ValidationofRunningSymmetryUsingTrunkMounted Accelerometry:ClinicalTrialandCaseStudy DavidJosephSaba SubmittedtotheGraduateFacultyofVirginiaPolytechnicInstituteandStateUniversityin partialfulfillmentoftherequirementsforthedegreeof MastersofScience in HumanNutrition,Food,andExercise CommitteeMembers: JayWilliams MadlynFrisard AlfredWicks ValidationofRunningSymmetryUsingTrunkMountedAccelerometry: ClinicalTrialandCaseStudy Abstract Trunk-mountedmonitoringequipmentlikeGPSportsSPIHPUunitsaredesignedtouse globalpositioning(GPS),accelerometerandheartratemonitoringtoevaluatethephysical demandsofanactivity.Amedicalstaffmightalsoconsidermarkerssuchasrunning symmetryinevaluationofinjuryoccurrenceandrehabilitation.Arunningsymmetryisa ratioofthesynchronizationoftherightandleftlowerlimbsduringthegaitcycle.An asymmetrydueto,apathologyormusculoskeletalinjury,resultsinabnormalloadingon thefootthatmaybedetectedbytrunk-mountedaccelerometry.Theaimofthisstudyisto evaluatetheabilityofSPIHPUunitstodetectrunningasymmetry.Subjectsworethe HPISPUunits(100Hz,16gtri-axialaccelerometer,50Hzmagnetometer)whileengagedin variousrunningactivities.Inthefirststudy,artificiallyinducingaleglengthdiscrepancy ledtoadifferencebetweenrunningsymmetryscores.Thisdiscrepancywasconfirmed usingindividualaccelerometersattachedtothelowerlegnearthefoot.Next,varying runningspeeddidnotresultindifferencesinrunningsymmetry.However,theSPIHPU unitsdiddetectarunningasymmetrybetweenfatiguedandnon-fatiguedconditions. Finally,twocasestudiesshowedthattheunitscouldidentifyasymmetryimmediatelyafter alowerleginjuryandduringrehabilitationofanteriorcruciateligamentreconstruction surgery.TheresultsofthisstudyshowthattheHPUSPIunitscanbereliablyusedto monitorrunningsymmetryandtodetectasymmetricalgaitpatterns. TableofContents ABSTRACT.............................................................................................................................................ii TABLEOFCONTENTS........................................................................................................................iii CHAPTER1:PurposeandSignificance.........................................................................................1 CHAPTER2:LiteratureReview....................................................................................................10 CHAPTER3:Methods.......................................................................................................................28 CHAPTER4:Results..........................................................................................................................34 CHAPTER5:Discussion...................................................................................................................47 Chapter1 PurposeandSignificance 1 Introduction: Withthegrowthoftechnologyandanalyticsprograms,sportsscienceisina positionwheremorequantitativedatacanbecollectedandinterpretedonaday-to-day basis[1].Wearealsoinatimewhereprofessionalathletesaresomethehighestearning professionalsinoursociety.Theircontractsaregivenintheexpectationtheywillmake certaincontributionstothecommongoalofwinningateamchampionship.Christiano Ronaldoearnedapproximately$53millionduringthe2015-2016season.Duringthistime, heplayedin48matchesforRealMadridFC[2].Thismeansthathemadeover$1million foreverygameheplayed,showingjusthowvaluableoneathletecanbetoanorganization. ThisfinancialimpactcanbefurtheranalyzedusingthecaseofWayneRooney.By multiplyinggameslosttoinjury(GLI)andsalaryowedperweek.Duringa9-month windowRooneywasinjuredoffandonfor3monthsandmissed36%ofmatchesplayed duringthisperiod.DuringthatsametimeRooneywasmaking£250,00perweekgrossing £7.5millionoverthe9-monthwindow[3,4].Therefore,ManchesterUnitedpaid£2.7 million,or36%of£7.5million,toaplayerwhowasphysicallyunabletoperform(PUP). LukeShaw,making£70,000perweek,missedover7months,86%,ofthesame9-month window[3,4].ThetimeonthePUPlistcosttheteamonly£1.8million.Thisexampleshows howplayerswithlargersalariescanimpactthefinancialaspectofperformancemorethan GLIalone.GLIisjustthebeginningofthefinancialburdenplacedonanorganizationwhen aplayerisunfittoparticipateinteamactivitiesasadditionalcostsareincurredformedical treatmentsandrehabilitation,lostticketsalesandpotentialpost-seasonparticipation. Afterinjury,itisalmostguaranteedthatsomerehabilitationprogramwillbe establishedwhichmaybeextensiveifsurgeryisrequired[5].Withonesessionofphysical 2 therapycostingaround$250,a2-weeksessioncouldcostthousandsinadditionalexpenses [6].Specialistsmaybeoutsourcedtoadministeralternativetreatmentslikecryotherapy, addinganothercosttotheathletewhoisunabletoprovidehisorherskillsettothe organization.Thekeytomaximizing“profit”oftheathleteistominimizethetimespent awayfromtheirjobputtingafocusonquickrehabilitationtime.Iftherehabprocessis rushedproperhealingmaynottakeplaceleadingtore-injuryandadditionaltimePUP[7]. Inadditiontominimizinginjuriesteamsareinterestedinquantifyingasmany variablesaspossibleandturningtoanalyticstoidentifystrongandweakaspectsofthe roster.ThemovieMoneyballgaveagoodrepresentationofhowsportsanalyticscanbe utilizedtomaximizeallthepiecesofateamandreachtheultimategoalofwinningthe championship[8].Theuseofhigherlevelsanalyticsasshownbythe2002OaklandA’sin whichtheteamwasabletoeliminatemajorcontractsandfillthelossofproductivitywith cheapercontractscanleadtogreatbenefitsforanorganization.Thesesmallercontracts allowedtheA’stocorrectadditionaldeficienciesandseebeyondstatslikehittingand homerunsalone.Thekeytoalloftheirsuccesswasbeingabletocalculatetrendsinteam performanceandidentifysolutionstomaximizeperformancewhileremaininginthelimits ofaleaguesalarycap[8]. Asweprogressthroughthisperiodoftechnologicalrevolution,productionof smallerandmoreaccuratemonitoringdevicesarebeingmadeavailabletothepublic sector,creatingastrongermarketforwearabletechnology[9].TechnologieslikeGlobal PositioningSystem(GPS)andaccelerometrycanbeutilizedinmanyfieldsrangingfrom phoneappstoexternalsystemssuchasthoseproducedbycompanieslikeGPSportsand Catapult[10,11]. 3 Thesetypesofequipmentaccuratelyandreliablycollectquantitativevariableslike totaldistanceorbodyimpacttobeanalyzed[12,13].GPSportsnewestwearable,SPIHPU unit(Figure1),isgrowinginpopularityamongstmajorsportsteamsincludingseveral EnglishPremierLeague(soccer),NFL(football)andNBAteams(basketball)[14].These smallcompactunitsallowforthedailycollectionofover100variablesdescribingthe trainingloadexertedonaspecificindividualinanon-invasivemanner.Theunitutilizesan externalheartratestrap,wornbelowthexiphoidprocess,GPS,accelerometer,and magnetometer. Inadditiontocollectingvelocityandheartratevariables,thistechnologyallowsthe usertoutilizeaccelerometryvariables,likeimpactforce,runningorgaitsymmetryand bodyload,asametricforevaluatingtotaltrainingload.Gaitsymmetryisdefinedasthe equalvaluesofgaitvariableonbothsides,suchasaccelerationorgroundreactionforce [15,16,17].Equalpeakgroundreactionforcesexperiencedduringrightandleftfootstrike isconsidered“symmetrical”whereasdifferencedonfootstrikeforcesisdescribedas “asymmetrical”.Gaitsymmetryisalsoreferredtoasrunningorwalkingsymmetry.An asymmetricalgaitmayalsobereferredtoawalkingorrunningimbalance.Usinga symmetryindexallowsforleftandrightgaitdatatobequantifiedintoapercentdifference. Inthismethodologyascoreofzerowouldrepresentperfectsymmetrywhilevaluesabove andbelowzerowouldrepresentasymmetryintherightorleftdirectionwherehigher scoresrepresentmoreasymmetry[18,19]. Utilizinggaitsymmetry,onecanmonitorimproperloadingofthebodyandidentify whentheseabnormalitiesoccur.Studieshaveshownthatassubjectsarefatiguedchanges ingaitoccur,whichincreasesone’sriskofinjurybyreducingstability[20,21].Ifasituation 4 arisesinwhichanathleteisshowingabnormalgaitsymmetry,physicianscanact proactivelytoadministertreatmenttorestoregaitfunctionbeforeinjurymayoccur.Risk ofmajorinjuriestothejointsofthelowerextremitiescanbereducedviathereductionof