On breaking the Abbe diffraction limit in Optical

2223-21
Winter College on Optics in Imaging Science
31 January - 11 February, 2011
On breaking the Abbe diffraction limit in Optical Nanopatterning & Nanoscopy
MENON Rajesh
Laboratory for Optical Nanotechnologies
Department of Electrical and Computer Engineering
University of Utah
U.S.A.
On breaking the Abbe diffraction limit in
Optical Nanopatterning & Nanoscopy
Rajesh Menon
[email protected]
http://lons.utah.edu
Laboratory for Optical Nanotechnologies
Department of Electrical and Computer Engineering
University of Utah
Research Laboratory of Electronics
MIT
Complex geometries at the nanoscale are typically patterned via
Scanning-electron-beam Lithography (SEBL)
10nm HSQ patterned on a
30kV Raith-150 two.
9nm pitch
13 nm
4.5nm
J. K. W. Wang & K. K. Berggren, J. Vac. Sci. Technol. B, 25, 2025 (2007).
This is analogous to a (very sharp) “pencil” drawing an image.
Time for SEBL to pattern a 150mm wafer with 10nm
features ~ 1 year!
pix e l
2
1 0
5
1 0
w id t h
2 0
( nm )
5 0
100
200
7
Writing speed (cm2/s)
1 mont h
1 0
6
1 0
5
1 0
4
da t a r a t e
1 we e k
10
1
1 0
1 MHz
1 day
MHz
ho ur
100
3
MHz
1 0 0 e le c t r o ns
p e r p ix e l
1 0
2
1 0
1
1 GHz
2
T ime t o e xpos e 1 c m a r e a
b y e - b e a m lit ho g r a phy
at 1 0 0 0 A / cm
1 0 0 e le c t r o ns
1 0
1 0
2
a s s uming
pe r pix e l
0
- 1
1 0
2 0
5 0
100
200
Feature size (nm)
500
1000
Courtesy of H. I. Smith (MIT)
Electrons are deflected by stray electric & electromagnetic
fields leading to pattern distortion
Distortions in a spoke-wheel pattern
jcnabity.com
3KRWRQVDYRLGWKHVHSUREOHPV
3KRWRPDVNOD\RXW
*UDWLQJV
,QWHJUDWHG2SWLFV
QP
QP
0LFURPDJQHWLFV
QP
QP
3KRWRQLF'HYLFH
6HDORI0,7
NM
MM
50HQRQ$3DWHO'*LO+,6PLWK0DW7RGD\)HE
QP
3DWWHUQLQJZLWKSKRWRQVFDQEHIDVWDFFXUDWH
%XWWKH\VXIIHUIURPGLIIUDFWLRQ
L
Q
a L
VLQQ
L
$EEHOLPLW
QP
QP
QP
QP
QP
QP 89LRQL]LQJ
&RPSOH[
QP H[SHQVLYHVRXUFHV
QP
Superresolution using Fluorescence
STimulated Emission Depletion (STED)
Folds of the mitochondrial inner membrane
STED
Confocal
T. A. Klar, et. al, PNAS 97, 8206 (2000).
STochastic Optical Reconstruction Microscopy (STORM)
Target structure
Localizing activated subset of probes
STORM imag e
X. Zhuang, Nat. Photonics, 3, 365 (2009).
0RGHOLQJ$EVRUEDQFH0RGXODWLRQ
3KRWRQ7UDQVSRUW(TXDWLRQV
LQFLGHQWOLJKW
L
L
5DWH(TXDWLRQ
$0/
$
]
RSDTXH
L
L
N%$
%
WUDQVSDUHQW
3KRWRVWDWLRQDU\$SSUR[LPDWLRQ
3KRWRQ7UDQVSRUW(TXDWLRQ
5DWH(TXDWLRQ
%HHU/DPEHUW/DZ
'\QDPLF(TXLOLEULXP
7KHUPDO6WDELOLW\
FRQWUROV´VTXHH]LQJµ
ODUJH´HIIHFWLYHµQRQOLQHDULWLHVDW
ORZSRZHUOHYHOV
6FDOLQJWRZDUGVPDFURPROHFXODUUHVROXWLRQ
LQFLGHQWOLJKW
):+0QP
LNM
LNM
$0/
QP
):+0 QP
L
WUDQVPLWWHGOLJKW
5DWLR33
1HZ6FDOLQJ/DZ
LQFLGHQWOLJKW
):+0QP
LNM
LNM
$0/
QP
,QWHQVLW\UDWLRFRQWUROVVSRWVL]H
):+0 QP
L
WUDQVPLWWHGOLJKW
5DWLR33
3KRWRFKURPLFPROHFXOHVRIWKHGLDU\OHWKHQHIDPLO\
%LVELWKLHQ\OHWKHQH%7(
L
QP
L
QP
RSHQ
FORVHG
L NM
899LV
6SHFWUD
L NM
/OR\G‹V0LUURU,QWHUIHURPHWHU:RUNLQJ3ULQFLSOH
L
IROGLQJPLUURU
VSDWLDOILOWHU
EHDPH[SDQGHU
PLUURU
Q
SHULRG L
VLQQ
VXEVWUDWH
/OR\G‹VPLUURUVHWXS
/OR\G‹V0LUURU,QWHUIHURPHWHUIRUSUHOLPLQDU\GHPRQVWUDWLRQ
RI$EVRUEDQFH0RGXODWLRQ
L
PLUURU
QP
L
GLFKURLF
PLUURU
QP
RSDTXH
WUDQVSDUHQW
PLUURU
$0/
SKRWRUHVLVW
VXEVWUDWH
VXEVWUDWH
/OR\G‹VPLUURUVHWXS
3DWWHUQLQJEH\RQGWKHGLIIUDFWLRQOLPLWL
L QP ,SHDN,SHDNa
L QP
6DPSOH6WDFN
aQP
QP
$0/%LWKLHQ\OHWKHQH
aQP
39$
aQP
$0/
SKRWRUHVLVW
QP
!2# NM
´VTXHH]HGµOLQHV
):+0aQP
SUHGLFWHG
VXEVWUDWH
SKRWRUHVLVW
QP
QP
$5&
QP
VLOLFRQ
QP
QP
4 , !NDREW (9 4SAI 2 -ENON 3CIENCE 3DWWHUQLQJEH\RQGWKHGLIIUDFWLRQOLPLWL
QP
aQP
L QP
L QP
$0/
SUPPRESSED PEAK
VLPXODWLRQ
QP
QP
QP
´VXSSUHVVHGSHDNµ
SKRWRUHVLVW
$5&
4 , !NDREW (9 4SAI 2 -ENON 3CIENCE 0DSSLQJWKH/LQH6SUHDG)XQFWLRQ/6)
UHVLVWFOLSSLQJOHYHO
LQFUHDVLQJGRVH
H[SRVHG
QHJDWLYH
SKRWRUHVLVW
:GRVH
:GRVH
50HQRQ ET AL * /PT 3OC !M !
4XDQWLWDWLYHYHULILFDWLRQRI$EVRUEDQFH0RGXODWLRQ
WUDQVPLWWHG
LQWHQVLW\L
PHDVXUHG
WUDQVPLWWHG
LQWHQVLW\L
VLPXODWHG
,QWHQVLW\
QRUPDOL]HG
ï
ï
'LVWDQFHMP
50HQRQ ET AL 0HYS 2EV ,ETT