Some Observations

Trigonometry
Sec. 01 notes
MathHands.com
Márquez
Some Observations
Not Linear
Doubling an angles does NOT usually double the ratio. Compare sin 10◦ with sin 20◦ , for example.
generally, ...
sin(2x) 6= 2 sin x
”sin” IS NOT a number
If x, y and z are real numbers, then certainly, x(y + z) = xy + xz is true by the Distributive Law, but sin is not a
real number, and the Distributive Law does not apply to it.
generally, ...
sin(y + z) 6= sin y + sin z
”sin 23◦ ” IS a number
By the very definition sin of some angle, θ, IS a ratio. Thus, its a real number, thus if follows all Real Number
Axioms, such as DL, Associations Laws, Commutativity Laws, etc...
generally, ...
(y + z) sin 23◦ = y sin 23◦ + z sin 23◦
Special Exponent Notation By convention, the following notation has been adopted for exponents.
[sin x][sin x] = [sin x]2 = sin2 x
Special Exponent Notation
By convention, the following notation has been adopted for exponents.
sin x2 = sin x2 = sin(x · x)
Special Exponent Notation
By convention, the −1 exponent has been reserved for composition inverse, not multiplicative inverse of the functions. That is..
1
6= sin−1 x
sin x
.... however,
1
= [sin x]−1
sin x
sec, csc, or cot NOT on most Calculators
To calculate sec 23◦ for example, you will most likely calculate cos 23◦ , then find the reciprocal. sec NOT on
CALCULATOR, Do not confuse with cos−1 button which IS on most scientific calculators.
c
2007-2009
MathHands.com
math
hands
pg. 1
Trigonometry
Sec. 01 exercises
MathHands.com
Márquez
Some Observations
1.
1
cos 10◦
=
◦
cos 30
3
A. TRUE
B. FALSE
2.
tan 100◦
=2
tan 50◦
A. TRUE
B. FALSE
3.
tan (100◦ + 50◦ ) = tan (100◦ ) + tan (50◦ )
A. TRUE
B. FALSE
4. Generally,
tan (xy) = tan (x) · tan (y) .
A. TRUE
B. FALSE
5. Generally,
tan (2y) = 2 tan (y) .
A. TRUE
B. FALSE
6. Generally,
sin (2y) = 2 sin (y) .
A. TRUE
B. FALSE
7. Generally,
cos (−5y) = −5 cos (y) .
A. TRUE
B. FALSE
8. Generally,
cos (10x)
= cos 10
x
A. TRUE
B. FALSE
9. NOT LINEAR:
(a) Calculate cos 10◦
(b) Calculate cos 20◦
(c) Does doubling an angle generally double the corresponding cosine ratio?
(d) Does doubling an angle double the adjacent to hypothenuse ratio? Draw a for each of the ref. triangles.
(e) Make your best guess (TRUE OR FALSE): generally...
cos 2x = 2 cos x
10. NOT LINEAR:
(a) Calculate cos 20◦
(b) Calculate cos 60◦
(c) Does tripling an angle generally triple the corresponding cosine ratio?
(d) Does tripling an angle generally triple the adjacent to hypothenuse ratio? Draw a for each of the ref. triangles.
c
2007-2009
MathHands.com
math
hands
pg. 2
Trigonometry
Sec. 01 exercises
MathHands.com
Márquez
(e) Make your best guess (TRUE OR FALSE): generally...
cos 3x = 3 cos x
11. NOT LINEAR:
(a) Calculate sin 30◦
(b) Calculate sin 60◦
(c) Does doubling an angle generally double the sine ratio?
(d) Does doubling an angle generally double the opp to hypothenuse ratio?
(e) Make your best guess (TRUE OR FALSE): generally...
sin 2x = 2 sin x
12. ’cos’ is not a number :
(a) Calculate cos 30◦
(b) Calculate cos 15◦
(c) Calculate cos 45◦
(d) :
cos 45◦ = cos(30◦ + 15◦ ) = cos 30◦ + cos 15
(e) Make your best guess (TRUE OR FALSE): generally...
cos(x + y) = cos x + cos y
13. ’sin’ is not a number :
(a) Calculate sin 100◦
(b) Calculate sin 80◦
(c) Calculate sin 180◦
(d) (TRUE OR FALSE):
sin 180◦ = sin(100◦ + 80◦ ) = sin 100◦ + sin 80◦
(e) Make your best guess (TRUE OR FALSE): generally...
sin(x + y) = sin x + sin y
14. ’sin’ is not a number :
(a) Calculate sin 180◦
(b) Calculate sin 360◦
(c) Calculate sin 540◦
(d) (TRUE OR FALSE):
sin 540◦ = sin(180◦ + 360◦ ) = sin 180◦ + sin 360◦
(e) Make your best guess (TRUE OR FALSE): generally...
sin(x + y) = sin x + sin y
15. ’sin’ is not a number:
(a) (TRUE OR FALSE explain your answer):
c
2007-2009
MathHands.com
c
5c
=
5w
w
math
hands
pg. 3
Trigonometry
Sec. 01 exercises
MathHands.com
Márquez
(b) (TRUE OR FALSE explain your answer):
(c) (TRUE OR FALSE explain your answer):
5
5w
=
3w
3
xyzc
c
=
xyzw
w
(d) (TRUE OR FALSE explain your answer):
sin c
c
=
sin w
w
(e) (TRUE OR FALSE explain your answer):
30◦
sin 30◦
= ◦
◦
sin 60
60
(f) (TRUE OR FALSE explain your answer):
(xy)z = x(yz)
(g) (TRUE OR FALSE explain your answer):
(sin y)z = sin(yz)
(h) (TRUE OR FALSE explain your answer):
xy = yx
(i) (TRUE OR FALSE explain your answer):
sin y = y sin
16. ’sin 23◦ ’ IS a number:
(a) (TRUE OR FALSE explain your answer):
5 sin 23◦
5
=
7 sin 23◦
7
(b) (TRUE OR FALSE explain your answer):
√
√
( 5 + 3) sin 23◦ = 5 sin 23◦ + 3 sin 23◦
(c) (TRUE OR FALSE explain your answer):
√
√
( 3t)(sin 23◦ ) = ( 3)(t sin 23◦ )
(d) (TRUE OR FALSE explain your answer):
5(sin 23◦ ) = (sin 23◦ )5
(e) (TRUE OR FALSE explain your answer):
if x(sin 23◦ ) = 7
then x =
7
sin 23◦
17. ’sin’ is not a number:
(a) (TRUE OR FALSE explain your answer):
5c = c5
(b) (TRUE OR FALSE explain your answer):
xyzw = wxyz
(c) (TRUE OR FALSE explain your answer):
sin w = w sin
18. ’sin’ is not a number:
c
2007-2009
MathHands.com
math
hands
pg. 4
Trigonometry
Sec. 01 exercises
MathHands.com
Márquez
(a) (TRUE OR FALSE explain your answer):
if
5c = x then
c=
x
5
if
yc = x then
c=
x
y
(b) (TRUE OR FALSE explain your answer):
(c) (TRUE OR FALSE explain your answer):
if
c
2007-2009
MathHands.com
sin c = x
math
hands
then c =
x
sin
pg. 5