abnormalloadingforcesseeningaitasymmetry[22,23].Lowerleginjuryoftenresultsin gaitasymmetrywhichisreducedduringrecoveryandrehabilitation.Thus,thismetric couldalsobeusedtomonitorinjuryrecoveryandmake“returntoplay”determinations. Therehavebeenstudiesthatexaminedaccelerometersandtheircapacityto quantifyhumangait[24,25,26].Allofthesestudiesutilizedgroundreactionforcefroma forceplateorvideoderivedaccelerationstovalidateaccelerometerdata.Trunk-mounted accelerometryhasonlybeenusedinafewstudieswithforceplateorvideomonitoring usedtovalidatethefindingsofthesestudies.Themainissuethatariseswhenusingsuch validationtoolsisthelackofapplicabilityinarealworldsetting.Byrequiringasubjectto performexerciseonaninstrumentedtreadmillortohavecompletefootstrikesonan individualforceplatesomedeviationfromthenaturalgaitpatterncanoccur[27]. Inadditiontotheperturbedgaitthesemonitoringtoolsarelargeandrequireateam ofresearcherstoconductdatacollectioninalaboratorysetting[28,29].Thisrequiresan athletetotakeadditionaltimetohavetheirgaitsymmetrytestedoutsideofthenatural environment[30].Anotherlimitisthatonlyonesubjectcouldbeevaluatedatatime whetherthatbebyinstrumentationinthelaborviavisualexamintheclinic[31].One studylookedathowrunningkinematicschangedduringlongdistancerunningand concludedthatassubjectsbecamefatiguedverticalaccelerationofthetibiaincreasedat heelstrike[32].Thisincreasedaccelerationwouldcauseanincreasedforcetobedelivered 5 upthekineticchainrequiringthebodytodissipatesuchforcesinanabnormalmanner, leadingtoanincreasedinjuryrisk. Anexperimentaldesignthatvalidatestrunk-mountedaccelerometersinamanner directlytranslatabletofield-basedsportsandclinicalsettingdoesnotexistcurrently.Thus, thisstudyfocusesontheaccelerationsenduredbetweenthefootandgroundinareal worldsettingbyutilizinganon-invasivemonitoringsystemthatcanbeusedonaday-todaybasisduringeverydayactivitiesperformedoutsideofthelaboratory. StatementoftheProblem: Currentmethodologyusedtoquantifyrunningsymmetryoutsideofthelaboratory isvisualinspectionofanathletebyaphysician.Insidethelaboratoryclinicianstypically instrumentathletesandconductshortboutsoflocomotioninheavilycontrolledsettings. Byutilizingtrunkmountedaccelerometry,gaitsymmetrycanbeassessedinavarietyof real-worldconditions.AlthougharunningsymmetrycanbeidentifiedviatheGPSportsSPI HPUtechnology,thesevalueshavenotbeencomparedagainstlowerlimbmounted,bilateralaccelerometry.Thisisproblematicasaccelerationdataobtainedfromatrunkmountedaccelerometerisinfluencedbythedampingeffectsofknee,hipandvertebral columnflexionandextension(e.g.dampening).Inaddition,therearenodatashowing changeinrunningsymmetrywithvariedexerciseintensityorduringarehabilitation program.Thus,thethreeaimsofthisprojectareprovidedinthebelowsection. 6 SpecificAims: Aim1:DeterminetheabilityoftheGPSportsSPIHPUtrunk-mountedunitstodetect runningasymmetryduringartificiallyinducedrunningimbalanceandcomparethose valuestoankle-mountedsensors. Hypothesis:Anklemountedaccelerometersandtrunkmountedunitswillshow similarchangesingaitsymmetryunderconditionsofanartificiallyinducedasymmetry. Objective:Showthatbyapplyingpeakaccelerationstoasymmetryequation,a runningsymmetryscoreisproducedthatissimilartothoseproducedbytheGPSports proprietoralgorithm. Aim2:Identifyhowexerciseintensity(i.e.runningvelocity)andfatigueaffect runningsymmetry. Hypothesis:Moreintenseexerciseprescriptionswillresultinthedevelopmentof anincreasedgaitasymmetrywhencomparingthefirst100mtothefinal100mofa1600m effort. Objective:Confirmthatrunningsymmetryisaffectedbyvaryingworkout intensitiesduetofatigue. Aim3:Usecasestudiesonknownlowerleginjuriestoverifythatinjury-induced gaitasymmetriescanbedetectedwiththetrunkmountedaccelerometer. Hypothesis:Anathletesufferinganacutelowerleginjuryandanathleteundergoing rehabilitationfollowinganteriorcruciateligamentreconstructionsurgerywillshowgait asymmetriesduringrunning. 7 Objective:Adaptcodeusedinpreviousexperimenttocalculatearunningsymmetry duringanexerciseprescriptionandcomparetoexistingrunningimbalance Significance: Byutilizingtrunk-mountedaccelerometerdataandasymmetryindex,gait symmetrycanbequantifiedunderreal-worldsettinglikethefieldofplayorclinical environment.Trunkmountedaccelerometryprovidesanon-invasivemeansto quantitativelyevaluatearunningsymmetry.Ratherthanarbitrarilyidentifyinga“limp”, practitionerscouldquicklyandreliablyquantifyanasymmetryandmonitorhowitchanges asrehabprogresses.Ifusedinasportssetting,teamscouldidentifywhenasymmetries developinsubjectsasthetrainingperiodprogresses.Physicianscancomparegait symmetryacrossagiventimeline,allowingforevaluationofrehabilitationordevelopment ofpathology.Trunkmountedsystemsalsoallowforcollectionofmultiplesubjectsatthe sametime,amajorlimitationofinlabtesting. Assumptions: Subjectsarelimitedtomale,collegeathletes(soccer).Itisimpossibletoassure subjectswillbefreeofbothmentalandphysicalfatigue,whichcaninfluencegait symmetry.Theinductionofrunningasymmetryislimitedtobi-anduni-lateralshod conditionsandexerciseprescriptionsof1600matvaryingintensities.Althoughdatawas collectedundersimilarweatherconditions,factorsliketemperatureandhumiditycould influenceeffortofathletes.Forthecasestudy,itislimitedtoonesubjectrecoveringfrom ACLreconstructionandonesubjectrecoveringfromafootinjury.Lastly,subject’sdietary 8 intakecouldnotbenormalizedforthisstudy.Malnourishedordehydratedsubjectswould notonlyaffectexerciseperformanceviathelackofsubstratetoproduceATPbutcouldalso influencespatialcognition. 9 Chapter2 LiteratureReview 10 HumanGait: Humanlocomotionrequiresthebodytosynchronizemusclecontractionsina mannerthatisbothsafeandenergyefficient.Overmillenniaofevolutionhumanshave adaptedtomaintainastablebase,allowingtheupperbodytomoveforwardoverthelower limbs,preciseneuromuscularcoordination,andefficientabsorptionanddissipationof forces[33].Theresultingmotionisacyclicalpatternoftheleftandrightlowerlimbs, defininganindividual’sgait.Currentpracticeforevaluatinganindividual’sgaitrequires thephysiciantobreakeachstrideinto4sections;weightacceptance,stance,forward progression,andswing[31,33,34].Weightacceptancephase(0-10%)includesinitial contact(IC)andtheloadingresponse(LR)andwhenthefootcomesincontactwiththe groundandbearstheweightofthebody.Stancephase(10-50%)includesmidstance(MSt) toterminalstance(TSt),thebodiescenterofmass(COM)isshiftingoverthefootto preparefortoe-off.Theforwardprogressionphase(50-60%)encompassestheterminal stanceandpre-swing(pSw)wherethebodyispropelledforwardandbeginstopreparefor theswingphase.Theswingphaseisbrokendownintoinitial(ISw),middle(MSw),and terminalswing(Tsw).Duringtheswingphasethefootisnotincontactwiththeground andispreparingitselfforthenextweightacceptancephase.Onegaitcycleisdefinedasone fullprogressionofallfourofthesephases.Generally,thisisbrokendownfromheel-strike toheel-strikeina0-100%asshowninFigure2[33]. Normalgaitwouldbeasituationwherealloftheseportionsofthegaitcyclecome togetherinasymmetricalandharmoniousmanner[35].Pathologicalgaitentailsany deviationfromthisnormalgaitpattern.Pathologycanarisefromdeformitylikea discrepancyinleglengthorissueswithjointmobilityasseeninACLreconstructionorjoint 11 replacementprocedures[36,].Muscleimbalances,issueswithneuromuscularfunction,and paincanalsoresultinpathologicalgait[34].Pathologicalgaitrequiresthebodyto compensateacrossalllowerbodyjoints:ankle,knee,andhip[33].Thiscausesmusclesto beutilizedthatwouldnottypicallybeneededforagivenmotionlikewalkingorrunning. Anexampleofhowpathologyleadstoincreasedenergyexpenditureandfurther pathologywouldbeindividualswho“hike”theirhips.Individualswithlimitedhip flexibilitymusthikeorraisetheirhipresultinginacircumductionofthelowerlimb.Not onlydoesthisinterferewithgaitcycletiming,italsorequiresnovelmusclegroupsto compensateleadingtoanabnormalloadappliedtothelowerlimb[37].Thisabnormal loadincreasesthetotalworkthatcompensatorymusclesareperformingleadingto