Validation of Running Symmetry Using Trunk Mounted

ValidationofRunningSymmetryUsingTrunkMounted
Accelerometry:ClinicalTrialandCaseStudy
DavidJosephSaba
SubmittedtotheGraduateFacultyofVirginiaPolytechnicInstituteandStateUniversityin
partialfulfillmentoftherequirementsforthedegreeof
MastersofScience
in
HumanNutrition,Food,andExercise
CommitteeMembers:
JayWilliams
MadlynFrisard
AlfredWicks
ValidationofRunningSymmetryUsingTrunkMountedAccelerometry:
ClinicalTrialandCaseStudy
Abstract
Trunk-mountedmonitoringequipmentlikeGPSportsSPIHPUunitsaredesignedtouse
globalpositioning(GPS),accelerometerandheartratemonitoringtoevaluatethephysical
demandsofanactivity.Amedicalstaffmightalsoconsidermarkerssuchasrunning
symmetryinevaluationofinjuryoccurrenceandrehabilitation.Arunningsymmetryisa
ratioofthesynchronizationoftherightandleftlowerlimbsduringthegaitcycle.An
asymmetrydueto,apathologyormusculoskeletalinjury,resultsinabnormalloadingon
thefootthatmaybedetectedbytrunk-mountedaccelerometry.Theaimofthisstudyisto
evaluatetheabilityofSPIHPUunitstodetectrunningasymmetry.Subjectsworethe
HPISPUunits(100Hz,16gtri-axialaccelerometer,50Hzmagnetometer)whileengagedin
variousrunningactivities.Inthefirststudy,artificiallyinducingaleglengthdiscrepancy
ledtoadifferencebetweenrunningsymmetryscores.Thisdiscrepancywasconfirmed
usingindividualaccelerometersattachedtothelowerlegnearthefoot.Next,varying
runningspeeddidnotresultindifferencesinrunningsymmetry.However,theSPIHPU
unitsdiddetectarunningasymmetrybetweenfatiguedandnon-fatiguedconditions.
Finally,twocasestudiesshowedthattheunitscouldidentifyasymmetryimmediatelyafter
alowerleginjuryandduringrehabilitationofanteriorcruciateligamentreconstruction
surgery.TheresultsofthisstudyshowthattheHPUSPIunitscanbereliablyusedto
monitorrunningsymmetryandtodetectasymmetricalgaitpatterns.
TableofContents
ABSTRACT.............................................................................................................................................ii
TABLEOFCONTENTS........................................................................................................................iii
CHAPTER1:PurposeandSignificance.........................................................................................1
CHAPTER2:LiteratureReview....................................................................................................10
CHAPTER3:Methods.......................................................................................................................28
CHAPTER4:Results..........................................................................................................................34
CHAPTER5:Discussion...................................................................................................................47
Chapter1
PurposeandSignificance
1
Introduction:
Withthegrowthoftechnologyandanalyticsprograms,sportsscienceisina
positionwheremorequantitativedatacanbecollectedandinterpretedonaday-to-day
basis[1].Wearealsoinatimewhereprofessionalathletesaresomethehighestearning
professionalsinoursociety.Theircontractsaregivenintheexpectationtheywillmake
certaincontributionstothecommongoalofwinningateamchampionship.Christiano
Ronaldoearnedapproximately$53millionduringthe2015-2016season.Duringthistime,
heplayedin48matchesforRealMadridFC[2].Thismeansthathemadeover$1million
foreverygameheplayed,showingjusthowvaluableoneathletecanbetoanorganization.
ThisfinancialimpactcanbefurtheranalyzedusingthecaseofWayneRooney.By
multiplyinggameslosttoinjury(GLI)andsalaryowedperweek.Duringa9-month
windowRooneywasinjuredoffandonfor3monthsandmissed36%ofmatchesplayed
duringthisperiod.DuringthatsametimeRooneywasmaking£250,00perweekgrossing
£7.5millionoverthe9-monthwindow[3,4].Therefore,ManchesterUnitedpaid£2.7
million,or36%of£7.5million,toaplayerwhowasphysicallyunabletoperform(PUP).
LukeShaw,making£70,000perweek,missedover7months,86%,ofthesame9-month
window[3,4].ThetimeonthePUPlistcosttheteamonly£1.8million.Thisexampleshows
howplayerswithlargersalariescanimpactthefinancialaspectofperformancemorethan
GLIalone.GLIisjustthebeginningofthefinancialburdenplacedonanorganizationwhen
aplayerisunfittoparticipateinteamactivitiesasadditionalcostsareincurredformedical
treatmentsandrehabilitation,lostticketsalesandpotentialpost-seasonparticipation.
Afterinjury,itisalmostguaranteedthatsomerehabilitationprogramwillbe
establishedwhichmaybeextensiveifsurgeryisrequired[5].Withonesessionofphysical
2
therapycostingaround$250,a2-weeksessioncouldcostthousandsinadditionalexpenses
[6].Specialistsmaybeoutsourcedtoadministeralternativetreatmentslikecryotherapy,
addinganothercosttotheathletewhoisunabletoprovidehisorherskillsettothe
organization.Thekeytomaximizing“profit”oftheathleteistominimizethetimespent
awayfromtheirjobputtingafocusonquickrehabilitationtime.Iftherehabprocessis
rushedproperhealingmaynottakeplaceleadingtore-injuryandadditionaltimePUP[7].
Inadditiontominimizinginjuriesteamsareinterestedinquantifyingasmany
variablesaspossibleandturningtoanalyticstoidentifystrongandweakaspectsofthe
roster.ThemovieMoneyballgaveagoodrepresentationofhowsportsanalyticscanbe
utilizedtomaximizeallthepiecesofateamandreachtheultimategoalofwinningthe
championship[8].Theuseofhigherlevelsanalyticsasshownbythe2002OaklandA’sin
whichtheteamwasabletoeliminatemajorcontractsandfillthelossofproductivitywith
cheapercontractscanleadtogreatbenefitsforanorganization.Thesesmallercontracts
allowedtheA’stocorrectadditionaldeficienciesandseebeyondstatslikehittingand
homerunsalone.Thekeytoalloftheirsuccesswasbeingabletocalculatetrendsinteam
performanceandidentifysolutionstomaximizeperformancewhileremaininginthelimits
ofaleaguesalarycap[8].
Asweprogressthroughthisperiodoftechnologicalrevolution,productionof
smallerandmoreaccuratemonitoringdevicesarebeingmadeavailabletothepublic
sector,creatingastrongermarketforwearabletechnology[9].TechnologieslikeGlobal
PositioningSystem(GPS)andaccelerometrycanbeutilizedinmanyfieldsrangingfrom
phoneappstoexternalsystemssuchasthoseproducedbycompanieslikeGPSportsand
Catapult[10,11].
3
Thesetypesofequipmentaccuratelyandreliablycollectquantitativevariableslike
totaldistanceorbodyimpacttobeanalyzed[12,13].GPSportsnewestwearable,SPIHPU
unit(Figure1),isgrowinginpopularityamongstmajorsportsteamsincludingseveral
EnglishPremierLeague(soccer),NFL(football)andNBAteams(basketball)[14].These
smallcompactunitsallowforthedailycollectionofover100variablesdescribingthe
trainingloadexertedonaspecificindividualinanon-invasivemanner.Theunitutilizesan
externalheartratestrap,wornbelowthexiphoidprocess,GPS,accelerometer,and
magnetometer.
Inadditiontocollectingvelocityandheartratevariables,thistechnologyallowsthe
usertoutilizeaccelerometryvariables,likeimpactforce,runningorgaitsymmetryand
bodyload,asametricforevaluatingtotaltrainingload.Gaitsymmetryisdefinedasthe
equalvaluesofgaitvariableonbothsides,suchasaccelerationorgroundreactionforce
[15,16,17].Equalpeakgroundreactionforcesexperiencedduringrightandleftfootstrike
isconsidered“symmetrical”whereasdifferencedonfootstrikeforcesisdescribedas
“asymmetrical”.Gaitsymmetryisalsoreferredtoasrunningorwalkingsymmetry.An
asymmetricalgaitmayalsobereferredtoawalkingorrunningimbalance.Usinga
symmetryindexallowsforleftandrightgaitdatatobequantifiedintoapercentdifference.
Inthismethodologyascoreofzerowouldrepresentperfectsymmetrywhilevaluesabove
andbelowzerowouldrepresentasymmetryintherightorleftdirectionwherehigher
scoresrepresentmoreasymmetry[18,19].
Utilizinggaitsymmetry,onecanmonitorimproperloadingofthebodyandidentify
whentheseabnormalitiesoccur.Studieshaveshownthatassubjectsarefatiguedchanges
ingaitoccur,whichincreasesone’sriskofinjurybyreducingstability[20,21].Ifasituation
4
arisesinwhichanathleteisshowingabnormalgaitsymmetry,physicianscanact
proactivelytoadministertreatmenttorestoregaitfunctionbeforeinjurymayoccur.Risk
ofmajorinjuriestothejointsofthelowerextremitiescanbereducedviathereductionof
abnormalloadingforcesseeningaitasymmetry[22,23].Lowerleginjuryoftenresultsin
gaitasymmetrywhichisreducedduringrecoveryandrehabilitation.Thus,thismetric
couldalsobeusedtomonitorinjuryrecoveryandmake“returntoplay”determinations.
Therehavebeenstudiesthatexaminedaccelerometersandtheircapacityto
quantifyhumangait[24,25,26].Allofthesestudiesutilizedgroundreactionforcefroma
forceplateorvideoderivedaccelerationstovalidateaccelerometerdata.Trunk-mounted
accelerometryhasonlybeenusedinafewstudieswithforceplateorvideomonitoring
usedtovalidatethefindingsofthesestudies.Themainissuethatariseswhenusingsuch
validationtoolsisthelackofapplicabilityinarealworldsetting.Byrequiringasubjectto
performexerciseonaninstrumentedtreadmillortohavecompletefootstrikesonan
individualforceplatesomedeviationfromthenaturalgaitpatterncanoccur[27].
