CONSTRUCTION OF ANALYTIC FUNCTION: MILNE THOMSON METHOD: Let f(z)=u+iv is to be constructed If R.P u is given ∂u/∂x, ∂u/∂y can be calculated , f(z)=∫( ∂u/∂x(z,0) - ∂u/∂y(z,0)) dz If I.P v is given, f(z)=∫ ∂v/∂y(z,0) +i∂v/∂x(z,0)) dz PROBLEMS: 1. Given that u=sinx / (cosh2x-cos2x) find the analytic function whose real part is u. Solution: f(z)=∫ɸ1(z,0) dz – i ∫ɸ2(z,0) dz ∂u/∂x = [(cosh2y-cos2x) ( 2cos2x) –(sin2x) (2sin2x)]/[cosh2y-cos2x]2 = [ 2cos2x.cosh2y-2cos22x-2sin22x] / [cosh2y-cos2x]2 = [2cos2x.cosh2y-2] / [cosh2y-cos2x]2 ∂u/∂x(z,0)=2cos2z-2 / (1-cos2z)2 =-2/1-cos2z =-1/[(1-cos2z)/2] = -1/sin2z =-cosec2z ∂u/∂y = [(cosh2y-cos2x) (0) –sin2x2sinh2y] / [cosh2y-cos2x]2 = (-sin2x sinh2y) / (cosh2y-cos2x)2 ∂u/∂y(z,0)=-2sin2x(0) / (cosh2y-cos2x)2 =0 f(z)=∫(-cosec2z – i(0))dz =-∫cosec2z dz =cot z +c CONSTRUCTION FOR ANALYTIC FUNCTION: MILNE-THOMSON METHOD: Case 1: To find f(z), when u is given, f’(z)=ux+ivx Case 2: = ux-ivy f’(z)= ux(x,y) –ivy(x,y) ∫ f’(z)dz=∫ux(z,0) dz – i ∫uy(z,0) dz +c f(z)=∫ux(z,0)dx – i ∫uy(z,0) dz +c To find f(z), when v is given, f’(z)=ux+ivx = vy+ivx ∫ f’(z)dz=∫vy(z,0)dz + i ∫vx(z,0) dz +c f(z)=∫vy(z,0)dz + i ∫ vx(z,0) dz +c PROBLEMS: 1. Determine the analytic function whose real part is x 3-3xy2+3x2-3y2+1 Solution: u=x3-3xy2+3x2-3y2+1 f(z)=∫ux(z,0) dz – i ∫uy(z,0) dz +c ux(x,y)=3x2-3y2+6x, uy=-6xy-6y 2 ux(z,0)=3z +6z, uy(z,0)=0 2 f(z)=∫(3z +6z)dz+c =z3+3z2+c 2. Determine the analytic function where u=e2x Solution: f(z)=∫ux(z,0)dz – i ∫uy(z,0)dy +c ux(x,y)=2e2x.sin2y ux(z,0)=2e2z.sin 0 =0 uy(x,y)=e2xcos2y.2 =2e2xcos2y uy(z,0)=2e2zcos0 =2e2z f(z)=0-i∫2e2z/2 +c =ie2z+c 3. Determine the analytic function f(z) such that u-v=ex(cosy-siny) Solution: f(z)=u+iv i f(z)=i (u+iv) =iu-v f(z) + i f(z)= u+iv+iu-v f(z) (1+i)=(u-v) + i(u+v) f(z)=u+iv Given u-v = u = ex(cosy-siny) ux=ex(cosy-siny) ux(z,0)=ez(cos0-sin0) =ez uy=ex(-siny-cosy) uy(z,0)=-ex f(x,y)=∫ux(z,0)dz – i ∫uy(z,0)dz +c f(x,y)=∫ezdz – i ∫-ezdz +c f(z)(1+i) =ez+i ez +c f(z)=[ez(1+i)] / [1+i] + [c] / [1+i] f(z)=ez+c 4. Determine the analytic function f(z) such that u+v=x/x 2+y2 subject to the condition f(1)=1 Solution: f(z)=u+iv i f(z)=i(u+iv) =iu-v f(z)(1+i)=u-v +i(u+v) f(z)=u+iv, u=u-v, v=u+v given, u+v=v=x/x2+y2 vx=(x2+y2) (1) –x(2x) / (x2+y2)2 vx(x,y)=y2-x2 / (x2+y2) vx(z,0)=-z2 / (z2+0)2 = -z2 / z4 =-1/z2 vy=(x2+y2)(0) –x(2y) / (x2+y2)2 = -2xy / (x2+y2)2 vy(z,0)=0 f(z)=∫ vy(z,0)dz + i ∫vx(z,0)dz +c =i ∫-1/z2dz +c =-i(z-1/-1) +c =i/z +c 5. Determine the analytic function f(z) such that 2u+3v=sin2x / cosh2y-cos2x Solution: f(z)=u+iv 2f(z)=2u+i2v i f(z)=iu-v 3i f(z)=i3u-3v 2f(z)-3if(z)=2u+i2v-i3u+3v =2u+3v+i(2v-3u) f(z)(2-3i)=u+iv f(z)=u+iv u=2u+3v, v=2v-3u 2u+3v=u=sin2x / cosh2y-cos2x ux=(cosh2y-cos2x)2cos2x – sin2x(2sin2x) / (cosh2y-cos2x)2 ux(z,0)=(cosh2(0)-cos2z) 2cos2x – sin 2x(2sin2x) / (cosh2y-cos2x)2 =-cosec2z uy=0-sin2x(2sinh2y) / (cosh2y-cos2x)2 uy(z,0)=0 f(z)=∫ ux(z,0)dz – i ∫uy(z,0)dz +c = - ∫cosec2zdz+c f(z)(2-3i)=cotz +c f(z)=cotz/ (2-3i) + c/(2-3i) =cotz(2+3i) / (2-3i)(2+3i) +c = cotz (2+3i) / (2-3i)(2+3i) +c =cotz(2+3i)/13 +c BILINEAR TRANSFORMATION OR MOBIUS TRANSFORMATION: W=az+b / cz+d , ad-bc≠0 Where a,b,c,d are complex numbers is called bilinear transformation. NOTE: The bilinear transformation which transforms z1,z2,z3 into w1,w2,w3 is…, [[(w-w1)(w2-w3)] / [(w-w3)(w2-w1)]] = [[ (z-z1) (z2-z3)] / [(z-z3) (z2-z1)]] PROBLEMS: 1. Find the bilinear transformation that mps the points z=-i,0,i, into w=-1,i,1 Solution: z1=-i,z2=0,z3=i w1=-1, w2=i,w3=1 [[(w-w1)(w2-w3)] / [(w-w3)(w2-w1)]] = [[ (z-z1) (z2-z3)] / [(z-z3) (z2-z1)]] [[(w+1)) (i-1)] / [(w-1)(i+1))]] = [[ (z-i) (0-i)] / [(z-i) (0+i)]] [[(w+1)) (i-1)] / [(w-1)(i+1))]] = -[[(z+i)(i)] / [(z-i)(i)] ] [[(w+1) (i-1)(i-1)] / [(w-1) (i+1) (i-1)] ] = -(z+i) / (z-i) [(w+1)(i2-2i+1)] /[(w-1) (1+1) ] = -(z+i) / (z-i) (w+1)(-2i) / (w-1)2 = -(z+i) / (z-i) (w+1) (-i) / (w-1) = -(z+i) / (z-i) (w+1) / (w-1) = (z+i) (-i) / (z-i) (i) =(z+i)(-i) / (z-i)(-i2) = (-zi+1) / (z-i) =-zi+i / z-i w+1+w-1 / w+1-w+1 = -zi+1+z-i / -zi+1-z+i 2w/2= -i(z+1) + (1+z) / -z(i+1) + (1+i) w=(z+1)(1-i) / (1+i)(1-z) = (z+1)(1-i) (1-i) / (1-z) (1+i) (1-i) = (z+1) (1-2i+1) / (1-z) (1+1) = (z+1) (-i) / (1-z) =-i(z+1) / (1-z) 2. Find the bilinear transformation maps the points 0,1,∞, into -5,-1,3 respectively Solution: By bilinear transformation: [[(w-w1)(w2-w3)] / [(w-w3)(w2-w1)]] = [[ (z-z1) (z2-z3)] / [(z-z3) (z2-z1)]] z1=0,z2=1,z3=∞ w1=-5, w2=-1,w3=3 (w+5) (-1-3) / (w-3) (-1+5) = (z-0) (1-∞) / (z-∞)(1-0) (w+5) (-4) / (w-3) (4) = z(1-∞) / (z-∞) = z(-∞) (1/∞ − 1) / (-∞) (z/∞-1) =z(-1) / (-1) =z -(w+5) / (w-3)= z -(w+5)=z(w-3) -w-5=zw-3z w-zw=5-3z -w(1+z)=5-3z To find invariant point w=(3z-5) / (1+z) w=z z=(3z-5) / (1+z) (z+1)z=3z-5 z2+z=3z-5 z2-2z+5=0 z=2±√(4-4(5) / 2 = 2±4i / 2 =1±2i
© Copyright 2025 Paperzz