increasedenergyexpenditure.Aswellasrequiringmoreworktobeperformedbynovel musclesthiscircumductionofthehipappliesabnormalloadtothejointsofthelower extremities.Abnormalwearingofthejointcapsulemayleadtootherissuessuchas arthritisorosteoporosis.Consideringthatpathologyresultsinanasymmetricalgaitit shouldbenosurprisethatthemonitoringofgaitisimportantindiagnosisandtreatmentof manypathologies[38]. MonitoringGait: Traditionallyresearcherscollectedgaitdatabyusingacombinationofforceplates andvideomonitoringsystems[39,40].Forceplatesareplatformsthatareabletoconverta changeinvoltageintoaforcevalueorgroundreactionforce(GRF)[41].Whenan individualmakescontactwiththeforceplate,thereisadeflectionthatcreatesachangein voltageandthroughaseriesofmathematicalconversionsproducestheGRF.ThisGRF 12 allowsforquantificationofdynamiceventssuchaslandingorrunningforcesinsixdegrees offreedom,forcesandmomentsintheX,Y,andZcoordinate[41].Itcanalsobeusedto calculatecenterofmass(COM),animportantvariableforquantifyingbalance[41]. Limitstousingsuchtechnologyincludetheneedofacontrolledenvironmentand needformultipleplatforms[27-30].Videomonitoringisagreattooltocalculatejoint anglesandhowtheychangeduringvaryingactivities.Byusingreflectivemarkersanda roomequippedwithmultiplecamerasresearcherscancalculatehowajointismoving, velocity,andthenpredictforcesexertedonsaidjointbyintegratingtodetermine accelerationandutilizingNewton’ssecondlawofmotion,forceequalsmassmultipliedby acceleration[41].Thisrequiresaroomofagivenareasetupwithuptoeightinfrared cameraslimitingthecapacitytocapturereal-worlddata.Asbroughtupearliertheforce plateneedsagroupofresearcherstocalibratethesystembyfirstensuringtheplateis firmlyattachedtoalevelsurface.Duetotheintricaciesofcalibratingtheplatestheyare ofteninstalledonceandnotmovedrestrictingtheoutoflabutilization[41]. Anotherlimittoforceplatesisthatfullfootcontactisrequiredforaccurate measurementofGRF[42].Ifoneweretoonlystriketheplatewithhisorhersheelaforce wouldbegeneratedbuttheportionofthefootoffoftheplatewouldalsoexertaforcethat wouldnotbecaptured.Sinceaskingasubjecttostriketheplatewouldaltergait researchersmustinstallmultipleplatestoincreasetheoddsofcapturinganentirefoot strike. Withthemainlimitationofbothtoolsbeingthattheyrequirealabsettingan alternativeisneededtoconductdataintherealworld.Inertialmeasuringunits(IMU) provideananswertothisproblem.AnIMUisacombinationofaccelerometer,gyroscope, 13 ormagnetometer[43].AccelerometersmeasurelinearaccelerationsintheX,Y,andZ planeswhilegyroscopesmeasureangularvelocitiesalongtheX,Y,andZplanes. Magnetometersareabletodetectmagneticnorththusallowingthesystemtoorientitself toacommonpoint.BasedonNewton’ssecondlaw,F=ma,datacollectedfrom accelerometrycanbecomparedtoforcedatalikeGRF.Onestudythatdirectlycompared forceplatedatatoaccelerometrydatawasastudyconductedbySeimetzetal.Inthisstudy theywantedtolookathowaccelerometryandforceplatedatacomparedwhenmeasuring posturalstability[44].Stabilogramsandswayprofilesweregeneratedfromforceplateand sternum-mountedaccelerometerrespectively.Subjecthadbothvisualandproprioceptive systemsperturbedinordertoseehowforceplateandaccelerometerwereabletodetecta changeinCOM.Thefindingsofthestudywerethatthetwotechnologieswerenotdirectly comparablebutshowedsimilartrends.ThiswasshownbyincreasedCOMareaonthe stabilogramandincreaseswayprofilewhenthebodiesvisualandproprioceptivesystems wereperturbed. Theuseofaccelerometershasbeenusedinsciencesfordecadesbutisonlyrecently beingintroducedonlargescaleinteam-basedsports(12,13).Byutilizingaccelerometry estimationsofforcesandhowtheyaredistributedacrossthebodyasawholecanbe obtained[24,25,26].AstudyperformedbyTorrealbaetal.[45]identifiedsignificant landmarksingaitdatacollectedfromaccelerometers.Thesignificantfindingsofthisstudy weretwonegativeaccelerationsthatoccurredduringthegaitcycle.Thelargeracceleration wasassociatedwithheelstrikeandthelesserpeakbeingassociatedwithtoe-off.The authorsusedthegaitcycleandfoundthetoe-offoccurredapproximately61%intothegait cycle,whichissupportedbyvideomonitoringsystemslikeVicon[45,46]. 14 Zhangetal.[47]lookedtoidentifyhowaccelerometerattachmentsiteaffected accelerations.Subjectsattachedaccelerometersabovethemedialandlateralmalleolusand performedawalkwherethefootstruckaforceplate.Accelerometerdatafromboth attachmentsiteswerewellcorrelatedwithforceplatedatabutlateralattachmentwas morehighlycorrelated.Thehypothesisontheseresultswasthatbyattachingsensors closertothepointofcontacttheforceexertedontheunitwouldbehigher.Thisbrings lighttoanimportantpointthatthebodyhasbuiltindampersliketheankle,knee,andhip jointcapsule.Thesedampersincludeskeletalmuscle,ligaments,tendons,andcartilage.As thesedampersdeteriorategaitwillbealteredinordertoaccommodate.Ifdataweretobe collectedfurtherfromthepointofcontactvaluesmaydifferbuttrendsshouldremain. GaitSymmetry: Therearenumerousstudiesexaminingabnormalitiesingaitsymmetryincluding detectinganasymmetryincerebralpalsy,stroke,andtheelderlytoassessriskoffalling [19-23,48-50].Variableofinterestincludedvariationinstridedistance,GRF,peak acceleration(PA),andCOM.Fewstudiesutilizedtrunk-mountedunits,likeGPSports (SPIHPU)units,forcollectionofaccelerationdata.Carpesetal.[19]conductedareview lookingatlegpreference,whichincludedanalysisofavarietyofsymmetryequations.All equationscomparedvariablefromtherightlimbtoleftlimb.Fromtheirstudyandothers, themostcommonmethodologytoevaluatesymmetryistotaketheabsolutevalueofright (Xr)minusleft(Xl)dividedbyonehalfright(Xr)plusleft(Xl)asshowninFigure3 [19,39,40].Carpesetal.[19]foundthatbyusingthisformulaasymmetrypercentage (ASI%)canbeproducedallowingfortheidentificationofsymmetryinasubject’sgait[19]. 15 Itwasimportanttoidentifypossiblesourcesoferrorwhencollectingsymmetry data.Basedontheproprietor’sinformationandcurrentliteraturefoursourcesarose includingvelocity,runningsurface,footwear,andattachmentsite.Croweetal.[51]looked athowgaitvariableswereinfluencedbyvaryingwalkingspeeds.UsingGRFdata researchersfoundthatasvelocityincreasesgaitcycleduration,timefromrightheelstrike tonextrightheelstrike,andforceintheYplane,mediolateral,decreasedwhileforceinthe X,anterior-posterior,andZ,vertical,planeandstridelengthincreased.Thesefindings showthevariabilityinforcesasvelocitychangesmakingvelocityanimportantfactorto considerwhiletestinggaitparameters.TheXandZGRFdatawashighlycorrelated showingarelationshipbetweentheforcesatwhichthefootstrikes,weightacceptance phase,theplatetotheforcegeneratedtopropelthebodyforward,toe-off.Theseincreased forcesrequirethebodytoincreasetherateatwhichgaitcycleoccurstobe biomechanicallyefficient. Giandolinietal.[52]conductedandexperimentwheretheyutilizedaccelerometers toidentifydifferencesbetweendownhillandlevelgroundrunning.Basedonprevious studies,theystatethatdownhillrunninginduceshigheraccelerationsatthetibiaequating increasedforces.Findingsofthisstudywerethatdownhillrunningpromotedrear-foot strikeandfoot-strikepatterninfluencedshockintensity.Specifically,theyfoundthat forefootstrikeproducedlessforcethanrear-footstrike.Theanklecanbemodeledasa first-classleverwheretheloadisappliedtothefoot,thetalocruraljointactsasthefulcrum allowingforforcestobedistributedtothemusclesofthecalfandviceversa.Intheforefoot strikethedistancebetweenourfulcrumandsiteofforceapplicationisincreasedwhereas inarear-footstrikerthisdistanceisreducedleadingtoanincreasedforcesentthroughthe 16 talocruraljointandupthekineticchain.Althoughsubjectsmaynaturallyberear-foot strikersbyensuringaflatsurfaceweareminimizingtheeffectsofanunevensurfaceon accelerations. Ourthirdsourceoferroristhatfootwearcanaffectgaitsymmetry.Hoerzeretal. [53]testedhowshodvsunshodinfluencedGRFdata.Theirfindingsweresimilartoother studiesthatshodrunningreducedrunningasymmetry.Theyproposedthatshoesalter sensoryinformationfromtheplanterand/orthedorsalportionofthefoot.However,some subjectsdidshowanincreasedgaitasymmetrygivingsupportforhowvariablehumangait is.Thisvariabilitycanarisefromthevariationinafferentfeedbackoftheneuromuscular systemeffectingproprioception[53,54]. Lastly,accelerometerplacementwillaffectthecollectionofaccelerometerdata.Two aspectstoplacementisassuringtheunitissecurelyattachedandunderstanding placement.Thefirstpointisintuitiveinthatiftheunitisnotsecurelyattachedtothebody theaccelerationcancomefromtheunitmovingindependentlyoftheattachedlimb.To reducetheseeffects,researchersuseathletictape,Velcro,or2-sidedtapetofirmlyattach unitstothebody.Asmentionedpreviouslythebody’sjointandmusculoskeletalsystem dispersesforceasittravelsupthekineticchain.Thisideaissupportedbyastudy conductedbyZhangetal.