Inadditiontotheperturbedgaitthesemonitoringtoolsarelargeandrequireateam
ofresearcherstoconductdatacollectioninalaboratorysetting[28,29].Thisrequiresan
athletetotakeadditionaltimetohavetheirgaitsymmetrytestedoutsideofthenatural
environment[30].Anotherlimitisthatonlyonesubjectcouldbeevaluatedatatime
whetherthatbebyinstrumentationinthelaborviavisualexamintheclinic[31].One
studylookedathowrunningkinematicschangedduringlongdistancerunningand
concludedthatassubjectsbecamefatiguedverticalaccelerationofthetibiaincreasedat
heelstrike[32].Thisincreasedaccelerationwouldcauseanincreasedforcetobedelivered
5
upthekineticchainrequiringthebodytodissipatesuchforcesinanabnormalmanner,
leadingtoanincreasedinjuryrisk.
Anexperimentaldesignthatvalidatestrunk-mountedaccelerometersinamanner
directlytranslatabletofield-basedsportsandclinicalsettingdoesnotexistcurrently.Thus,
thisstudyfocusesontheaccelerationsenduredbetweenthefootandgroundinareal
worldsettingbyutilizinganon-invasivemonitoringsystemthatcanbeusedonaday-todaybasisduringeverydayactivitiesperformedoutsideofthelaboratory.
StatementoftheProblem:
Currentmethodologyusedtoquantifyrunningsymmetryoutsideofthelaboratory
isvisualinspectionofanathletebyaphysician.Insidethelaboratoryclinicianstypically
instrumentathletesandconductshortboutsoflocomotioninheavilycontrolledsettings.
Byutilizingtrunkmountedaccelerometry,gaitsymmetrycanbeassessedinavarietyof
real-worldconditions.AlthougharunningsymmetrycanbeidentifiedviatheGPSportsSPI
HPUtechnology,thesevalueshavenotbeencomparedagainstlowerlimbmounted,bilateralaccelerometry.Thisisproblematicasaccelerationdataobtainedfromatrunkmountedaccelerometerisinfluencedbythedampingeffectsofknee,hipandvertebral
columnflexionandextension(e.g.dampening).Inaddition,therearenodatashowing
changeinrunningsymmetrywithvariedexerciseintensityorduringarehabilitation
program.Thus,thethreeaimsofthisprojectareprovidedinthebelowsection.
6
SpecificAims:
Aim1:DeterminetheabilityoftheGPSportsSPIHPUtrunk-mountedunitstodetect
runningasymmetryduringartificiallyinducedrunningimbalanceandcomparethose
valuestoankle-mountedsensors.
Hypothesis:Anklemountedaccelerometersandtrunkmountedunitswillshow
similarchangesingaitsymmetryunderconditionsofanartificiallyinducedasymmetry.
Objective:Showthatbyapplyingpeakaccelerationstoasymmetryequation,a
runningsymmetryscoreisproducedthatissimilartothoseproducedbytheGPSports
proprietoralgorithm.
Aim2:Identifyhowexerciseintensity(i.e.runningvelocity)andfatigueaffect
runningsymmetry.
Hypothesis:Moreintenseexerciseprescriptionswillresultinthedevelopmentof
anincreasedgaitasymmetrywhencomparingthefirst100mtothefinal100mofa1600m
effort.
Objective:Confirmthatrunningsymmetryisaffectedbyvaryingworkout
intensitiesduetofatigue.
Aim3:Usecasestudiesonknownlowerleginjuriestoverifythatinjury-induced
gaitasymmetriescanbedetectedwiththetrunkmountedaccelerometer.
Hypothesis:Anathletesufferinganacutelowerleginjuryandanathleteundergoing
rehabilitationfollowinganteriorcruciateligamentreconstructionsurgerywillshowgait
asymmetriesduringrunning.
7
Objective:Adaptcodeusedinpreviousexperimenttocalculatearunningsymmetry
duringanexerciseprescriptionandcomparetoexistingrunningimbalance
Significance:
Byutilizingtrunk-mountedaccelerometerdataandasymmetryindex,gait
symmetrycanbequantifiedunderreal-worldsettinglikethefieldofplayorclinical
environment.Trunkmountedaccelerometryprovidesanon-invasivemeansto
quantitativelyevaluatearunningsymmetry.Ratherthanarbitrarilyidentifyinga“limp”,
practitionerscouldquicklyandreliablyquantifyanasymmetryandmonitorhowitchanges
asrehabprogresses.Ifusedinasportssetting,teamscouldidentifywhenasymmetries
developinsubjectsasthetrainingperiodprogresses.Physicianscancomparegait
symmetryacrossagiventimeline,allowingforevaluationofrehabilitationordevelopment
ofpathology.Trunkmountedsystemsalsoallowforcollectionofmultiplesubjectsatthe
sametime,amajorlimitationofinlabtesting.
Assumptions:
Subjectsarelimitedtomale,collegeathletes(soccer).Itisimpossibletoassure
subjectswillbefreeofbothmentalandphysicalfatigue,whichcaninfluencegait
symmetry.Theinductionofrunningasymmetryislimitedtobi-anduni-lateralshod
conditionsandexerciseprescriptionsof1600matvaryingintensities.Althoughdatawas
collectedundersimilarweatherconditions,factorsliketemperatureandhumiditycould
influenceeffortofathletes.Forthecasestudy,itislimitedtoonesubjectrecoveringfrom
ACLreconstructionandonesubjectrecoveringfromafootinjury.Lastly,subject’sdietary
8
intakecouldnotbenormalizedforthisstudy.Malnourishedordehydratedsubjectswould
notonlyaffectexerciseperformanceviathelackofsubstratetoproduceATPbutcouldalso
influencespatialcognition.
9
Chapter2
LiteratureReview
10
HumanGait:
Humanlocomotionrequiresthebodytosynchronizemusclecontractionsina
mannerthatisbothsafeandenergyefficient.Overmillenniaofevolutionhumanshave
adaptedtomaintainastablebase,allowingtheupperbodytomoveforwardoverthelower
limbs,preciseneuromuscularcoordination,andefficientabsorptionanddissipationof
forces[33].Theresultingmotionisacyclicalpatternoftheleftandrightlowerlimbs,
defininganindividual’sgait.Currentpracticeforevaluatinganindividual’sgaitrequires
thephysiciantobreakeachstrideinto4sections;weightacceptance,stance,forward
progression,andswing[31,33,34].Weightacceptancephase(0-10%)includesinitial
contact(IC)andtheloadingresponse(LR)andwhenthefootcomesincontactwiththe
groundandbearstheweightofthebody.Stancephase(10-50%)includesmidstance(MSt)
toterminalstance(TSt),thebodiescenterofmass(COM)isshiftingoverthefootto
preparefortoe-off.Theforwardprogressionphase(50-60%)encompassestheterminal
stanceandpre-swing(pSw)wherethebodyispropelledforwardandbeginstopreparefor
theswingphase.Theswingphaseisbrokendownintoinitial(ISw),middle(MSw),and
terminalswing(Tsw).Duringtheswingphasethefootisnotincontactwiththeground
andispreparingitselfforthenextweightacceptancephase.Onegaitcycleisdefinedasone
fullprogressionofallfourofthesephases.Generally,thisisbrokendownfromheel-strike
toheel-strikeina0-100%asshowninFigure2[33].
Normalgaitwouldbeasituationwherealloftheseportionsofthegaitcyclecome
togetherinasymmetricalandharmoniousmanner[35].Pathologicalgaitentailsany
deviationfromthisnormalgaitpattern.Pathologycanarisefromdeformitylikea
discrepancyinleglengthorissueswithjointmobilityasseeninACLreconstructionorjoint
11
replacementprocedures[36,].Muscleimbalances,issueswithneuromuscularfunction,and
paincanalsoresultinpathologicalgait[34].Pathologicalgaitrequiresthebodyto
compensateacrossalllowerbodyjoints:ankle,knee,andhip[33].Thiscausesmusclesto
beutilizedthatwouldnottypicallybeneededforagivenmotionlikewalkingorrunning.
Anexampleofhowpathologyleadstoincreasedenergyexpenditureandfurther
pathologywouldbeindividualswho“hike”theirhips.Individualswithlimitedhip
flexibilitymusthikeorraisetheirhipresultinginacircumductionofthelowerlimb.Not
onlydoesthisinterferewithgaitcycletiming,italsorequiresnovelmusclegroupsto
compensateleadingtoanabnormalloadappliedtothelowerlimb[37].Thisabnormal
loadincreasesthetotalworkthatcompensatorymusclesareperformingleadingto
increasedenergyexpenditure.Aswellasrequiringmoreworktobeperformedbynovel
musclesthiscircumductionofthehipappliesabnormalloadtothejointsofthelower
extremities.Abnormalwearingofthejointcapsulemayleadtootherissuessuchas
arthritisorosteoporosis.Consideringthatpathologyresultsinanasymmetricalgaitit
shouldbenosurprisethatthemonitoringofgaitisimportantindiagnosisandtreatmentof
manypathologies[38].
MonitoringGait:
Traditionallyresearcherscollectedgaitdatabyusingacombinationofforceplates
andvideomonitoringsystems[39,40].Forceplatesareplatformsthatareabletoconverta
changeinvoltageintoaforcevalueorgroundreactionforce(GRF)[41].Whenan
individualmakescontactwiththeforceplate,thereisadeflectionthatcreatesachangein
voltageandthroughaseriesofmathematicalconversionsproducestheGRF.ThisGRF
12
allowsforquantificationofdynamiceventssuchaslandingorrunningforcesinsixdegrees
offreedom,forcesandmomentsintheX,Y,andZcoordinate[41].Itcanalsobeusedto
calculatecenterofmass(COM),animportantvariableforquantifyingbalance[41].
