2.4 The Chain Rule Remember the composition of two functions? f o g = f ( g ( x)) The chain rule is used when you have the composition of two functions. d [f ( g ( x))]= f ' ( g ( x)) g ' ( x) dx Find y’ for y = (x2 + f(x) = x3 g(x) = x2 + 1 1)3 d [f ( g ( x))]= f ' ( g ( x)) g ' ( x) dx y’ = 3(x2 + 1)2 (2x) = 6x(x2 + 1)2 Find y’ for y = (3x – 2x2)3 y’ = 3(3x – 2x2)2(3 – 4x) Find f’(x) for f ( x) = ( x + 2) 3 ( ) 2 2 ( = x +2 4x -1 3 2 2 f ' ( x) = x + 2 (2 x) = 3 2 3 x +2 3 2 ) 23 Differentiate -7 g (t ) = 2 (2t - 3) g’(t) = 14(2t – rewritten as 28 = (2t - 3) 3 3)-3(2) Differentiate f ( x) = x 1- x 2 2 ( rewritten as Ê1ˆ f ' ( x) = x Á ˜ 1 - x 2 Ë2¯ 2 ( = -x 1- x 3 Factor = -7(2t – 3)-2 ) ( x 1- x 2 ) 2 12 ) (- 2 x )+ (1 - x ) (2 x ) -1 2 2 -1 2 2 12 ( + 2x 1- x ) 2 12 = x (1- x ) [-x 2 -1 2 2 + 2(1- x 2 )] = ( x 2 - 3x 1- x Differentiate f ( x) = x 3 x +4 2 rewritten as = (x x +4 2 ( x + 4) (1) - x(1 3)( x + 4) f ' ( x) = 2 23 ( x + 4) 13 2 3( x + 4) - 2 x ( x + 4) = 3( x 2 + 4) 2 3 2 13 ) ) 13 Bot * Top’ – Top * Bot’ (Bot)2 Quotient Rule 2 2 2 2 2 -2 3 -2 3 = (2 x) Ê 3 ˆ !Á ˜ Ë3¯ x + 12 2 ( 3 x +4 2 ) 43 Differentiate Ê 3x - 1 ˆ y=Á 2 ˜ Ë x +3¯ 2 Ê x 2 + 3 3 - 3x -1 2x ˆ () ( )( ) ˜ ) Ê 3x - 1 ˆ Á ( y ' = 2Á 2 ˜ 2 2 Á ˜ Ë x +3¯Ë ( x + 3) ¯ 1 = 2( 3x -1)( 3x 2 + 9 - 6x 2 + 2x ) = 2( 3x -1)(-3x 2 + 2x + 9) (x (x 2 2 + 3) + 3) 3 3 Derivatives of Trigonometric Functions d du [sin u ]= cos u dx dx d du 2 [tan u ]= sec u dx dx d du 2 [cot u ]= - csc u dx dx d du [cos u ]= - sin u dx dx d du [sec u ]= sec u tan u dx dx d du [csc u ]= - csc u cot u dx dx Applying the Chain Rule to trigonometric functions y = sin 2x y’ = (cos 2x) (2) = 2 cos 2x y = cos (x – 1) y’ = -sin (x – 1) (1) = -sin (x – 1) y = tan 3x y’ = sec2 3x (3) = 3 sec2 3x y = cos (3x2) y’ = -sin (3x2) (6x) = -6x sin (3x2) y = cos2 3x rewritten as y = (cos 3x)2 y’ = 2(cos 3x)1 (-sin 3x) (3) y’ = -6 cos 3x sin 3x Differentiate f (t ) = sin 4t rewritten as 1 -1 2 f ' (t ) = (sin 4t ) cos 4t (4) 2 2 cos 4t = sin 4t 12 (sin 4t )
© Copyright 2026 Paperzz