[47]Theyidentifiedhowwellaccelerometerdata,peak acceleration,wascorrelatedtoGRFwhenattachingunitstothedistaltibiaandlateral malleolus.AlthoughbothattachmentsiteswehighlycorrelatedtoGRFdata,lateral malleolusattachmentwasmorehighlycorrelated.Thisattachmentwasalsosupportedby studiesconductedbyManninietal.[55]andLeMoyneetal.[56]. 17 WearableTechnology: Recentlyseveralcompanieshavedevelopedwearableunitsdesignedtomeasure variableslikevelocity,heartrate,acceleration,andrunningsymmetry.TheSPIHPUisan 80gtrunk-mountedunitthatincorporatesGPS,accelerometer,andmagnetometerhoused ina74mmx42mmx16mmwaterproofcase,Figure1.Thetrunk-mountedunitis positionedbetweentheathlete’sscapula,nearvertebraeT4andT5,byavestprovidedby manufacture,Figure4.Inadditiontothetrunk-mountedunitheartratedataiscollectedvia polarheartratestrap.Alldatafromthefourinstrumentsisstoredontheunituntil downloadedtothedockingstationandinterpretedusingproprietarysoftware.TheGPS unitrecordsat15Hzandcollectsposition,speed,anddistancevariables.Theaccelerometer recordsimpacts,accelerations,anddecelerationsupto16gatarecordingfrequencyof 100Hz(Figure5).Themagnetometerisstrictlyusedtotrackmovementprofilesandused inconjunctionwiththeaccelerometertoestablishorientation.Utilizingthesefour separatetechnologiesallowstheproprietorssoftwaretogeneratevisualizationsofhow variablesinteractwitheachother.Figure6showshowvelocityandheartrateofan individualtrackoverthecourseofanexercisebout. Theincreasedlevelofmonitoringproduceslargedatasetscomprisedofover150 variablesallowingforamorequantitativemeasureofthetotaltrainingload(TL)endured bytheindividual[57].Trainingloadcanbedefinedasbothexternal(thevolumeand intensityofworkbeingperformed)andinternal(thephysiologicalandmechanical responsetotheexternalload).Anathlete’sTLisimportanttomaximizingperformance gainsaswellasreducingtheriskofinjury.Gabbettetal.[58]modelTLbytakingtheratio ofacutevs.chronicloadandmaintainingitbetweenaspecificrange,0.8-1.3au.[58].Using 18 thisscaleundertrainingandovertrainingarerepresentedbelow0.8auorabove1.3au respectively.Acuteandchronicloadcanbeanyslidingwindowofdata,1-6dayaverage versus10-18dayaveragerespectively[59].ThiswayofanalyzingTLmakestheobserver moreconcernedaboutthesimilaritybetweenexerciseboutsratherthanlookingateach exerciseboutasanindividualstress.TherateatwhichTLvariesismoreimportantthan theindividualsessionsthemselves.ModelingTLinsuchamannerwecancomparehowwe areperformingnowversushowwewereinthepast.Analyzingrunningsymmetryinthis waywillallowforintra-subjectcomparisonstobemadeestablishingbaselinesor“normal gait”.Sincerunningsymmetryissovariedamongstindividualscomparingsymmetryto one’sownselfprovidesmorepowerfulinsightthancomparingtoawholeteamaverageor thateveryonehasperfectsymmetry.Assumingasubjecthassomenaturalasymmetryin theirgaitusingacutevs.chronicallowsforustoseehowsimilarthatasymmetryoccurs ideallyresultinginaratioof1[58].Ifsomeoneweretochronicallyover-trainorexperience amusculoskeletalinjury,itwouldbeexpectedthatanunnaturalasymmetrywoulddevelop comparedtoone’sownnaturalgait.Thiswouldresultinanincreasedacutevs.chronic ratioandcouldbeusedasamarkerforinjury.Inarehabilitationsettingaphysiciancould lookfortheacutevs.chronicratiotobelessthanoneduetothereductionofasymmetry overtime.Thiswouldallowphysicianstobetterunderstandhowtherehabilitation processisprogressingandhaspotentialasareturnto ACLReconstructionClinicalCases: ACLrupturesarethemostcommonsportsassociatedinjurythatrequiressurgeryto repair[60].TheACLprotectstheproximaltibiafromanteriortranslocationfromthedistal 19 femurwhenthelegisinaflexedposition[Butler].Suchinjuryisassociatedwitha disruptioningaitsymmetryduetoreducedrangeofmotion(ROM)andreducedstrength specificallyinthequadriceps[61,62].Followingsurgeryphysician’smaingoalsrevolve aroundpromotinglong-termjointfunctionalityandavoidre-injury,mostsusceptible7-8 monthspost-surgery. InordertoaccomplishthisVirginiaTechsportsmedicineguidelinescallforthe recoveryperiodisbrokenintofourstages(early,middle,late,post)eachfocusingon restoringpainmanagement,ROM,strength,weightbearing/jointloading,and neuromuscularcontrol.The“early”phasebeginsimmediatelyfollowingsurgeryand generalextendstosix-weekpost-surgery.DuringthisperiodthefocusisrestoringROM,i.e gainingfullextension,andneuromuscularfunction.Specialfocusisplacedonmuscle activationandreestablishingnormalgaitpatterns.Thisincludesemphasisonavoiding poorgaitmechanicslikestiff-kneegaitwhilepromotingnormaltoe-offtohelpestablish normalgaitspeedandcadence. Inordertoprogresstothe“middle”phasepatientsmustshowfullROMaswellas accomplishbasicgaitgoalslikesteppingup/downandsymmetricalloadingduring unassistedwalking.The“middle”phaseextendsfrom6-12weekspost-surgery.Duringthe periodmoredynamicexercisesareemphasized.Joggingbeginsaswellasperturbed balance;singlelegstanceonfoampad,duringthistimeasregainingendurancebecomesa focusoftherehabilitationprescription.Asthisprescriptionprogresses,symmetrical loadingisimportanttoensurenormalloadingoftherepairedjoint.Approximately12 weeks,3months,post-surgery,apatientwouldbeginthe“late”phase,whichonlylastsfor fourweeks,16weekspost-surgery.Duringthisphasejoggingdurationandintensityis 20 increasedwithemphasisonminimizingeventslike“hardlandings”makingthepatient focusonspecificmuscleactivationwithoutco-contraction,notcontractingquadricepswith hamstringsIncreasingmulti-jointmaneuverslikesquats,speedladder,andplyo-jumpscan beaddedaspermittedbypatient’spain. Summary: Areviewoftheliteratureisclearinestablishinggaitsymmetryasakeyvariable thatcanbeusedtoidentifymusculoskeletalinjuryandpathology.Thismetricistypically derivedusinglaboratorytechniquesandisgenerallydifficulttodetermineduringeveryday activitiesperformedoutsideofaresearchorclinicalsetting.Recentlytrunk-mounted accelerometersincorporatedaspartofaGPSbasedmonitoringdevicehaveshowed promise.However,fewdataexisttovalidatethesedevicesagainstbi-lateralfootorankle mountedaccelerometersandduringconditionswheresymmetricalandasymmetricalgait exists.Thus,thereisaneedtovalidatetrunk-mountedagainstbi-lateraldevicesand duringperiodofknownalteredgait. 21 Figure1.TheGPSportsSPIHPUunit. 22 Figure2.Synchronizationofleftandrightlowerextremitiesduringgaitcycle.Top: Walkinggait,Bottom:Runninggait.Imageobtainedfrom: http://clinicalgate.com/assessment-of-gait/ 23 Figure3.Symmetryindexequation.XrandXlrepresentpeakverticalforcesduringright andleftfootstrike,respectively(Z-axis)[19] 24 Figure4.SPIHPUwithvestfront(top)andback(bottom)showingunitinpocket 25 Figure5.RawSPIHPUaccelerationdata.ShownareZ-axis(yellow),X-axis(red)andYaxis(green).Theresultantisshowninblue.TheFigurewasobtainedfromGPSports TeamAMSsoftwarepackage. 26 Figure6.Heartrateandvelocityvisualization.Theredlinerepresentsheartrateand thebluelinerepresentsrunningvelocity.TheFigurewasobtainedfromGPSports TeamAMSsoftwarepackage. 