Limitstousingsuchtechnologyincludetheneedofacontrolledenvironmentand
needformultipleplatforms[27-30].Videomonitoringisagreattooltocalculatejoint
anglesandhowtheychangeduringvaryingactivities.Byusingreflectivemarkersanda
roomequippedwithmultiplecamerasresearcherscancalculatehowajointismoving,
velocity,andthenpredictforcesexertedonsaidjointbyintegratingtodetermine
accelerationandutilizingNewton’ssecondlawofmotion,forceequalsmassmultipliedby
acceleration[41].Thisrequiresaroomofagivenareasetupwithuptoeightinfrared
cameraslimitingthecapacitytocapturereal-worlddata.Asbroughtupearliertheforce
plateneedsagroupofresearcherstocalibratethesystembyfirstensuringtheplateis
firmlyattachedtoalevelsurface.Duetotheintricaciesofcalibratingtheplatestheyare
ofteninstalledonceandnotmovedrestrictingtheoutoflabutilization[41].
Anotherlimittoforceplatesisthatfullfootcontactisrequiredforaccurate
measurementofGRF[42].Ifoneweretoonlystriketheplatewithhisorhersheelaforce
wouldbegeneratedbuttheportionofthefootoffoftheplatewouldalsoexertaforcethat
wouldnotbecaptured.Sinceaskingasubjecttostriketheplatewouldaltergait
researchersmustinstallmultipleplatestoincreasetheoddsofcapturinganentirefoot
strike.
Withthemainlimitationofbothtoolsbeingthattheyrequirealabsettingan
alternativeisneededtoconductdataintherealworld.Inertialmeasuringunits(IMU)
provideananswertothisproblem.AnIMUisacombinationofaccelerometer,gyroscope,
13
ormagnetometer[43].AccelerometersmeasurelinearaccelerationsintheX,Y,andZ
planeswhilegyroscopesmeasureangularvelocitiesalongtheX,Y,andZplanes.
Magnetometersareabletodetectmagneticnorththusallowingthesystemtoorientitself
toacommonpoint.BasedonNewton’ssecondlaw,F=ma,datacollectedfrom
accelerometrycanbecomparedtoforcedatalikeGRF.Onestudythatdirectlycompared
forceplatedatatoaccelerometrydatawasastudyconductedbySeimetzetal.Inthisstudy
theywantedtolookathowaccelerometryandforceplatedatacomparedwhenmeasuring
posturalstability[44].Stabilogramsandswayprofilesweregeneratedfromforceplateand
sternum-mountedaccelerometerrespectively.Subjecthadbothvisualandproprioceptive
systemsperturbedinordertoseehowforceplateandaccelerometerwereabletodetecta
changeinCOM.Thefindingsofthestudywerethatthetwotechnologieswerenotdirectly
comparablebutshowedsimilartrends.ThiswasshownbyincreasedCOMareaonthe
stabilogramandincreaseswayprofilewhenthebodiesvisualandproprioceptivesystems
wereperturbed.
Theuseofaccelerometershasbeenusedinsciencesfordecadesbutisonlyrecently
beingintroducedonlargescaleinteam-basedsports(12,13).Byutilizingaccelerometry
estimationsofforcesandhowtheyaredistributedacrossthebodyasawholecanbe
obtained[24,25,26].AstudyperformedbyTorrealbaetal.[45]identifiedsignificant
landmarksingaitdatacollectedfromaccelerometers.Thesignificantfindingsofthisstudy
weretwonegativeaccelerationsthatoccurredduringthegaitcycle.Thelargeracceleration
wasassociatedwithheelstrikeandthelesserpeakbeingassociatedwithtoe-off.The
authorsusedthegaitcycleandfoundthetoe-offoccurredapproximately61%intothegait
cycle,whichissupportedbyvideomonitoringsystemslikeVicon[45,46].
14
Zhangetal.[47]lookedtoidentifyhowaccelerometerattachmentsiteaffected
accelerations.Subjectsattachedaccelerometersabovethemedialandlateralmalleolusand
performedawalkwherethefootstruckaforceplate.Accelerometerdatafromboth
attachmentsiteswerewellcorrelatedwithforceplatedatabutlateralattachmentwas
morehighlycorrelated.Thehypothesisontheseresultswasthatbyattachingsensors
closertothepointofcontacttheforceexertedontheunitwouldbehigher.Thisbrings
lighttoanimportantpointthatthebodyhasbuiltindampersliketheankle,knee,andhip
jointcapsule.Thesedampersincludeskeletalmuscle,ligaments,tendons,andcartilage.As
thesedampersdeteriorategaitwillbealteredinordertoaccommodate.Ifdataweretobe
collectedfurtherfromthepointofcontactvaluesmaydifferbuttrendsshouldremain.
GaitSymmetry:
Therearenumerousstudiesexaminingabnormalitiesingaitsymmetryincluding
detectinganasymmetryincerebralpalsy,stroke,andtheelderlytoassessriskoffalling
[19-23,48-50].Variableofinterestincludedvariationinstridedistance,GRF,peak
acceleration(PA),andCOM.Fewstudiesutilizedtrunk-mountedunits,likeGPSports
(SPIHPU)units,forcollectionofaccelerationdata.Carpesetal.[19]conductedareview
lookingatlegpreference,whichincludedanalysisofavarietyofsymmetryequations.All
equationscomparedvariablefromtherightlimbtoleftlimb.Fromtheirstudyandothers,
themostcommonmethodologytoevaluatesymmetryistotaketheabsolutevalueofright
(Xr)minusleft(Xl)dividedbyonehalfright(Xr)plusleft(Xl)asshowninFigure3
[19,39,40].Carpesetal.[19]foundthatbyusingthisformulaasymmetrypercentage
(ASI%)canbeproducedallowingfortheidentificationofsymmetryinasubject’sgait[19].
15
Itwasimportanttoidentifypossiblesourcesoferrorwhencollectingsymmetry
data.Basedontheproprietor’sinformationandcurrentliteraturefoursourcesarose
includingvelocity,runningsurface,footwear,andattachmentsite.Croweetal.[51]looked
athowgaitvariableswereinfluencedbyvaryingwalkingspeeds.UsingGRFdata
researchersfoundthatasvelocityincreasesgaitcycleduration,timefromrightheelstrike
tonextrightheelstrike,andforceintheYplane,mediolateral,decreasedwhileforceinthe
X,anterior-posterior,andZ,vertical,planeandstridelengthincreased.Thesefindings
showthevariabilityinforcesasvelocitychangesmakingvelocityanimportantfactorto
considerwhiletestinggaitparameters.TheXandZGRFdatawashighlycorrelated
showingarelationshipbetweentheforcesatwhichthefootstrikes,weightacceptance
phase,theplatetotheforcegeneratedtopropelthebodyforward,toe-off.Theseincreased
forcesrequirethebodytoincreasetherateatwhichgaitcycleoccurstobe
biomechanicallyefficient.
Giandolinietal.[52]conductedandexperimentwheretheyutilizedaccelerometers
toidentifydifferencesbetweendownhillandlevelgroundrunning.Basedonprevious
studies,theystatethatdownhillrunninginduceshigheraccelerationsatthetibiaequating
increasedforces.Findingsofthisstudywerethatdownhillrunningpromotedrear-foot
strikeandfoot-strikepatterninfluencedshockintensity.Specifically,theyfoundthat
forefootstrikeproducedlessforcethanrear-footstrike.Theanklecanbemodeledasa
first-classleverwheretheloadisappliedtothefoot,thetalocruraljointactsasthefulcrum
allowingforforcestobedistributedtothemusclesofthecalfandviceversa.Intheforefoot
strikethedistancebetweenourfulcrumandsiteofforceapplicationisincreasedwhereas
inarear-footstrikerthisdistanceisreducedleadingtoanincreasedforcesentthroughthe
16
talocruraljointandupthekineticchain.Althoughsubjectsmaynaturallyberear-foot
strikersbyensuringaflatsurfaceweareminimizingtheeffectsofanunevensurfaceon
accelerations.
Ourthirdsourceoferroristhatfootwearcanaffectgaitsymmetry.Hoerzeretal.
[53]testedhowshodvsunshodinfluencedGRFdata.Theirfindingsweresimilartoother
studiesthatshodrunningreducedrunningasymmetry.Theyproposedthatshoesalter
sensoryinformationfromtheplanterand/orthedorsalportionofthefoot.However,some
subjectsdidshowanincreasedgaitasymmetrygivingsupportforhowvariablehumangait
is.Thisvariabilitycanarisefromthevariationinafferentfeedbackoftheneuromuscular
systemeffectingproprioception[53,54].
Lastly,accelerometerplacementwillaffectthecollectionofaccelerometerdata.Two
aspectstoplacementisassuringtheunitissecurelyattachedandunderstanding
placement.Thefirstpointisintuitiveinthatiftheunitisnotsecurelyattachedtothebody
theaccelerationcancomefromtheunitmovingindependentlyoftheattachedlimb.To
reducetheseeffects,researchersuseathletictape,Velcro,or2-sidedtapetofirmlyattach
unitstothebody.Asmentionedpreviouslythebody’sjointandmusculoskeletalsystem
dispersesforceasittravelsupthekineticchain.Thisideaissupportedbyastudy
conductedbyZhangetal.[47]Theyidentifiedhowwellaccelerometerdata,peak
acceleration,wascorrelatedtoGRFwhenattachingunitstothedistaltibiaandlateral
malleolus.AlthoughbothattachmentsiteswehighlycorrelatedtoGRFdata,lateral
malleolusattachmentwasmorehighlycorrelated.Thisattachmentwasalsosupportedby
studiesconductedbyManninietal.[55]andLeMoyneetal.[56].
