MAT 21B: Winter 2017 8.1.2 x2 x2 +1 R Z √ dx √ = x− x x − 1 and du = R3 4x2 −7 −1 2x+3 8.1.12 Z 2 x2 + 1 − 1 x +1 1 dx = dx + x2 + 1 x2+1 x2 + 1 Z 1 = 1+ dx = x + arctan x + C 1 + x2 x2 dx = x2 + 1 Z dx √ x− x R 1 :u= Due February 17 dx Z 8.1.6 Homework Z 1 dx 1 √ √ = x x−1 Z √ 2du = 2 ln |u| + C = 2 ln | x − 1| + C u dx √ 2 x dx 3 Z −1 Z 3 2 4x2 − 9 + 2 4x − 9 2 dx = + dx 2x + 3 2x + 3 2x + 3 −1 −1 Z 3 (2x − 3) (2x + 3) 2 = + dx 2x+ 3 2x + 3 −1 3 2 = x − 3x + ln |2x + 3| = ln(9) − 4 4x2 − 7 dx = 2x + 3 Z 3 −1 8.1.23 R 0.5π √ 0 1 − cos θ dθ Z Z √ Z r Z r 1 + cos θ 1 − cos2 θ 1 − cos θ dθ = (1 − cos θ) dθ = dθ 1 + cos θ 1 + cos θ s Z Z sin θ sin2 θ √ dθ = dθ = 1 + cos θ 1 + cos θ Z √ √ 1 −du √ = −2 u + C = −2 1 + cos θ + C = u 0.5π √ 0.5π √ √ 1 − cos θ dθ = −2 1 + cos θ = −2 2 + 2 ∴ 0 0 1 : u = 1 + cos θ and du = − sin θ dθ 8.1.39 R dx 1+ex Z dx = 1 + ex Z dx e−x · = 1 + ex e−x e−x dx = − ln |e−x + 1| + C e−x + 1 Z 1 MAT 21B: Winter 2017 8.2.1 R x sin x2 dx Z Homework 1 x x x sin dx = −2x cos − 2 2 Z −2 cos Due February 17 x x x dx = −2x cos + 4 sin + C 2 2 2 1 : u = x, du = 1, v = −2 cos x2 , and dv = sin x2 8.2.4 R x2 sin x dx Z 1 x sin x dx = −x2 cos x − 2 Z −2x cos x dx Z 2 2 = −x cos x − −2x sin x − −2 sin x dx = −x2 cos x + 2x sin x + 2 cos x + C 1 : u1 = x2 , du1 = 2x, v1 = − cos x, and dv1 = sin x 2 : u2 = −2x, du2 = −2, v2 = sin x, and dv2 = cos x 8.2.8 R xe3x dx Z xe 1 : u = x, du = 1, v = e3x , 3 3x 1 e3x − dx = x 3 Z e3x e3x e3x dx = x − +C 3 3 9 and dv = e3x R 8.2.16 p4 e−p dp Following the example 7 on page 466, Z p4 e−p dp = e−p −p4 − 4p3 − 12p2 − 24p − 24 + C 8.2.24 R e−2x sin (2x) dx Z Z 1 1 −2x −2x e sin (2x) dx = − e cos (2x) − e−2x cos (2x)dx 2 Z 1 2 1 −2x −2x =− e cos (2x) − e sin (2x) − −e−2x sin (2x)dx 2 2 Z 1 −2x =− e cos (2x) + sin (2x) − e−2x sin (2x)dx 2 Z 1 e−2x sin (2x)dx = − e−2x cos (2x) + sin (2x) + C 2 Z 1 ∴ e−2x sin (2x)dx = − e−2x cos (2x) + sin (2x) + C 4 2 2 MAT 21B: Winter 2017 Homework Due February 17 1 : u1 = e−2x , du1 = −2e−2x , v1 = − 12 cos (2x), and dv1 = sin (2x) 2 : u2 = e−2x , du2 = −2e−2x , v2 = 12 sin (2x), and dv2 = cos (2x) 8.2.32 skip R 0.5π 8.2.48 0 x3 cos (2x)dx Following the example 8 on page 466, 3 0.5π Z 0.5π x 3x2 6x 6 3 x cos (2x)dx = sin (2x) + cos (2x) − sin (2x) − cos (2x) 2 4 8 16 0 0 3π 2 3 3 = 0− −0+ − 0+0−0− 16 8 8 2 3 3π + =− 16 4 8.2.53.a) skip 8.2.69 Show that Let g(x) = Rb x R b R b a x Rb f (t)dt dx = a (x − a)f (x)dx Rx f (t)dt = − b f (t)dt. Then, g 0 (x) = −f (x) by the Fundamental Theorem of Calculus. Z b Z b Z b g(x)dx f (t)dt dx = a a x b Z b 1 xg 0 (x)dx = xg(x) − a a Z b xf (x)dx = b · g(b) − a · g(a) + a Z b Z b Z b =b f (x)dx − a f (x)dx + xf (x)dx b a a Z b =0+ − af (x) + xf (x) dx a Z b = (x − a)f (x)dx a 0 1 : u = g(x), du = g (x), v = x, and dv = 1 8.3.1 skip 8.3.5 R sin3 (x)dx Z Z Z 3 2 sin (x)dx = sin (x) sin (x)dx = 1 − cos2 (x) sin (x)dx Z 1 = sin (x) − cos2 (x) sin (x) dx = − cos (x) + cos3 (x) + C 3 3 MAT 21B: Winter 2017 Homework 8.3.22 skip Hint: change cos2 (2θ) to 1 − sin2 (2θ) 8.3.35 R sec3 (x) tan (x)dx Z Z 1 3 2 sec (x) tan (x)dx = sec (x) sec (x) tan (x) dx = sec3 (x) + C 3 8.3.38 R sec4 (x) tan2 (x)dx Z Z 4 2 sec (x) tan (x)dx = sec2 (x) sec2 (x) tan2 (x)dx Z 2 2 = sec (x) 1 + tan (x) tan2 (x)dx Z = sec2 (x) tan2 (x) + sec2 (x) tan4 (x) dx = 8.3.51 R 1 1 tan3 (x) + tan5 (x) + C 3 5 sin (3x) cos (2x)dx sin (A ± B) = sin (A) cos (B) ±cos (A) sin (B) ∴ 21 sin (A + B) + sin (A − B) = sin (A) cos (B) Z Z 1 sin (3x + 2x) + sin (3x − 2x) dx 2 Z 1 = sin (5x) + sin (x) dx 2 1 1 = − cos (5x) − cos (x) + C 10 2 sin (3x) cos (2x)dx = 4 Due February 17
© Copyright 2026 Paperzz