27 Chapter3 Methods 28 Subjects: Thestudyusedhealthycollegiatesoccerplayerswithnocurrentlowerbodyinjury. Currentlowerbodyinjurywillbedefinedasaninjurythathasoccurredwithinthepast 30days.Anadditionalsubjectrecoveringfromanteriorcruciateligament(ACL) reconstructionsurgerywillalsobemonitored.Subject’sinformationcanbeseeninTable1. AllprocedureswereapprovedbytheVirginiaTechInstitutionalReviewBoard(IRBand 16-387and16-619).Allprocedureswerefullyexplainedtoallsubjectsandinformed consentwasobtainedpriortodatacollection. Accelerometry: Subjectswereaskedtowheretrunkmountedaccelerometers(SPIHPU,GPSsport) (allstudies)aswellasbi-ankle-mountedaccelerometers(MSR145S,MSRElectronics GmbH)(ValidationStudy).SPIHPUunitsweremountedinaccordancetomanufacture recommendationbeingsecurednearvertebraeT-4andT-5withproprietaryvest. CharacteristicsofthetwoaccelerometersareshowninTable2.Anklemountedunitswere securedatthelateralmalleoluswithPowerFlextapeusingthelateralmalleolusandfibula aslandmarksassupportedbyliterature[47].PowerFlexwaschosenasthebestmeansto secureaccelerometerstotheankleduetoitsmaterialdesignswhichwouldminimally perturbssubjectsnaturalgait.Onceunitsaremountedwarm-upactivitieswereperformed tofamiliarizesubjectswithequipmentandprotocols. Trunkmountedaccelerometersare100Hz,16gtri-axialaccelerometerequipped witha50Hzmagnetometertodetermineaxialorientation.Theassociatedsoftware producesasymmetryindexusingaproprietaryalgorithm(GPSports,TeamAMS).This 29 algorithmidentifiesandcomparespeakaccelerationvaluesofeachfootstrikeand computessymmetryusingtheequationinFigure3. Accelerometerdatafromthetwolowerleg-mountedaccelerometersweresampled 50Hzusingmanufacturerprovidedsoftware.TheywerethenanalyzedusingMATLAB.A rollingaveragewasfirstusedtolow-passfilterthedatawhichallowedforidentificationof peakacceleration(PA)alongtheverticalorZ-axisforeachfootstrike.Nextwewillneedto compareeachunit’s(leftvsright)databyapplyingthepeakaccelerationalongtheZaxis fromrightandleftstancephase(identifiedasXrandXlrespectively,inthesymmetry equationusedinFigure3. ValidationTrial: Inordertoinducegaitasymmetry,subjectsweretestedunderthreetestconditions intheorderofbi-lateralshod(wearingtwoshoes),uni-lateralshod(wearingleftshoe), andunshod(noshoes)conditions.Subjectswereaskedtowearsoccercleatsoftheir choice.Duringeachtrial,theyperformed15-50mrunsatapproximately70%intensity, self-reported,withaminuterecoverybetweenefforts(5foreachcondition).Alltrialswere administeredonthesamedayutilizingaflatartificialturffield(FieldTurf)tominimize effectsfromvaryingsurfaces. Symmetryscoresfromeachtrialwithinaconditionwereaveraged.Trunk-and lowerleg-mountedsymmetryscoreswerecomparedusinga2-wayrepeatedmeasures ANOVA(conditionXdevice)usingJMP.Runningvelocitieswerecomparedusinga1-way ANOVA(condition).Significancewasestablishedatthep<.05level.Effectsizeswere 30 calculatedusingη2(η2=SSeffect/SStotal)with0.01consideredsmall,0.06considered mediumand0.14consideredlarge. ApplicationTrial: Three,1600meffortstrialsofvaryingintensitieswereconductedonseparatedays. Theseincludeda1600mrunperformedinapproximately16km/hr(6minutemile),16x 100msprintsperformedatnearmaximalvelocity,self-reported,anda1600mjogat approximately8km/hr(12minutespermile).Trialswereconductedonseparatedays,to betterisolatethefatiguingexerciseandwerecarriedoutaspartofroutine,off-season training.Alleffortswereperformedona400moutdoorrunningtrackwithallsubjects completingeachactivityatthesametime.Forthistrial,subjectswerefittedwiththe trunk-mountedunitsalone.Runningsymmetryscoresweredeterminedforthefirstand last100mofeach1600mtrialandforfirstandlastofthe100msprintsboutusingthe SPIHPUandproprietarysoftware. Differencesinrunningsymmetryandvelocityweredeterminedby2-wayrepeated measuresANOVA(trialXtime)usingJMP.Significancewasestablishedatthep<.05level. Effectsizeswerecalculatedusingη2asdescribedabove. CaseStudies: TwocasestudiesarepresentedasfurthervalidationoftheSPIHPUunitsabilityto identifyrunningsymmetryandasymmetry.Inthefirstcasestudy,asinglemalesubject whowasrecoveringfromACLreconstructionsurgerywasexamined.Datacollectionbegan 60dayspost-surgeryandcontinuedfor6weeks.Forthisindividual,recoverywas 31 monitoredsemi-weekly.Runningsymmetrywasdeterminedduringvaryinglengthsof straight-lineconstantvelocityrunning.Asthesubjectwasclearedforgreatertraining participation,runningspeed(intensity)wasallowedtoincrease. Asecondsubjectsufferedablowtothelowerlegduringoff-seasontraining.He continuedtotrainfortheremainderofthesession.Followingthesession,hewas diagnosedwithananklesprainandenteredintoarehabilitationprogram.Running symmetrywasassessedimmediatelybeforeandaftertheinjury.Itwasalsoassessedfor 10daysfollowinginjury(rehabilitationprogram)afterwhichthesubjectwasclearedfor fullparticipationintrainingactivities. Forbothsubjects,accelerometerdatawererecordedduringthedesignated rehabilitationprotocolestablishedbyVirginiaTechSportsMedicinestaff.Runningspeeds andexerciseintensitieswereadjustedbythestaffastoleratedbyeachsubject.Running symmetryvaluesweredeterminedpriorto(acuteinjurystudy)andduringthe rehabilitationperiodsasdescribedfortheValidationandApplicationstudies. 32 Variable ValidationTrial(n=11) ApplicationTrial (n=16) CaseStudies (n=2) Male:Female, 6:5 16:0 2:0 Age(years) 22.1(2.9) 21.2(1.4) 21(0) Height(m) 1.76(0.09) 1.80(0.07) 1.85(0) Bodymass(kg) 71.6(11.2) 74.9(6.7) 81.9(0) BMI(m.kg-2) 22.9(1.9) 23.1(1.7) 23.9(0) Table1.Subjectcharacteristicsforeachstudy. Specification SPIHPU MSR145S Size(mm) 74x42x16 18x14x62 Weight(gm) 66 18 Accelerometer Tri-axial Tri-axial Magnetometer Yes No Range(g) ±16 ±10 Datacollection(Hz) 100 50 Table2.Accelerometerspecifications. 33 Chapter4 Results 34 ValidationTrial: Rawaccelerationsforunilateral-shodrunningareshowninFigures7and8.Shown areZ-axis(vertical)accelerationsdetectedwiththeSPIHPUunits(trunk-mounted)for successivefootstrikesaswellasthebilateralanklemounteddevices.Ascanbeseen,peak accelerationsarenoticeablydifferentbetweenrightandleftfootstrike Themeansymmetry(Figure9)andmeanrunningvelocity(Figure10)were comparedbetweeneachtrialforeachsubject(ANOVAtablesareshownintheAppendix). Symmetryscoresweresignificantlygreaterfortheunilateralshodcondition(1S) comparedtotheothertwoconditionsforbothtrunkandanklemountedaccelerometers. Theeffectsizeforconditionwasconsideredlarge.Therewerenodifferencesinsymmetry betweenthebilateral(2S)andun-shod(0S)conditions.Therewasasmalldifference betweendatacollectedfromtrunk-andankle-mounteddeviceshowever,nodeviceby conditioninteractionwasfound.Thisindicatesarunningasymmetrywhensubjects experiencedanartificiallyinducedalterationingait. Runningvelocityforthe2Sconditionwassignificantlylowerthanthe0Scondition. Velocitiesduringthe1Sand0Sconditionwerenotdifferent.Thisamountedtoa4.7% reductioninrunningvelocitycomparedtotheotherconditions(mediumtolargeeffect size). Theseresultssuggestthattrunk-mountedaccelerometrycandetectartificiallyinducedrunningasymmetry.Inaddition,themagnitudeofasymmetrydetectedbythe trunk-mountedunitswassimilartothatdetectedbylowerlegmountedaccelerometers. ApplicationTrial: 35 Themeanrunningsymmetryscores(Figure11)andrunningvelocities(Figure12) showedthetypeofexerciseperformedaffectedrunningsymmetry.Theintensityof activitydidnotsignificantlyaffectsymmetry.However,therewasahigherasymmetry duringthefinal100mifthe1600mtrialThe1600mtrialwastheonlyactivitytoshowa significantlyincreasedsymmetryscore.Theeffectsizesforactivity(trial),interval(first andlast100m)andtheirinteractionwereallconsideredmedium. The16x100mshowedasignificantdecreaseinvelocitybetweenfirstandlasttrial. Asanticipated,runningvelocitieswerehighestduringthe16x100meffortsandlowest duringthe1600mjog.Effectsizesforactivitywasconsideredlargeandconsideredsmall fortheintervalandtheinteraction. Theseresultssuggestthatrunningsymmetry,asdeterminedusingtrunk-mounted accelerometry,isnotgreatlyaffectedbyrunningspeedbutisalteredbyfatiguingactivity. CaseStudies: Forthefirstcasestudy,asinglesubjectsufferedateartohisrightanteriorcruciate ligament(ACL)andunderwentreconstructionsurgery.Fiveweeksfollowingsurgery,he beganaprogramofslowjoggingalongwithtraditionalstrengtheningandrangeofmotion exercises.Hisexerciseintensitywasgraduallyincreasedoverthenextthreemonths. Figure13showssignificantasymmetryfollowingACLreconstruction.Inthiscase, symmetryscoresarepositivereflectinganinjurytotherightleg.Aninitialincreased