17
WearableTechnology:
Recentlyseveralcompanieshavedevelopedwearableunitsdesignedtomeasure
variableslikevelocity,heartrate,acceleration,andrunningsymmetry.TheSPIHPUisan
80gtrunk-mountedunitthatincorporatesGPS,accelerometer,andmagnetometerhoused
ina74mmx42mmx16mmwaterproofcase,Figure1.Thetrunk-mountedunitis
positionedbetweentheathlete’sscapula,nearvertebraeT4andT5,byavestprovidedby
manufacture,Figure4.Inadditiontothetrunk-mountedunitheartratedataiscollectedvia
polarheartratestrap.Alldatafromthefourinstrumentsisstoredontheunituntil
downloadedtothedockingstationandinterpretedusingproprietarysoftware.TheGPS
unitrecordsat15Hzandcollectsposition,speed,anddistancevariables.Theaccelerometer
recordsimpacts,accelerations,anddecelerationsupto16gatarecordingfrequencyof
100Hz(Figure5).Themagnetometerisstrictlyusedtotrackmovementprofilesandused
inconjunctionwiththeaccelerometertoestablishorientation.Utilizingthesefour
separatetechnologiesallowstheproprietorssoftwaretogeneratevisualizationsofhow
variablesinteractwitheachother.Figure6showshowvelocityandheartrateofan
individualtrackoverthecourseofanexercisebout.
Theincreasedlevelofmonitoringproduceslargedatasetscomprisedofover150
variablesallowingforamorequantitativemeasureofthetotaltrainingload(TL)endured
bytheindividual[57].Trainingloadcanbedefinedasbothexternal(thevolumeand
intensityofworkbeingperformed)andinternal(thephysiologicalandmechanical
responsetotheexternalload).Anathlete’sTLisimportanttomaximizingperformance
gainsaswellasreducingtheriskofinjury.Gabbettetal.[58]modelTLbytakingtheratio
ofacutevs.chronicloadandmaintainingitbetweenaspecificrange,0.8-1.3au.[58].Using
18
thisscaleundertrainingandovertrainingarerepresentedbelow0.8auorabove1.3au
respectively.Acuteandchronicloadcanbeanyslidingwindowofdata,1-6dayaverage
versus10-18dayaveragerespectively[59].ThiswayofanalyzingTLmakestheobserver
moreconcernedaboutthesimilaritybetweenexerciseboutsratherthanlookingateach
exerciseboutasanindividualstress.TherateatwhichTLvariesismoreimportantthan
theindividualsessionsthemselves.ModelingTLinsuchamannerwecancomparehowwe
areperformingnowversushowwewereinthepast.Analyzingrunningsymmetryinthis
waywillallowforintra-subjectcomparisonstobemadeestablishingbaselinesor“normal
gait”.Sincerunningsymmetryissovariedamongstindividualscomparingsymmetryto
one’sownselfprovidesmorepowerfulinsightthancomparingtoawholeteamaverageor
thateveryonehasperfectsymmetry.Assumingasubjecthassomenaturalasymmetryin
theirgaitusingacutevs.chronicallowsforustoseehowsimilarthatasymmetryoccurs
ideallyresultinginaratioof1[58].Ifsomeoneweretochronicallyover-trainorexperience
amusculoskeletalinjury,itwouldbeexpectedthatanunnaturalasymmetrywoulddevelop
comparedtoone’sownnaturalgait.Thiswouldresultinanincreasedacutevs.chronic
ratioandcouldbeusedasamarkerforinjury.Inarehabilitationsettingaphysiciancould
lookfortheacutevs.chronicratiotobelessthanoneduetothereductionofasymmetry
overtime.Thiswouldallowphysicianstobetterunderstandhowtherehabilitation
processisprogressingandhaspotentialasareturnto
ACLReconstructionClinicalCases:
ACLrupturesarethemostcommonsportsassociatedinjurythatrequiressurgeryto
repair[60].TheACLprotectstheproximaltibiafromanteriortranslocationfromthedistal
19
femurwhenthelegisinaflexedposition[Butler].Suchinjuryisassociatedwitha
disruptioningaitsymmetryduetoreducedrangeofmotion(ROM)andreducedstrength
specificallyinthequadriceps[61,62].Followingsurgeryphysician’smaingoalsrevolve
aroundpromotinglong-termjointfunctionalityandavoidre-injury,mostsusceptible7-8
monthspost-surgery.
InordertoaccomplishthisVirginiaTechsportsmedicineguidelinescallforthe
recoveryperiodisbrokenintofourstages(early,middle,late,post)eachfocusingon
restoringpainmanagement,ROM,strength,weightbearing/jointloading,and
neuromuscularcontrol.The“early”phasebeginsimmediatelyfollowingsurgeryand
generalextendstosix-weekpost-surgery.DuringthisperiodthefocusisrestoringROM,i.e
gainingfullextension,andneuromuscularfunction.Specialfocusisplacedonmuscle
activationandreestablishingnormalgaitpatterns.Thisincludesemphasisonavoiding
poorgaitmechanicslikestiff-kneegaitwhilepromotingnormaltoe-offtohelpestablish
normalgaitspeedandcadence.
Inordertoprogresstothe“middle”phasepatientsmustshowfullROMaswellas
accomplishbasicgaitgoalslikesteppingup/downandsymmetricalloadingduring
unassistedwalking.The“middle”phaseextendsfrom6-12weekspost-surgery.Duringthe
periodmoredynamicexercisesareemphasized.Joggingbeginsaswellasperturbed
balance;singlelegstanceonfoampad,duringthistimeasregainingendurancebecomesa
focusoftherehabilitationprescription.Asthisprescriptionprogresses,symmetrical
loadingisimportanttoensurenormalloadingoftherepairedjoint.Approximately12
weeks,3months,post-surgery,apatientwouldbeginthe“late”phase,whichonlylastsfor
fourweeks,16weekspost-surgery.Duringthisphasejoggingdurationandintensityis
20
increasedwithemphasisonminimizingeventslike“hardlandings”makingthepatient
focusonspecificmuscleactivationwithoutco-contraction,notcontractingquadricepswith
hamstringsIncreasingmulti-jointmaneuverslikesquats,speedladder,andplyo-jumpscan
beaddedaspermittedbypatient’spain.
Summary:
Areviewoftheliteratureisclearinestablishinggaitsymmetryasakeyvariable
thatcanbeusedtoidentifymusculoskeletalinjuryandpathology.Thismetricistypically
derivedusinglaboratorytechniquesandisgenerallydifficulttodetermineduringeveryday
activitiesperformedoutsideofaresearchorclinicalsetting.Recentlytrunk-mounted
accelerometersincorporatedaspartofaGPSbasedmonitoringdevicehaveshowed
promise.However,fewdataexisttovalidatethesedevicesagainstbi-lateralfootorankle
mountedaccelerometersandduringconditionswheresymmetricalandasymmetricalgait
exists.Thus,thereisaneedtovalidatetrunk-mountedagainstbi-lateraldevicesand
duringperiodofknownalteredgait.
21
Figure1.TheGPSportsSPIHPUunit.
22
Figure2.Synchronizationofleftandrightlowerextremitiesduringgaitcycle.Top:
Walkinggait,Bottom:Runninggait.Imageobtainedfrom:
http://clinicalgate.com/assessment-of-gait/
23
Figure3.Symmetryindexequation.XrandXlrepresentpeakverticalforcesduringright
andleftfootstrike,respectively(Z-axis)[19]
24
Figure4.SPIHPUwithvestfront(top)andback(bottom)showingunitinpocket
25
Figure5.RawSPIHPUaccelerationdata.ShownareZ-axis(yellow),X-axis(red)andYaxis(green).Theresultantisshowninblue.TheFigurewasobtainedfromGPSports
TeamAMSsoftwarepackage.
26
Figure6.Heartrateandvelocityvisualization.Theredlinerepresentsheartrateand
thebluelinerepresentsrunningvelocity.TheFigurewasobtainedfromGPSports
TeamAMSsoftwarepackage.
27
Chapter3
Methods
28
Subjects:
Thestudyusedhealthycollegiatesoccerplayerswithnocurrentlowerbodyinjury.
Currentlowerbodyinjurywillbedefinedasaninjurythathasoccurredwithinthepast
30days.Anadditionalsubjectrecoveringfromanteriorcruciateligament(ACL)
reconstructionsurgerywillalsobemonitored.Subject’sinformationcanbeseeninTable1.
AllprocedureswereapprovedbytheVirginiaTechInstitutionalReviewBoard(IRBand
16-387and16-619).Allprocedureswerefullyexplainedtoallsubjectsandinformed
consentwasobtainedpriortodatacollection.
Accelerometry:
Subjectswereaskedtowheretrunkmountedaccelerometers(SPIHPU,GPSsport)
(allstudies)aswellasbi-ankle-mountedaccelerometers(MSR145S,MSRElectronics
GmbH)(ValidationStudy).SPIHPUunitsweremountedinaccordancetomanufacture
recommendationbeingsecurednearvertebraeT-4andT-5withproprietaryvest.
CharacteristicsofthetwoaccelerometersareshowninTable2.Anklemountedunitswere
securedatthelateralmalleoluswithPowerFlextapeusingthelateralmalleolusandfibula
aslandmarksassupportedbyliterature[47].PowerFlexwaschosenasthebestmeansto
secureaccelerometerstotheankleduetoitsmaterialdesignswhichwouldminimally
perturbssubjectsnaturalgait.Onceunitsaremountedwarm-upactivitieswereperformed
tofamiliarizesubjectswithequipmentandprotocols.
Trunkmountedaccelerometersare100Hz,16gtri-axialaccelerometerequipped
witha50Hzmagnetometertodetermineaxialorientation.Theassociatedsoftware
producesasymmetryindexusingaproprietaryalgorithm(GPSports,TeamAMS).This
29
algorithmidentifiesandcomparespeakaccelerationvaluesofeachfootstrikeand
computessymmetryusingtheequationinFigure3.
Accelerometerdatafromthetwolowerleg-mountedaccelerometersweresampled
50Hzusingmanufacturerprovidedsoftware.TheywerethenanalyzedusingMATLAB.A
rollingaveragewasfirstusedtolow-passfilterthedatawhichallowedforidentificationof
peakacceleration(PA)alongtheverticalorZ-axisforeachfootstrike.Nextwewillneedto
compareeachunit’s(leftvsright)databyapplyingthepeakaccelerationalongtheZaxis
fromrightandleftstancephase(identifiedasXrandXlrespectively,inthesymmetry
equationusedinFigure3.
