + constant x2 + 4 x + 8 + 2 logHx + 2L - log Hx + 2L2 + 4 + 2 + constant x2 + 4 x + 8 + 2 logHx + 2L - log x2 + 4 x + 8 + 2 + constant Series expansion of the integral at x=-2: H2 logHx + 2L + 2 - 2 logH4LL + 1 8 Hx + 2L2 + OIHx + 2L4 M Series expansion of the integral at x=-2-2 i: 2 -ä Π + 4 -1 Hx + H2 + 2 äLL32 - 3 H-1L34 Hx + H2 + 2 äLL52 + OIHx + H2 + 2 äLL72 M 3 4 Untitled-11 4 -ä Π + 3 -1 Hx + H2 + 2 äLL32 - 20 H-1L34 Hx + H2 + 2 äLL52 + OIHx + H2 + 2 äLL72 M Series expansion of the integral at x=-2+2 i: 2 äΠ3 H-1L34 Hx + H2 - 2 äLL32 + 3 4 20 -1 Hx + H2 - 2 äLL52 + OIHx + H2 - 2 äLL72 M Series expansion of the integral at x=0: 2 - 2 logI1 + I2 2 MM + x2 2 x- 5 x3 + 4 2 48 + OIx4 M 2 Series expansion of the integral at x=¥: x+2- 2 4 + x x2 +O 1 3 x Definite integral after subtraction of diverging parts: More digits ¥ à 0 8 + 4 x + x2 2+x -1 âx2-2 2 + 2 sinh-1 H1L » 0.93432 sinh-1 HxL is the inverse hyperbolic sine function »
© Copyright 2026 Paperzz