runningasymmetryappearstoariseastherehabilitationprogrambegins.Thislikely reflectsthegradualincreaseinrunningvelocityduringtherehabilitationprogram.After 36 twomonthsofrehabilitation,runningasymmetrywasstillevidentbothvisuallyandfrom SPIHPUdata. Forthesecondcasestudy,anindividualsufferedanankleinjurytohisleftleg resultingfrombeingkickedonduringatrainingsession.Aftersustainingtheinjury,the subjectcontinuedtotrainforseveralminutesafterwhichthesessionended(Figure14). Hewaslaterdiagnosedwithananklesprainandhistrainingwaslimitedforseveraldays. Ashebecamesymptomfree,hisactivitieswereincreasedandresumedfulltrainingwithin twoweeks.Figure14showsacutechangesinrunningsymmetryfromtheperiodbefore theinjuryandafter.Priortotheinjury,therearelargevariationsinrunningsymmetry. Thislikelyreflectsthenatureoftheactivitybeingperformed.Soccertrainingrequires playerstoexecuteanumberofdirectionalchangesatbothlowandhighrunningvelocities. Theincreasedimpactforceduringachangeofdirectionmovementwouldlikelyaffectthe symmetrycalculation.Followingtheinjury,thissubjectshowsamarkedincreasein symmetryreflectinganasymmetricalgaitpattern.Alsonotethelargechangeinsymmetry occurringimmediateaftertheinjurycomparedtothevalidationandapplicationtrials. InFigure15theplayer’ssymmetryscoresoverthedaysbeforeandfollowingthe injury.Thisshowsalargenegativeasymmetryscoresinthedaysfollowingtheinjury. Thesearefollowedbydecreasingasymmetrythroughtherecoveryandrehabilitation period. Bothcasestudiesindicatethatrunningsymmetrydeterminedbytrunk-mounted accelerometryisalteredimmediatelyafteraninjuryandremainssoduringrehabilitation. 37 Figure7.RawaccelerometrydataobtainedfromtheHPISPUunit.RandLdenoteright andleftfootstrikes,respectively. 38 Figure8.Rawaccelerometrydatafromthebi-lateralaccelerometers.RandLdenote rightandleftfootstrikes,respectively. 39 Figure9.Runningsymmetryvaluesduringbi-lateralshod(2s),uni-lateralshod(1s)and unshod(0s)runningtrials.*p<.05vs0sand2sconditions. 40 Figure10.Runningvelocityduringbi-lateralshod(2s),uni-lateralshod(1s)andunshod (0s)runningtrials.*p<.05versus0sand2s. 41 Figure11.Runningsymmetryvaluesduringthethree1600mtrials.*p<.05versusthe first100mofthetrail. 42 Figure12.Runningvelocityvaluesduringthethree1600mtrials.*p<.05versus100s andjog,†p<.05versus100sand1600m.‡ p<.05versus100sfirst100mandlast100m 43 Figure13.MeanrunningsymmetryscoresduringanACLreconstructionrehabilitation program. 44 Figure14.Runningimbalancescoredduringatrainingsessioninasingleplayerbefore andaftersustainingafootinjury.Thesessionconsistedofawarm-up,fitnesstraining andmatchplay.Approximately140afterthestartofthesession,theplayersustaineda footinjury.Trainingendedapproximately15minuteslater. 45 Figure15.Runningimbalancescoresbeforeandaftersufferinganankleinjury.The injuryoccurredonday0.Thesubjectwasrestrictedfromfulltrainingbetweendays1 and9.Afterday9,thesubjectresumedfullparticipation. 46 Chapter5 Discussion 47 TheresultsofthisstudyshowthattheSPIHPUaccelerometercanbeusedtodetect asymmetricalgaitpatterns.Fourpiecesofevidencesupportthisconclusion:1)An artificiallyinducedgaitabnormalityinducedarunningasymmetry2)Changesinrunning symmetrywerequalitativelyandquantitativelysimilar(visualandSPIHPUdata),3) Runningsymmetryisaffectedbyexercisetofatigueand4)twocasestudiesofinjured subjectsrevealedalterationsinrunningsymmetry.Basedontheseresults,itisevident thattheSPIHPUunitscandetectbothnormalandabnormalgaitpatterns. ValidationTrial: Thistrialdemonstratedanovelapproachtoinducingarunningasymmetryin normallyhealthysubjects.Byhavingsubjectsremovetheirrightshoe,aleglength discrepancywascreated.Thisdiscrepancyledtoanincreasedpositive(favoringtheright leg),runningsymmetryproducedbytheGPSportsproprietarysoftwareandankleunits. Thedatashowedastatisticallysignificantdifferencewhencomparingsymmetryscoresof thebilateral-,unilateral-andun-shodconditions.Whencalculatingthesymmetryscorea trenddevelopedinwhichtheproprietarysymmetryalgorithmbegandetectingarunning symmetryduringtheearlypartofsteadystate,constantvelocity,runningandcontinued untilthesubjectsspeedfellbelowthethresholdof8km/h.Itwashypothesizedthatthis delayindetectionofrunningsymmetrywasduetothe10stepminimumneededforthe proprietaryalgorithmtocalculateasymmetryscore.Unfortunately,withoutknowingtheir exactalgorithmitishardtomakedefinitiveconclusionsastothesourceofthisabnormal distributionoffoot-strikestakenintoconsiderationtodevelopthesymmetryscore.By validatingthescoreagainstankleaccelerometersweshowedsimilartrendsindatawhere 48 theankleunitsreportedincreasedscores.Thiswasexpectedasdatawasbeingcollected closertothepointofcontact. Aninterestingfindingofthisstudyexperimentwasthestatisticallysignificance betweenunshodandshodvelocitieswheretheunshodconditionshowedanincreased velocity.Thefirstthoughtwasthatthismayhavebeenaresultoffatiguebutallsubjects wentthroughtheexperimentalprotocolprogressingfromshodtouni-shodtounshod wherefatiguewouldmostaffecttheunshodtrials.Duetotherestandorderofexerciseswe donotfeelasthoughfatiguehadanyeffectonourexperimentratheritmaybethe biomechanicsresponseofthefoot.Kellyetal.conductedanexperimentthatcomparedfoot biomechanicsduringshodandunshodrunning.Themainfindingswerethatwhenvelocity wascontrolled,14km/h,shodrunningledtoanincreasedstridedurationandground contacttimewhiledecreasingpeakloadingrateandpeakpropulsiveforcewhencompared tounshodconditions.Thisbeginstomakemoresenseifthelongitudinalarch(LA)ofthe footismodeledasaspring.DuringtheloadingphasetheLAiscompressedconverting kineticenergytopotentialenergystoredinthetendonsandligaments.Asthegaitcycle entersterminalstancetheLAextendsthispotentialenergyisreturnedtothegroundand propulsionoccurs. ApplicationTrial: Toourknowledgethisstudywasthefirsttolookathowfatiguingactivities contributetorunningsymmetry.Duringthe16x100sand1600mtrialssubjectswere exertingmaximaleffortduetotheintervalsofeachtrial.Consideringthe16x100sand 1600mwerestatisticallysignificantforvelocityandsymmetryrespectivelywewereable 49 toinfluencedirectlyandindirectlyalterrunningsymmetry.Duringthe1600mbout, velocitywasconsistentbetweenfirstandlast100mportionwhilesymmetryscore doubled,2.106%.The16x100sshowedasignificantreductioninvelocity,~2.56km/h, andanincreaseinsymmetryscore,0.731%,whichhadarelativelylowpvalueof0.062. Althoughthechangeinsymmetryscoreswerenotstatisticallysignificantthelowp-value supportsfurtherstudieswherevelocitycouldbebettercontrolled.Thedevelopmentof increasedrunningasymmetryandchangeinvelocitiesisthoughttobetheresultof musculaturebecomingfatiguedandlargermusclegroupsbeingrecruitedasthesmaller musclegroupsfatigue.Thesesmallermusclegroupswouldbemusclesassociatedwithfine motorcontrolcontributingtorunningtechnique.Alossoftechniquecanleadtoalterations inrunningmechanicsultimatelyresultinginadifferencebetweenhowthebodywasbeing loadedfromthebeginningofeachtrialtotheend. Duringthejogtherewasasmallreductioninrunningsymmetry,0.156%,maygive supportforawarm-upactivity.Thejogwasperformedataself-selectedspeedbelow40% ofmaximaleffort.Ifawarm-upistopreparethebodythroughactivestretchingandmuscle warming,thismayalsoreduceasubjectsrunningsymmetryscoreoffthesubject.Alimitto thisexperimentwasthatsubjectperformedeachtrialonseparatedaysduetotheintensity ofthe100sand1600m. Althoughsomephysiologicalorpsychologicaldifferencesmayhavebeenpresentin subjectsbetweendaysthetrialswereconductedinthesameweekminimizingthese effects.FuturestudiescouldutilizeRPEscorestobetterunderstandthesepotentialsources oferror.Studyinghowdifferentathleteswouldrespondtothesameexperimentcouldalso changethefindings.Asprintermaymaintainmoreconsistentvelocitieswhileatrack 50 athletespecializinginthe1600mmaynotshowassevereofanasymmetrydevelopment duetothespecificityoftrainingscheme.Findingsofthisnaturecangivecoachesdata