ValidationTrial:
Inordertoinducegaitasymmetry,subjectsweretestedunderthreetestconditions
intheorderofbi-lateralshod(wearingtwoshoes),uni-lateralshod(wearingleftshoe),
andunshod(noshoes)conditions.Subjectswereaskedtowearsoccercleatsoftheir
choice.Duringeachtrial,theyperformed15-50mrunsatapproximately70%intensity,
self-reported,withaminuterecoverybetweenefforts(5foreachcondition).Alltrialswere
administeredonthesamedayutilizingaflatartificialturffield(FieldTurf)tominimize
effectsfromvaryingsurfaces.
Symmetryscoresfromeachtrialwithinaconditionwereaveraged.Trunk-and
lowerleg-mountedsymmetryscoreswerecomparedusinga2-wayrepeatedmeasures
ANOVA(conditionXdevice)usingJMP.Runningvelocitieswerecomparedusinga1-way
ANOVA(condition).Significancewasestablishedatthep<.05level.Effectsizeswere
30
calculatedusingη2(η2=SSeffect/SStotal)with0.01consideredsmall,0.06considered
mediumand0.14consideredlarge.
ApplicationTrial:
Three,1600meffortstrialsofvaryingintensitieswereconductedonseparatedays.
Theseincludeda1600mrunperformedinapproximately16km/hr(6minutemile),16x
100msprintsperformedatnearmaximalvelocity,self-reported,anda1600mjogat
approximately8km/hr(12minutespermile).Trialswereconductedonseparatedays,to
betterisolatethefatiguingexerciseandwerecarriedoutaspartofroutine,off-season
training.Alleffortswereperformedona400moutdoorrunningtrackwithallsubjects
completingeachactivityatthesametime.Forthistrial,subjectswerefittedwiththe
trunk-mountedunitsalone.Runningsymmetryscoresweredeterminedforthefirstand
last100mofeach1600mtrialandforfirstandlastofthe100msprintsboutusingthe
SPIHPUandproprietarysoftware.
Differencesinrunningsymmetryandvelocityweredeterminedby2-wayrepeated
measuresANOVA(trialXtime)usingJMP.Significancewasestablishedatthep<.05level.
Effectsizeswerecalculatedusingη2asdescribedabove.
CaseStudies:
TwocasestudiesarepresentedasfurthervalidationoftheSPIHPUunitsabilityto
identifyrunningsymmetryandasymmetry.Inthefirstcasestudy,asinglemalesubject
whowasrecoveringfromACLreconstructionsurgerywasexamined.Datacollectionbegan
60dayspost-surgeryandcontinuedfor6weeks.Forthisindividual,recoverywas
31
monitoredsemi-weekly.Runningsymmetrywasdeterminedduringvaryinglengthsof
straight-lineconstantvelocityrunning.Asthesubjectwasclearedforgreatertraining
participation,runningspeed(intensity)wasallowedtoincrease.
Asecondsubjectsufferedablowtothelowerlegduringoff-seasontraining.He
continuedtotrainfortheremainderofthesession.Followingthesession,hewas
diagnosedwithananklesprainandenteredintoarehabilitationprogram.Running
symmetrywasassessedimmediatelybeforeandaftertheinjury.Itwasalsoassessedfor
10daysfollowinginjury(rehabilitationprogram)afterwhichthesubjectwasclearedfor
fullparticipationintrainingactivities.
Forbothsubjects,accelerometerdatawererecordedduringthedesignated
rehabilitationprotocolestablishedbyVirginiaTechSportsMedicinestaff.Runningspeeds
andexerciseintensitieswereadjustedbythestaffastoleratedbyeachsubject.Running
symmetryvaluesweredeterminedpriorto(acuteinjurystudy)andduringthe
rehabilitationperiodsasdescribedfortheValidationandApplicationstudies.
32
Variable
ValidationTrial(n=11)
ApplicationTrial
(n=16)
CaseStudies
(n=2)
Male:Female,
6:5
16:0
2:0
Age(years)
22.1(2.9)
21.2(1.4)
21(0)
Height(m)
1.76(0.09)
1.80(0.07)
1.85(0)
Bodymass(kg)
71.6(11.2)
74.9(6.7)
81.9(0)
BMI(m.kg-2)
22.9(1.9)
23.1(1.7)
23.9(0)
Table1.Subjectcharacteristicsforeachstudy.
Specification
SPIHPU
MSR145S
Size(mm)
74x42x16
18x14x62
Weight(gm)
66
18
Accelerometer
Tri-axial
Tri-axial
Magnetometer
Yes
No
Range(g)
±16
±10
Datacollection(Hz)
100
50
Table2.Accelerometerspecifications.
33
Chapter4
Results
34
ValidationTrial:
Rawaccelerationsforunilateral-shodrunningareshowninFigures7and8.Shown
areZ-axis(vertical)accelerationsdetectedwiththeSPIHPUunits(trunk-mounted)for
successivefootstrikesaswellasthebilateralanklemounteddevices.Ascanbeseen,peak
accelerationsarenoticeablydifferentbetweenrightandleftfootstrike
Themeansymmetry(Figure9)andmeanrunningvelocity(Figure10)were
comparedbetweeneachtrialforeachsubject(ANOVAtablesareshownintheAppendix).
Symmetryscoresweresignificantlygreaterfortheunilateralshodcondition(1S)
comparedtotheothertwoconditionsforbothtrunkandanklemountedaccelerometers.
Theeffectsizeforconditionwasconsideredlarge.Therewerenodifferencesinsymmetry
betweenthebilateral(2S)andun-shod(0S)conditions.Therewasasmalldifference
betweendatacollectedfromtrunk-andankle-mounteddeviceshowever,nodeviceby
conditioninteractionwasfound.Thisindicatesarunningasymmetrywhensubjects
experiencedanartificiallyinducedalterationingait.
Runningvelocityforthe2Sconditionwassignificantlylowerthanthe0Scondition.
Velocitiesduringthe1Sand0Sconditionwerenotdifferent.Thisamountedtoa4.7%
reductioninrunningvelocitycomparedtotheotherconditions(mediumtolargeeffect
size).
Theseresultssuggestthattrunk-mountedaccelerometrycandetectartificiallyinducedrunningasymmetry.Inaddition,themagnitudeofasymmetrydetectedbythe
trunk-mountedunitswassimilartothatdetectedbylowerlegmountedaccelerometers.
ApplicationTrial:
35
Themeanrunningsymmetryscores(Figure11)andrunningvelocities(Figure12)
showedthetypeofexerciseperformedaffectedrunningsymmetry.Theintensityof
activitydidnotsignificantlyaffectsymmetry.However,therewasahigherasymmetry
duringthefinal100mifthe1600mtrialThe1600mtrialwastheonlyactivitytoshowa
significantlyincreasedsymmetryscore.Theeffectsizesforactivity(trial),interval(first
andlast100m)andtheirinteractionwereallconsideredmedium.
The16x100mshowedasignificantdecreaseinvelocitybetweenfirstandlasttrial.
Asanticipated,runningvelocitieswerehighestduringthe16x100meffortsandlowest
duringthe1600mjog.Effectsizesforactivitywasconsideredlargeandconsideredsmall
fortheintervalandtheinteraction.
Theseresultssuggestthatrunningsymmetry,asdeterminedusingtrunk-mounted
accelerometry,isnotgreatlyaffectedbyrunningspeedbutisalteredbyfatiguingactivity.
CaseStudies:
Forthefirstcasestudy,asinglesubjectsufferedateartohisrightanteriorcruciate
ligament(ACL)andunderwentreconstructionsurgery.Fiveweeksfollowingsurgery,he
beganaprogramofslowjoggingalongwithtraditionalstrengtheningandrangeofmotion
exercises.Hisexerciseintensitywasgraduallyincreasedoverthenextthreemonths.
Figure13showssignificantasymmetryfollowingACLreconstruction.Inthiscase,
symmetryscoresarepositivereflectinganinjurytotherightleg.Aninitialincreased
runningasymmetryappearstoariseastherehabilitationprogrambegins.Thislikely
reflectsthegradualincreaseinrunningvelocityduringtherehabilitationprogram.After
36
twomonthsofrehabilitation,runningasymmetrywasstillevidentbothvisuallyandfrom
SPIHPUdata.
Forthesecondcasestudy,anindividualsufferedanankleinjurytohisleftleg
resultingfrombeingkickedonduringatrainingsession.Aftersustainingtheinjury,the
subjectcontinuedtotrainforseveralminutesafterwhichthesessionended(Figure14).
Hewaslaterdiagnosedwithananklesprainandhistrainingwaslimitedforseveraldays.
Ashebecamesymptomfree,hisactivitieswereincreasedandresumedfulltrainingwithin
twoweeks.Figure14showsacutechangesinrunningsymmetryfromtheperiodbefore
theinjuryandafter.Priortotheinjury,therearelargevariationsinrunningsymmetry.
Thislikelyreflectsthenatureoftheactivitybeingperformed.Soccertrainingrequires
playerstoexecuteanumberofdirectionalchangesatbothlowandhighrunningvelocities.
Theincreasedimpactforceduringachangeofdirectionmovementwouldlikelyaffectthe
symmetrycalculation.Followingtheinjury,thissubjectshowsamarkedincreasein
symmetryreflectinganasymmetricalgaitpattern.Alsonotethelargechangeinsymmetry
occurringimmediateaftertheinjurycomparedtothevalidationandapplicationtrials.
InFigure15theplayer’ssymmetryscoresoverthedaysbeforeandfollowingthe
injury.Thisshowsalargenegativeasymmetryscoresinthedaysfollowingtheinjury.
Thesearefollowedbydecreasingasymmetrythroughtherecoveryandrehabilitation
period.