whichcanbeusedtoidentifypointsofraceswhereathletescanfocusonbeingmore efficient. CaseStudies: Wewereabletodetectsignificantrunningsymmetryscoresdirectlyfollowingthe subjectsleftfootbeingstruckbyanotherplayer.Thiscouldbeusedtodetect musculoskeletalinjuryasshowninFigure14,whichwarrantsfurtherresearchpotentially inathletesimmediatelyfollowingaconcussivegradeimpact.Wealsoshowedhow symmetryscoresreducedthroughouttherehabilitationperiodandwerenearnormalas theplayerwasclearedtoreturntoplay.ThisspeakshighlyofVirginiaTechsports medicineteambutalsoshowsauseinunderstaffedclinics.Severalsubjectscanbe monitoredsimultaneouslyandbecomparedacrosssuccessivedays. WhenlookingatthesubjectrecoveringfromACLreconstructiondatainitiallylooks irregular.Whendataiscomparedtotherehabilitationprescriptionthescoresbeginto makemoresense.EarlyphasesofrehabfocusonregainingstrengthandgainingROM, consideringthesubjectsdonotbegintoperformunassistedwalkinguntilthemiddle phase,6weeks,intotheprescription.Thisperiodisrecordedassymmetryscoresfavoring therightsideofmoderatemagnitude.Asthesubjectenterslatephase,morechallenging intensitiesareencouragedleadingtohighersymmetryscores.Wewereabletocontinue monitoringthesubjectpasttheinitialphysicaltherapyprescription.Thisisimportant consideringpatientsaremostsusceptibletore-injuryuptoeightmonths 51 post-surgery[60].Sincemostinsurancecompanieswillnotapprovepatientstoattend sessionspastacertaindateorallotmentsofsessionsthisgivespromisetowearables.If thesepatientscoulddoactivitieswearinganaccelerometerthatuploadeddatatoa databaseandinterpretedforthem,thentheycouldcontinuereceivingfeedbackastohow they’rerehabilitationisprogressing. DuringtheACLdatacollectionthereweretwo10-dayperiods,53-62and65-75, whereoursystemwasdown.Thiswouldhavebeenkeydataforinterpretationstobemade andutilizeacutevs.chronicratios.Furtherresearchshouldbedoneonsubjectsrecovering frominjuriestoidentifypotentialriskfactorstore-injurysuchasexcessiveasymmetry. Conclusions: Consideringthefewstudiesutilizingtrunk-mountedaccelerometersourpurpose wasfirsttovalidatetrunk-unitsagainstankle-unitsthenshowhowrunningsymmetry varieswithfatigueandlastlyshowsomerealworldutilizationofsuchvariables.Similar trendsbetweensymmetryscoresgeneratedfromtrunk-mountedandankle-mounted accelerometerssupportedtheuseoftheSPIHPUunitforcollectingaccelerationdata. Detectingachangeinrunningsymmetryduringvaryingfatigableactivitieshighlightsa potentiallynewmetrictomeasureanathlete’shealth.Potentialusesinsettingslike physicaltherapyclinicsarenumerousinprovidingfeedbackonhowrecoveryis progressing.Trunk-mountedunitsallowforcollectionofdataacrossalargegroupof athletesprovidinginformationtopersonnelonadaytodaybasis. Futurestudiescouldidentifyhowrunningsymmetryvariesbetweentimesof acceleration,steadystate,anddecelerationrunning.Theseperiodsofmovementmaygive 52 informationhelpfultogroupslikesprinterswhoarelookingtomaximizeefficiency. Anotherareaofpotentialuseistheuseoftrunk-mountedaccelerometersforbalancetest suchastheY-test.Thereisaneedformorequantitativewaystoassesssubjectsafter concussiveblowsincontactsports.Teamsalreadyutilizingsuchproductsshowsa potentialinevaluatingtheircapacitytomeasureposturalswayallowingforquickand effectiveevaluationofplayers. 53 References 54 1. Millington,B.andMillington,R.,2014.Thedataficationofeverything:Sportandthe AgeofBigData.In:4thInternationalConferenceforQualitativeResearchinSportand Exercise,2014-09-01-2014-09-03. 2. http://www.cheatsheet.com/sports/highest-paid-athletes-world2016.html/?a=viewall 3. http://injuryleague.com/2016/05/manchester-united-percentage-season-missedplayers-injury-1516/ 4. http://sillyseason.com/football/manchester-united-players-salaries-list-69041/ 5. Mangine,R.E.,Minning,S.J.,Eifert-Mangine,M.,Colosimo,A.J.,&Donlin,M.(2008). ManagementofthePatientwithanACL/MCLInjuredKnee.NorthAmericanJournal ofSportsPhysicalTherapy:NAJSPT,3(4),204-211. 6. Cherkin,D.C.,Deyo,R.A.,Battie,M.,Street,J.,&Barlow,W.(1998).Acomparisonof physicaltherapy,chiropracticmanipulation,andprovisionofaneducationalbooklet forthetreatmentofpatientswithlowbackpain.NEnglJMed,339(15),1021-1029. doi:10.1056/nejm199810083391502 7. Schmitt,B.,Tim,T.,&McHugh,M.(2012).HamstringInjuryRehabilitationand PreventionofReinjuryUsingLengthenedStateEccentricTraining:ANewConcept. InternationalJournalofSportsPhysicalTherapy,7(3),333-341. 8. Reider,B.(2014).Moneyball.AmJSportsMed,42(3),533-535. doi:10.1177/0363546514524161 9. Bonato,P.(2005).Advancesinwearabletechnologyandapplicationsinphysical medicineandrehabilitation.JournalofNeuroEngineeringandRehabilitation,2,2-2. doi:10.1186/1743-0003-2-2 10. Gabbett,T.J."QuantifyingthePhysicalDemandsofCollisionSports:Does Microsensor TechnologyMeasureWhatItClaimstoMeasure?"[Ineng].JStrength CondRes 27,no.8(Aug2013):2319-22. 11. Lemoyne,R.,Mastroianni,T.,Cozza,M.,Coroian,C.,&Grundfest,W.(2010). ImplementationofaniPhoneforcharacterizingParkinson'sdiseasetremorthrough awirelessaccelerometerapplication.ConfProcIEEEEngMedBiolSoc,2010,49544958.doi:10.1109/iembs.2010.5627240 12. Kelly,D.,Coughlan,G.F.,Green,B.S.,&Caulfield,B.(2012).Automaticdetectionof collisionsinelitelevelrugbyunionusingawearablesensingdevice.Sports Engineering,15(2),81-92.doi:10.1007/s12283-012-0088-5 55 13. Montgomery,P.G.,Pyne,D.B.,&Minahan,C.L.(2010).Thephysicaland physiologicaldemandsofbasketballtrainingandcompetition.IntJSportsPhysiol Perform,5(1),75-86. 14. Aoki,M.S.,L.TorresRonda,P.R.Marcelino,G.Drago,C.Carling,P.S.Bradley,andA. Moreira."MonitoringTrainingLoadsinProfessionalBasketballPlayersEngagedina PeriodizedTrainingProgramme."[InEng].JStrengthCondRes(May252016). 15. Staab,W.,R.Hottowitz,C.Sohns,J.M.Sohns,F.Gilbert,J.Menke,A.Niklas,andJ. Lotz."AccelerometerandGyroscopeBasedGaitAnalysisUsingSpectralAnalysisof PatientswithOsteoarthritisoftheKnee."[Ineng].JPhysTherSci26,no.7(Jul 2014):997-1002. 16. Kim,M.K.,andY.S.Lee."KinematicAnalysisoftheLowerExtremitiesofSubjects withFlat FeetatDifferentGaitSpeeds."[Ineng].JPhysTherSci25,no.5(May 2013):531-3. 17. Vogt,L.,W.Banzer,I.Bayer,D.Schmidtbleicher,andF.Kerschbaumer."Overground andWalkwayAmbulationwithUnilateralHipOsteoarthritis:ComparisonofStep LengthAsymmetriesandReproducibilityofTreadmillMountedForcePlate Readings."[Ineng].PhysiotherTheoryPract22,no.2(Apr2006):73-82. 18. Robinson,R.O.,Herzog,W.,&Nigg,B.M.(1987).Useofforceplatformvariablesto quantifytheeffectsofchiropracticmanipulationongaitsymmetry.JManipulative PhysiolTher,10(4),172-176. 19. Carpes,F.P.,Mota,C.B.,&Faria,I.E.(2010).Onthebilateralasymmetryduring runningandcycling–Areviewconsideringlegpreference.PhysicalTherapyin Sport,11(4),136-142.doi:http://dx.doi.org/10.1016/j.ptsp.2010.06.005 20. Nagano,H.,L.James,W.A.Sparrow,andR.K.Begg."EffectsofWalking-Induced FatigueonGaitFunctionandTrippingRisksinOlderAdults."[Ineng].JNeuroeng Rehabil11(2014):155. 21. Hausdorff,J.M.,D.A.Rios,andH.K.Edelberg."GaitVariabilityandFallRiskin Community-LivingOlderAdults:A1-YearProspectiveStudy."[Ineng].ArchPhys MedRehabil82,no.8(Aug2001):1050-6. 22. Arnold,J.,Mackintosh,S.,Jones,S.,&Thewlis,D.Asymmetryoflowerlimbjoint loadinginadvancedkneeosteoarthritis.GaitPosture,39,S20-S21. doi:10.1016/j.gaitpost.2014.04.030 23. Shakoor,N.,Foucher,K.C.,Wimmer,M.A.,Mikolaitis-Preuss,R.A.,Fogg,L.F.,& Block,J.A.(2014).Asymmetriesandrelationshipsbetweendynamicloading,muscle strength,andproprioceptiveacuityatthekneesinsymptomaticunilateralhip osteoarthritis.ArthritisResTher,16(6),455.doi:10.1186/s13075-014-0455-7 56 24. Godfrey,A.,S.DelDin,G.Barry,J.C.Mathers,andL.Rochester."InstrumentingGait withanAccelerometer:ASystemandAlgorithmExamination."[Ineng].MedEng Phys37, no.4(Apr2015):400-7. 25. Rowlands,A.V.,andV.H.Stiles."AccelerometerCountsandRawAcceleration OutputinRelationtoMechanicalLoading."[Ineng].JBiomech45,no.3(Feb2 2012):448-54. 26. S.Sprager,D.Zazula,GaitIdentificationUsingCumulantsofAccelerometerData, Proceedingsofthe2ndWSEASInternationalConferenceonSensors,andSignalsand Visualization,ImagingandSimulationandMaterialsScience(2009) 27. Lee,S.J.,&Hidler,J.