Bothcasestudiesindicatethatrunningsymmetrydeterminedbytrunk-mounted
accelerometryisalteredimmediatelyafteraninjuryandremainssoduringrehabilitation.
37
Figure7.RawaccelerometrydataobtainedfromtheHPISPUunit.RandLdenoteright
andleftfootstrikes,respectively.
38
Figure8.Rawaccelerometrydatafromthebi-lateralaccelerometers.RandLdenote
rightandleftfootstrikes,respectively.
39
Figure9.Runningsymmetryvaluesduringbi-lateralshod(2s),uni-lateralshod(1s)and
unshod(0s)runningtrials.*p<.05vs0sand2sconditions.
40
Figure10.Runningvelocityduringbi-lateralshod(2s),uni-lateralshod(1s)andunshod
(0s)runningtrials.*p<.05versus0sand2s.
41
Figure11.Runningsymmetryvaluesduringthethree1600mtrials.*p<.05versusthe
first100mofthetrail.
42
Figure12.Runningvelocityvaluesduringthethree1600mtrials.*p<.05versus100s
andjog,†p<.05versus100sand1600m.‡ p<.05versus100sfirst100mandlast100m
43
Figure13.MeanrunningsymmetryscoresduringanACLreconstructionrehabilitation
program.
44
Figure14.Runningimbalancescoredduringatrainingsessioninasingleplayerbefore
andaftersustainingafootinjury.Thesessionconsistedofawarm-up,fitnesstraining
andmatchplay.Approximately140afterthestartofthesession,theplayersustaineda
footinjury.Trainingendedapproximately15minuteslater.
45
Figure15.Runningimbalancescoresbeforeandaftersufferinganankleinjury.The
injuryoccurredonday0.Thesubjectwasrestrictedfromfulltrainingbetweendays1
and9.Afterday9,thesubjectresumedfullparticipation.
46
Chapter5
Discussion
47
TheresultsofthisstudyshowthattheSPIHPUaccelerometercanbeusedtodetect
asymmetricalgaitpatterns.Fourpiecesofevidencesupportthisconclusion:1)An
artificiallyinducedgaitabnormalityinducedarunningasymmetry2)Changesinrunning
symmetrywerequalitativelyandquantitativelysimilar(visualandSPIHPUdata),3)
Runningsymmetryisaffectedbyexercisetofatigueand4)twocasestudiesofinjured
subjectsrevealedalterationsinrunningsymmetry.Basedontheseresults,itisevident
thattheSPIHPUunitscandetectbothnormalandabnormalgaitpatterns.
ValidationTrial:
Thistrialdemonstratedanovelapproachtoinducingarunningasymmetryin
normallyhealthysubjects.Byhavingsubjectsremovetheirrightshoe,aleglength
discrepancywascreated.Thisdiscrepancyledtoanincreasedpositive(favoringtheright
leg),runningsymmetryproducedbytheGPSportsproprietarysoftwareandankleunits.
Thedatashowedastatisticallysignificantdifferencewhencomparingsymmetryscoresof
thebilateral-,unilateral-andun-shodconditions.Whencalculatingthesymmetryscorea
trenddevelopedinwhichtheproprietarysymmetryalgorithmbegandetectingarunning
symmetryduringtheearlypartofsteadystate,constantvelocity,runningandcontinued
untilthesubjectsspeedfellbelowthethresholdof8km/h.Itwashypothesizedthatthis
delayindetectionofrunningsymmetrywasduetothe10stepminimumneededforthe
proprietaryalgorithmtocalculateasymmetryscore.Unfortunately,withoutknowingtheir
exactalgorithmitishardtomakedefinitiveconclusionsastothesourceofthisabnormal
distributionoffoot-strikestakenintoconsiderationtodevelopthesymmetryscore.By
validatingthescoreagainstankleaccelerometersweshowedsimilartrendsindatawhere
48
theankleunitsreportedincreasedscores.Thiswasexpectedasdatawasbeingcollected
closertothepointofcontact.
Aninterestingfindingofthisstudyexperimentwasthestatisticallysignificance
betweenunshodandshodvelocitieswheretheunshodconditionshowedanincreased
velocity.Thefirstthoughtwasthatthismayhavebeenaresultoffatiguebutallsubjects
wentthroughtheexperimentalprotocolprogressingfromshodtouni-shodtounshod
wherefatiguewouldmostaffecttheunshodtrials.Duetotherestandorderofexerciseswe
donotfeelasthoughfatiguehadanyeffectonourexperimentratheritmaybethe
biomechanicsresponseofthefoot.Kellyetal.conductedanexperimentthatcomparedfoot
biomechanicsduringshodandunshodrunning.Themainfindingswerethatwhenvelocity
wascontrolled,14km/h,shodrunningledtoanincreasedstridedurationandground
contacttimewhiledecreasingpeakloadingrateandpeakpropulsiveforcewhencompared
tounshodconditions.Thisbeginstomakemoresenseifthelongitudinalarch(LA)ofthe
footismodeledasaspring.DuringtheloadingphasetheLAiscompressedconverting
kineticenergytopotentialenergystoredinthetendonsandligaments.Asthegaitcycle
entersterminalstancetheLAextendsthispotentialenergyisreturnedtothegroundand
propulsionoccurs.
ApplicationTrial:
Toourknowledgethisstudywasthefirsttolookathowfatiguingactivities
contributetorunningsymmetry.Duringthe16x100sand1600mtrialssubjectswere
exertingmaximaleffortduetotheintervalsofeachtrial.Consideringthe16x100sand
1600mwerestatisticallysignificantforvelocityandsymmetryrespectivelywewereable
49
toinfluencedirectlyandindirectlyalterrunningsymmetry.Duringthe1600mbout,
velocitywasconsistentbetweenfirstandlast100mportionwhilesymmetryscore
doubled,2.106%.The16x100sshowedasignificantreductioninvelocity,~2.56km/h,
andanincreaseinsymmetryscore,0.731%,whichhadarelativelylowpvalueof0.062.
Althoughthechangeinsymmetryscoreswerenotstatisticallysignificantthelowp-value
supportsfurtherstudieswherevelocitycouldbebettercontrolled.Thedevelopmentof
increasedrunningasymmetryandchangeinvelocitiesisthoughttobetheresultof
musculaturebecomingfatiguedandlargermusclegroupsbeingrecruitedasthesmaller
musclegroupsfatigue.Thesesmallermusclegroupswouldbemusclesassociatedwithfine
motorcontrolcontributingtorunningtechnique.Alossoftechniquecanleadtoalterations
inrunningmechanicsultimatelyresultinginadifferencebetweenhowthebodywasbeing
loadedfromthebeginningofeachtrialtotheend.
Duringthejogtherewasasmallreductioninrunningsymmetry,0.156%,maygive
supportforawarm-upactivity.Thejogwasperformedataself-selectedspeedbelow40%
ofmaximaleffort.Ifawarm-upistopreparethebodythroughactivestretchingandmuscle
warming,thismayalsoreduceasubjectsrunningsymmetryscoreoffthesubject.Alimitto
thisexperimentwasthatsubjectperformedeachtrialonseparatedaysduetotheintensity
ofthe100sand1600m.
Althoughsomephysiologicalorpsychologicaldifferencesmayhavebeenpresentin
subjectsbetweendaysthetrialswereconductedinthesameweekminimizingthese
effects.FuturestudiescouldutilizeRPEscorestobetterunderstandthesepotentialsources
oferror.Studyinghowdifferentathleteswouldrespondtothesameexperimentcouldalso
changethefindings.Asprintermaymaintainmoreconsistentvelocitieswhileatrack
50
athletespecializinginthe1600mmaynotshowassevereofanasymmetrydevelopment
duetothespecificityoftrainingscheme.Findingsofthisnaturecangivecoachesdata
whichcanbeusedtoidentifypointsofraceswhereathletescanfocusonbeingmore
efficient.
CaseStudies:
Wewereabletodetectsignificantrunningsymmetryscoresdirectlyfollowingthe
subjectsleftfootbeingstruckbyanotherplayer.Thiscouldbeusedtodetect
musculoskeletalinjuryasshowninFigure14,whichwarrantsfurtherresearchpotentially
inathletesimmediatelyfollowingaconcussivegradeimpact.Wealsoshowedhow
symmetryscoresreducedthroughouttherehabilitationperiodandwerenearnormalas
theplayerwasclearedtoreturntoplay.ThisspeakshighlyofVirginiaTechsports
medicineteambutalsoshowsauseinunderstaffedclinics.Severalsubjectscanbe
monitoredsimultaneouslyandbecomparedacrosssuccessivedays.
WhenlookingatthesubjectrecoveringfromACLreconstructiondatainitiallylooks
irregular.Whendataiscomparedtotherehabilitationprescriptionthescoresbeginto
makemoresense.EarlyphasesofrehabfocusonregainingstrengthandgainingROM,
consideringthesubjectsdonotbegintoperformunassistedwalkinguntilthemiddle
phase,6weeks,intotheprescription.Thisperiodisrecordedassymmetryscoresfavoring
therightsideofmoderatemagnitude.Asthesubjectenterslatephase,morechallenging
intensitiesareencouragedleadingtohighersymmetryscores.Wewereabletocontinue
monitoringthesubjectpasttheinitialphysicaltherapyprescription.Thisisimportant
consideringpatientsaremostsusceptibletore-injuryuptoeightmonths
51
post-surgery[60].Sincemostinsurancecompanieswillnotapprovepatientstoattend
sessionspastacertaindateorallotmentsofsessionsthisgivespromisetowearables.If
thesepatientscoulddoactivitieswearinganaccelerometerthatuploadeddatatoa
databaseandinterpretedforthem,thentheycouldcontinuereceivingfeedbackastohow
they’rerehabilitationisprogressing.
DuringtheACLdatacollectionthereweretwo10-dayperiods,53-62and65-75,
whereoursystemwasdown.Thiswouldhavebeenkeydataforinterpretationstobemade
andutilizeacutevs.chronicratios.Furtherresearchshouldbedoneonsubjectsrecovering
frominjuriestoidentifypotentialriskfactorstore-injurysuchasexcessiveasymmetry.