(2008).Biomechanicsofovergroundvs.treadmillwalkingin healthyindividuals.JournalofAppliedPhysiology,104(3),747-755. 28. Besier,T.F.,Lloyd,D.G.,Cochrane,J.L.,&Ackland,T.R.(2001).Externalloadingof thekneejointduringrunningandcuttingmaneuvers.MedSciSportsExerc,33(7), 1168-1175. 29. Cowley,H.R.,Ford,K.R.,Myer,G.D.,Kernozek,T.W.,&Hewett,T.E.(2006). DifferencesinNeuromuscularStrategiesBetweenLandingandCuttingTasksin FemaleBasketballandSoccerAthletes.JAthlTrain,41(1),67-73. 30. Wixted,A.J.,Billing,D.C.,&James,D.A.(2010).Validationoftrunkmountedinertial sensorsforanalysingrunningbiomechanicsunderfieldconditions,using synchronouslycollectedfootcontactdata.SportsEngineering,12(4),207-212. doi:10.1007/s12283-010-0043-2 31. Perry,J.,&Burnfield,J.M.(1992).Gaitanalysis:normalandpathologicalfunction. 32. Mizrahi,J.,Verbitsky,O.,Isakov,E.,&Daily,D.(2000).Effectoffatigueonleg kinematicsandimpactaccelerationinlongdistancerunning.HumanMovement Science,19(2),139-151. 33. Fish,D.J.,&Nielsen,J.-P.(1993).ClinicalAssessmentofHumanGait.JPO:Journalof ProstheticsandOrthotics,5(2),39/27-36/48. 34. Whittle,M.W.(2014).Gaitanalysis:anintroduction:Butterworth-Heinemann. 35. Gage,J.R.(1990).Anoverviewofnormalwalking.InstrCourseLect,39,291-303. 36. Steindler,A.(1955).Kinesiologyofthehumanbodyundernormalandpathological conditions:Thomas. 57 37. Kerrigan,D.C.,Frates,E.P.,Rogan,S.,&Riley,P.O.(2000).Hiphikingand circumduction:quantitativedefinitions.Americanjournalofphysicalmedicine& rehabilitation,79(3),247-252. 38. Shorter,K.A.,J.D.Polk,K.S.Rosengren,andE.T.Hsiao-Wecksler."ANewApproach toDetectingAsymmetriesinGait."[Ineng].ClinBiomech(Bristol,Avon)23,no.4 (May2008):459-67. 39. Herzog,W.,B.M.Nigg,L.J.Read,andE.Olsson."AsymmetriesinGroundReaction ForcePatternsinNormalHumanGait."[Ineng].MedSciSportsExerc21,no.1(Feb 1989): 110-4. 40. Hamill,J.,B.T.Bates,andK.M.Knutzen."GroundReactionForceSymmetryDuring WalkingandRunning."ResearchQuarterlyforExerciseandSport55,no.3 (1984/09/011984):289-93. 41. Clayton,H.M.,&Schamhardt,H.C.(2001).Measurementtechniquesforgait analysis.Equinelocomotion,55-76. 42. Kim,C.M.,&Eng,J.J.(2003).Symmetryinverticalgroundreactionforceis accompaniedbysymmetryintemporalbutnotdistancevariablesofgaitinpersons withstroke.GaitPosture,18(1),23-28. 43. Altun,K.,&Barshan,B.(2010).Humanactivityrecognitionusinginertial/magnetic sensorunits.PaperpresentedattheInternationalWorkshoponHumanBehavior Understanding. 44. Seimetz,C.,Tan,D.,Katayama,R.,&Lockhart,T.(2012).Acomparisonbetween methodsofmeasuringpostrualstability:forceplatesversusaccelerometers.Biomed SciInstrum,48,386-392. 45. R.R.Torrealba,J.M.Castellano,G.Fern´andez-L´opez,andJ.C.Grieco, “Characterisationofgaitcyclefromaccelerometerdata,”ElectronicsLetter,vol.43, no.20,pp.1066-1068,2007 46. Nordin,M.,&Frankel,V.H.(2001).Basicbiomechanicsofthemusculoskeletalsystem: LippincottWilliams&Wilkins. 47. Zhang,J.H.,W.W.An,I.P.Au,T.L.Chen,andR.T.Cheung."Comparisonofthe CorrelationsbetweenImpactLoadingRatesandPeakAccelerationsMeasuredat TwoDifferentBodySites:Intra-andInter-SubjectAnalysis."[Ineng].GaitPosture 46(May2016):53-6. 48. Atallah,L.,Wiik,A.,Lo,B.,Cobb,J.,Amis,A.,&Yang,G.(2014).Gaitasymmetry detectioninolderadultsusingalightear-wornsensor.Physiologicalmeasurement, 35(5),N29. 58 49. Hsu,A.-L.,Tang,P.-F.,&Jan,M.-H.(2003).Analysisofimpairmentsinfluencinggait velocityandasymmetryofhemiplegicpatientsaftermildtomoderatestroke.Arch PhysMedRehabil,84(8),1185-1193. 50. Johnson,D.C.,Damiano,D.L.,&Abel,M.F.(1997).Theevolutionofgaitinchildhood andadolescentcerebralpalsy.JournalofPediatricOrthopaedics,17(3),392-396. 51. Crowe,Alan,MoniqueM.Samson,MarjaJ.Hoitsma,andAlexandraA.vanGinkel. "TheInfluenceofWalkingSpeedonParametersofGaitSymmetryDeterminedfrom GroundReactionForces."HumanMovementScience15,no.3(6//1996):347-67. 52. Giandolini,M.,N.Horvais,J.Rossi,G.Y.Millet,P.Samozino,andJ.B.Morin."Foot StrikePatternDifferentlyAffectstheAxialandTransverseComponentsofShock AccelerationandAttenuationinDownhillTrailRunning."[Ineng].JBiomech49,no. 9(Jun142016):1765-71. 53. Hoerzer,S.,P.A.Federolf,C.Maurer,J.Baltich,andB.M.Nigg."FootwearDecreases GaitAsymmetryDuringRunning."[Ineng].PLoSOne10,no.10(2015):e0138631. 54. Vagenas,G.,&Hoshizaki,B.(1992).Amultivariableanalysisoflowerextremity kinematicasymmetryinrunning.InternationalJournalofSportBiomechanics,8(1). 55. Mannini,A.,Intille,S.S.,Rosenberger,M.,Sabatini,A.M.,&Haskell,W.(2013). Activityrecognitionusingasingleaccelerometerplacedatthewristorankle.Med SciSportsExerc,45(11),2193-2203.doi:10.1249/MSS.0b013e31829736d6 56. LeMoyne,R.,Kerr,W.T.,Zanjani,K.,&Mastroianni,T.(2014).Implementationofan iPodwirelessaccelerometerapplicationusingmachinelearningtoclassifydisparity ofhemiplegicandhealthypatellartendonreflexpair.Journalofmedicalimagingand healthinformatics,4(1),21-28.doi:10.1166/jmihi.2014.1219 57. Halson,S.L.(2014).Monitoringtrainingloadtounderstandfatigueinathletes. SportsMed,44Suppl2,S139-147.doi:10.1007/s40279-014-0253-z 58. Gabbett,T.J.(2016).Thetraining-injurypreventionparadox:shouldathletesbe trainingsmarterandharder?BrJSportsMed,50(5),273-280.doi:10.1136/bjsports2015-095788 59. Banister,E.W.,Calvert,T.W.,Savage,M.V.,&Bach,T.(1975).Asystemsmodelof trainingforathleticperformance.AustJSportsMed,7(3),57-61. 60. Majewski,M.,Susanne,H.,&Klaus,S.(2006).Epidemiologyofathletickneeinjuries: A10-yearstudy.Theknee,13(3),184-188. 59 61. Chmielewski,T.L.,Rudolph,K.S.,Fitzgerald,G.K.,Axe,M.J.,&Snyder-Mackler,L. (2001).BiomechanicalevidencesupportingadifferentialresponsetoacuteACL injury.Clinicalbiomechanics,16(7),586-591. 62. Shelbourne,K.D.,&Klotz,C.(2006).WhatIhavelearnedabouttheACL:utilizinga progressiverehabilitationschemetoachievetotalkneesymmetryafteranterior cruciateligamentreconstruction.JournalofOrthopaedicScience,11(3),318-325. 60 Appendix 61 AnalysisofvariancetablesfortheValidationStudy Variable–RunningSymmetry Source df SS MS Subject Condition ConditionxSubject Device DevicexSubject ConditionxDevice Residual Total p ES(η2) 106.5 241.5 7.1 56.6 81.0 5.0 3.7 34.0 0.7 1.3 <.001 0.292 0.240 0.028 0.005 SS MS F p ES(η2) 29.7 4.6 7.2 41.5 3.0 2.3 0.4 6.3 0.007 0.111 7 745.8 2 483.0 14 99.6 1 56.6 7 567.0 2 10.0 14 52.3 47 2014.1 Variable–RunningVelocity Source df BetweenSubjects Withinsubjects Residual Total F 10 2 20 32 0.043 62 AnalysisofvariancetablesfortheApplicationStudy Variable–RunningSymmetry Source df SS MS Subject Activity ActivityxSubject Interval IntervalxSubject ActivityxInterval Residual Total 15 2 30 1 15 2 30 95 42.0 44.6 182.6 25.1 36.0 20.6 86.7 437.6 Variable–RunningVelocity Source df SS Subject Activity ActivityxSubject Interval IntervalxSubject ActivityxInterval Residual Total 15 39.1 2 5283.8 30 13.6 1 28.2 15 20.9 2 28.7 30 40.0 95 5574.2 F p ES(η2) 3.7 10.5 3.6 0.038 0.102 0.006 0.057 0.041 0.047 F p ES 2.6 2641.9 593.2 0.5 28.2 20.2 1.4 14.4 10.8 1.3 0.038 0.948 0.006 0.005 0.041 0.005 2.8 22.3 6.1 25.1 2.4 10.3 2.9 MS 63 InformedConsentDocuments 64 65 66 67 68 69 VITA DavidJosephSaba DavidwasborninNewportNewsVa.onMay111993toDaveandLisaandolder brothertoAshley.AftermovingtoPittsburghPa.DavidattendedSetonLaSallehighschool inMt.LebanonPa.whereheenjoyedparticipatingincrewandswimming.Followinghigh schoolDavidattendedVirginiaPolytechnicInstituteandStateUniversitywherehemajored inHumanNutrition,Foods,andExercise.Afteridentifyinganinterestinexercise physiologyDaviddecidedtocontinuewithapost-bachelorprogramfocusingonsports analyticsandhumanbiomechanics.David’smasterresearchlookedatidentifyingthe capacityofapopulartrunk-mountedmonitoringsystemaswellashowrunningintensity influencedgaitsymmetry.AftercompletinghismastersDavidwillattendtheSouthwest CollegeofNaturopathicMedicinewherehehopestofocusonpainmanagementandsports medicine. 70
© Copyright 2026 Paperzz