Conclusions:
Consideringthefewstudiesutilizingtrunk-mountedaccelerometersourpurpose
wasfirsttovalidatetrunk-unitsagainstankle-unitsthenshowhowrunningsymmetry
varieswithfatigueandlastlyshowsomerealworldutilizationofsuchvariables.Similar
trendsbetweensymmetryscoresgeneratedfromtrunk-mountedandankle-mounted
accelerometerssupportedtheuseoftheSPIHPUunitforcollectingaccelerationdata.
Detectingachangeinrunningsymmetryduringvaryingfatigableactivitieshighlightsa
potentiallynewmetrictomeasureanathlete’shealth.Potentialusesinsettingslike
physicaltherapyclinicsarenumerousinprovidingfeedbackonhowrecoveryis
progressing.Trunk-mountedunitsallowforcollectionofdataacrossalargegroupof
athletesprovidinginformationtopersonnelonadaytodaybasis.
Futurestudiescouldidentifyhowrunningsymmetryvariesbetweentimesof
acceleration,steadystate,anddecelerationrunning.Theseperiodsofmovementmaygive
52
informationhelpfultogroupslikesprinterswhoarelookingtomaximizeefficiency.
Anotherareaofpotentialuseistheuseoftrunk-mountedaccelerometersforbalancetest
suchastheY-test.Thereisaneedformorequantitativewaystoassesssubjectsafter
concussiveblowsincontactsports.Teamsalreadyutilizingsuchproductsshowsa
potentialinevaluatingtheircapacitytomeasureposturalswayallowingforquickand
effectiveevaluationofplayers.
53
References
54
1. Millington,B.andMillington,R.,2014.Thedataficationofeverything:Sportandthe
AgeofBigData.In:4thInternationalConferenceforQualitativeResearchinSportand
Exercise,2014-09-01-2014-09-03.
2. http://www.cheatsheet.com/sports/highest-paid-athletes-world2016.html/?a=viewall
3. http://injuryleague.com/2016/05/manchester-united-percentage-season-missedplayers-injury-1516/
4. http://sillyseason.com/football/manchester-united-players-salaries-list-69041/
5. Mangine,R.E.,Minning,S.J.,Eifert-Mangine,M.,Colosimo,A.J.,&Donlin,M.(2008).
ManagementofthePatientwithanACL/MCLInjuredKnee.NorthAmericanJournal
ofSportsPhysicalTherapy:NAJSPT,3(4),204-211.
6. Cherkin,D.C.,Deyo,R.A.,Battie,M.,Street,J.,&Barlow,W.(1998).Acomparisonof
physicaltherapy,chiropracticmanipulation,andprovisionofaneducationalbooklet
forthetreatmentofpatientswithlowbackpain.NEnglJMed,339(15),1021-1029.
doi:10.1056/nejm199810083391502
7. Schmitt,B.,Tim,T.,&McHugh,M.(2012).HamstringInjuryRehabilitationand
PreventionofReinjuryUsingLengthenedStateEccentricTraining:ANewConcept.
InternationalJournalofSportsPhysicalTherapy,7(3),333-341.
8. Reider,B.(2014).Moneyball.AmJSportsMed,42(3),533-535.
doi:10.1177/0363546514524161
9. Bonato,P.(2005).Advancesinwearabletechnologyandapplicationsinphysical
medicineandrehabilitation.JournalofNeuroEngineeringandRehabilitation,2,2-2.
doi:10.1186/1743-0003-2-2
10. Gabbett,T.J."QuantifyingthePhysicalDemandsofCollisionSports:Does
Microsensor TechnologyMeasureWhatItClaimstoMeasure?"[Ineng].JStrength
CondRes
27,no.8(Aug2013):2319-22.
11. Lemoyne,R.,Mastroianni,T.,Cozza,M.,Coroian,C.,&Grundfest,W.(2010).
ImplementationofaniPhoneforcharacterizingParkinson'sdiseasetremorthrough
awirelessaccelerometerapplication.ConfProcIEEEEngMedBiolSoc,2010,49544958.doi:10.1109/iembs.2010.5627240
12. Kelly,D.,Coughlan,G.F.,Green,B.S.,&Caulfield,B.(2012).Automaticdetectionof
collisionsinelitelevelrugbyunionusingawearablesensingdevice.Sports
Engineering,15(2),81-92.doi:10.1007/s12283-012-0088-5
55
13. Montgomery,P.G.,Pyne,D.B.,&Minahan,C.L.(2010).Thephysicaland
physiologicaldemandsofbasketballtrainingandcompetition.IntJSportsPhysiol
Perform,5(1),75-86.
14. Aoki,M.S.,L.TorresRonda,P.R.Marcelino,G.Drago,C.Carling,P.S.Bradley,andA.
Moreira."MonitoringTrainingLoadsinProfessionalBasketballPlayersEngagedina
PeriodizedTrainingProgramme."[InEng].JStrengthCondRes(May252016).
15. Staab,W.,R.Hottowitz,C.Sohns,J.M.Sohns,F.Gilbert,J.Menke,A.Niklas,andJ.
Lotz."AccelerometerandGyroscopeBasedGaitAnalysisUsingSpectralAnalysisof
PatientswithOsteoarthritisoftheKnee."[Ineng].JPhysTherSci26,no.7(Jul
2014):997-1002.
16. Kim,M.K.,andY.S.Lee."KinematicAnalysisoftheLowerExtremitiesofSubjects
withFlat
FeetatDifferentGaitSpeeds."[Ineng].JPhysTherSci25,no.5(May
2013):531-3.
17. Vogt,L.,W.Banzer,I.Bayer,D.Schmidtbleicher,andF.Kerschbaumer."Overground
andWalkwayAmbulationwithUnilateralHipOsteoarthritis:ComparisonofStep
LengthAsymmetriesandReproducibilityofTreadmillMountedForcePlate
Readings."[Ineng].PhysiotherTheoryPract22,no.2(Apr2006):73-82.
18. Robinson,R.O.,Herzog,W.,&Nigg,B.M.(1987).Useofforceplatformvariablesto
quantifytheeffectsofchiropracticmanipulationongaitsymmetry.JManipulative
PhysiolTher,10(4),172-176.
19. Carpes,F.P.,Mota,C.B.,&Faria,I.E.(2010).Onthebilateralasymmetryduring
runningandcycling–Areviewconsideringlegpreference.PhysicalTherapyin
Sport,11(4),136-142.doi:http://dx.doi.org/10.1016/j.ptsp.2010.06.005
20. Nagano,H.,L.James,W.A.Sparrow,andR.K.Begg."EffectsofWalking-Induced
FatigueonGaitFunctionandTrippingRisksinOlderAdults."[Ineng].JNeuroeng
Rehabil11(2014):155.
21. Hausdorff,J.M.,D.A.Rios,andH.K.Edelberg."GaitVariabilityandFallRiskin
Community-LivingOlderAdults:A1-YearProspectiveStudy."[Ineng].ArchPhys
MedRehabil82,no.8(Aug2001):1050-6.
22. Arnold,J.,Mackintosh,S.,Jones,S.,&Thewlis,D.Asymmetryoflowerlimbjoint
loadinginadvancedkneeosteoarthritis.GaitPosture,39,S20-S21.
doi:10.1016/j.gaitpost.2014.04.030
23. Shakoor,N.,Foucher,K.C.,Wimmer,M.A.,Mikolaitis-Preuss,R.A.,Fogg,L.F.,&
Block,J.A.(2014).Asymmetriesandrelationshipsbetweendynamicloading,muscle
strength,andproprioceptiveacuityatthekneesinsymptomaticunilateralhip
osteoarthritis.ArthritisResTher,16(6),455.doi:10.1186/s13075-014-0455-7
56
24. Godfrey,A.,S.DelDin,G.Barry,J.C.Mathers,andL.Rochester."InstrumentingGait
withanAccelerometer:ASystemandAlgorithmExamination."[Ineng].MedEng
Phys37,
no.4(Apr2015):400-7.
25. Rowlands,A.V.,andV.H.Stiles."AccelerometerCountsandRawAcceleration
OutputinRelationtoMechanicalLoading."[Ineng].JBiomech45,no.3(Feb2
2012):448-54.
26. S.Sprager,D.Zazula,GaitIdentificationUsingCumulantsofAccelerometerData,
Proceedingsofthe2ndWSEASInternationalConferenceonSensors,andSignalsand
Visualization,ImagingandSimulationandMaterialsScience(2009)
27. Lee,S.J.,&Hidler,J.(2008).Biomechanicsofovergroundvs.treadmillwalkingin
healthyindividuals.JournalofAppliedPhysiology,104(3),747-755.
28. Besier,T.F.,Lloyd,D.G.,Cochrane,J.L.,&Ackland,T.R.(2001).Externalloadingof
thekneejointduringrunningandcuttingmaneuvers.MedSciSportsExerc,33(7),
1168-1175.
29. Cowley,H.R.,Ford,K.R.,Myer,G.D.,Kernozek,T.W.,&Hewett,T.E.(2006).
DifferencesinNeuromuscularStrategiesBetweenLandingandCuttingTasksin
FemaleBasketballandSoccerAthletes.JAthlTrain,41(1),67-73.
30. Wixted,A.J.,Billing,D.C.,&James,D.A.(2010).Validationoftrunkmountedinertial
sensorsforanalysingrunningbiomechanicsunderfieldconditions,using
synchronouslycollectedfootcontactdata.SportsEngineering,12(4),207-212.
doi:10.1007/s12283-010-0043-2
31. Perry,J.,&Burnfield,J.M.(1992).Gaitanalysis:normalandpathologicalfunction.
32. Mizrahi,J.,Verbitsky,O.,Isakov,E.,&Daily,D.(2000).Effectoffatigueonleg
kinematicsandimpactaccelerationinlongdistancerunning.HumanMovement
Science,19(2),139-151.
33. Fish,D.J.,&Nielsen,J.-P.(1993).ClinicalAssessmentofHumanGait.JPO:Journalof
ProstheticsandOrthotics,5(2),39/27-36/48.
34. Whittle,M.W.(2014).Gaitanalysis:anintroduction:Butterworth-Heinemann.
35. Gage,J.R.(1990).Anoverviewofnormalwalking.InstrCourseLect,39,291-303.
36. Steindler,A.(1955).Kinesiologyofthehumanbodyundernormalandpathological
conditions:Thomas.
57
37. Kerrigan,D.C.,Frates,E.P.,Rogan,S.,&Riley,P.O.(2000).Hiphikingand
circumduction:quantitativedefinitions.Americanjournalofphysicalmedicine&
rehabilitation,79(3),247-252.
38. Shorter,K.A.,J.D.Polk,K.S.Rosengren,andE.T.Hsiao-Wecksler."ANewApproach
toDetectingAsymmetriesinGait."[Ineng].ClinBiomech(Bristol,Avon)23,no.4
(May2008):459-67.
39. Herzog,W.,B.M.Nigg,L.J.Read,andE.Olsson."AsymmetriesinGroundReaction
ForcePatternsinNormalHumanGait."[Ineng].MedSciSportsExerc21,no.1(Feb
1989):
110-4.
40. Hamill,J.,B.T.Bates,andK.M.Knutzen."GroundReactionForceSymmetryDuring
WalkingandRunning."ResearchQuarterlyforExerciseandSport55,no.3
(1984/09/011984):289-93.
41. Clayton,H.M.,&Schamhardt,H.C.(2001).Measurementtechniquesforgait
analysis.Equinelocomotion,55-76.
42. Kim,C.M.,&Eng,J.J.(2003).Symmetryinverticalgroundreactionforceis
accompaniedbysymmetryintemporalbutnotdistancevariablesofgaitinpersons
withstroke.GaitPosture,18(1),23-28.
43. Altun,K.,&Barshan,B.(2010).Humanactivityrecognitionusinginertial/magnetic
sensorunits.PaperpresentedattheInternationalWorkshoponHumanBehavior
Understanding.
44. Seimetz,C.,Tan,D.,Katayama,R.,&Lockhart,T.(2012).Acomparisonbetween
methodsofmeasuringpostrualstability:forceplatesversusaccelerometers.Biomed
SciInstrum,48,386-392.
45. R.R.Torrealba,J.M.Castellano,G.Fern´andez-L´opez,andJ.C.Grieco,
“Characterisationofgaitcyclefromaccelerometerdata,”ElectronicsLetter,vol.43,
no.20,pp.1066-1068,2007
46. Nordin,M.,&Frankel,V.H.(2001).Basicbiomechanicsofthemusculoskeletalsystem:
LippincottWilliams&Wilkins.
47. Zhang,J.H.,W.W.An,I.P.Au,T.L.Chen,andR.T.Cheung."Comparisonofthe
CorrelationsbetweenImpactLoadingRatesandPeakAccelerationsMeasuredat
TwoDifferentBodySites:Intra-andInter-SubjectAnalysis."[Ineng].GaitPosture
46(May2016):53-6.
48. Atallah,L.,Wiik,A.,Lo,B.,Cobb,J.,Amis,A.,&Yang,G.(2014).Gaitasymmetry
detectioninolderadultsusingalightear-wornsensor.Physiologicalmeasurement,
35(5),N29.
58
49. Hsu,A.-L.,Tang,P.-F.,&Jan,M.-H.(2003).Analysisofimpairmentsinfluencinggait
velocityandasymmetryofhemiplegicpatientsaftermildtomoderatestroke.Arch
PhysMedRehabil,84(8),1185-1193.
50. Johnson,D.C.,Damiano,D.L.,&Abel,M.F.(1997).Theevolutionofgaitinchildhood
andadolescentcerebralpalsy.JournalofPediatricOrthopaedics,17(3),392-396.
51. Crowe,Alan,MoniqueM.Samson,MarjaJ.Hoitsma,andAlexandraA.vanGinkel.
"TheInfluenceofWalkingSpeedonParametersofGaitSymmetryDeterminedfrom
GroundReactionForces."HumanMovementScience15,no.3(6//1996):347-67.
52. Giandolini,M.,N.Horvais,J.Rossi,G.Y.Millet,P.Samozino,andJ.B.Morin."Foot
StrikePatternDifferentlyAffectstheAxialandTransverseComponentsofShock
AccelerationandAttenuationinDownhillTrailRunning."[Ineng].JBiomech49,no.
9(Jun142016):1765-71.
53. Hoerzer,S.,P.A.Federolf,C.Maurer,J.Baltich,andB.M.Nigg."FootwearDecreases
GaitAsymmetryDuringRunning."[Ineng].PLoSOne10,no.10(2015):e0138631.
54. Vagenas,G.,&Hoshizaki,B.(1992).Amultivariableanalysisoflowerextremity
kinematicasymmetryinrunning.InternationalJournalofSportBiomechanics,8(1).
55. Mannini,A.,Intille,S.S.,Rosenberger,M.,Sabatini,A.M.,&Haskell,W.(2013).
Activityrecognitionusingasingleaccelerometerplacedatthewristorankle.Med
SciSportsExerc,45(11),2193-2203.doi:10.1249/MSS.0b013e31829736d6
56. LeMoyne,R.,Kerr,W.T.,Zanjani,K.,&Mastroianni,T.(2014).Implementationofan
iPodwirelessaccelerometerapplicationusingmachinelearningtoclassifydisparity
ofhemiplegicandhealthypatellartendonreflexpair.Journalofmedicalimagingand
healthinformatics,4(1),21-28.doi:10.1166/jmihi.2014.1219
57. Halson,S.L.(2014).Monitoringtrainingloadtounderstandfatigueinathletes.
SportsMed,44Suppl2,S139-147.doi:10.1007/s40279-014-0253-z
58. Gabbett,T.J.(2016).Thetraining-injurypreventionparadox:shouldathletesbe
trainingsmarterandharder?BrJSportsMed,50(5),273-280.doi:10.1136/bjsports2015-095788
59. Banister,E.W.,Calvert,T.W.,Savage,M.V.,&Bach,T.(1975).Asystemsmodelof
trainingforathleticperformance.AustJSportsMed,7(3),57-61.
60. Majewski,M.,Susanne,H.,&Klaus,S.(2006).Epidemiologyofathletickneeinjuries:
A10-yearstudy.Theknee,13(3),184-188.
59
61. Chmielewski,T.L.,Rudolph,K.S.,Fitzgerald,G.K.,Axe,M.J.,&Snyder-Mackler,L.
(2001).BiomechanicalevidencesupportingadifferentialresponsetoacuteACL
injury.Clinicalbiomechanics,16(7),586-591.
62. Shelbourne,K.D.,&Klotz,C.(2006).WhatIhavelearnedabouttheACL:utilizinga
progressiverehabilitationschemetoachievetotalkneesymmetryafteranterior
cruciateligamentreconstruction.JournalofOrthopaedicScience,11(3),318-325.
60
Appendix
61
AnalysisofvariancetablesfortheValidationStudy
Variable–RunningSymmetry
Source
df
SS
MS
Subject
Condition
ConditionxSubject
Device
DevicexSubject
ConditionxDevice
Residual
Total
p
ES(η2)
106.5
241.5
7.1
56.6
81.0
5.0
3.7
34.0
0.7
1.3
<.001
0.292
0.240
0.028
0.005
SS
MS
F
p
ES(η2)
29.7
4.6
7.2
41.5
3.0
2.3
0.4
6.3
0.007
0.111
7 745.8
2 483.0
14
99.6
1
56.6
7 567.0
2
10.0
14
52.3
47 2014.1
Variable–RunningVelocity
Source
df
BetweenSubjects
Withinsubjects
Residual
Total
F
10
2
20
32
0.043
62
AnalysisofvariancetablesfortheApplicationStudy
Variable–RunningSymmetry
Source
df
SS
MS
Subject
Activity
ActivityxSubject
Interval
IntervalxSubject
ActivityxInterval
Residual
Total
15
2
30
1
15
2
30
95
42.0
44.6
182.6
25.1
36.0
20.6
86.7
437.6
Variable–RunningVelocity
Source
df
SS
Subject
Activity
ActivityxSubject
Interval
IntervalxSubject
ActivityxInterval
Residual
Total
15
39.1
2 5283.8
30
13.6
1
28.2
15
20.9
2
28.7
30
40.0
95 5574.2
F
p
ES(η2)
3.7
10.5
3.6
0.038
0.102
0.006
0.057
0.041
0.047
F
p
ES
2.6
2641.9 593.2
0.5
28.2 20.2
1.4
14.4 10.8
1.3
0.038
0.948
0.006
0.005
0.041
0.005
2.8
22.3
6.1
25.1
2.4
10.3
2.9
MS
63
InformedConsentDocuments
64
65
66
67
68
69
VITA
DavidJosephSaba
DavidwasborninNewportNewsVa.onMay111993toDaveandLisaandolder
brothertoAshley.AftermovingtoPittsburghPa.DavidattendedSetonLaSallehighschool
inMt.LebanonPa.whereheenjoyedparticipatingincrewandswimming.Followinghigh
schoolDavidattendedVirginiaPolytechnicInstituteandStateUniversitywherehemajored
inHumanNutrition,Foods,andExercise.Afteridentifyinganinterestinexercise
physiologyDaviddecidedtocontinuewithapost-bachelorprogramfocusingonsports
analyticsandhumanbiomechanics.David’smasterresearchlookedatidentifyingthe
capacityofapopulartrunk-mountedmonitoringsystemaswellashowrunningintensity
influencedgaitsymmetry.AftercompletinghismastersDavidwillattendtheSouthwest
CollegeofNaturopathicMedicinewherehehopestofocusonpainmanagementandsports
medicine.
70