INTRAORALPRESSUREANDSOUNDPRESSUREDURINGWOODWINDPERFORMANCE MicahBowling DissertationfortheDegreeof DOCTOROFMUSICALARTS UNIVERSITYOFNORTHTEXAS May 2016 APPROVED: KathleenReynolds,MajorProfessor MaryKarenClardy,CommitteeMember DarylCoad,CommitteeMember JohnHolt,ChairoftheDivisionofInstrumental StudiesfortheCollegeofMusic BenjaminBrand,DirectorofGraduateStudiesfor theCollegeofMusic JamesScott,DeanoftheCollegeofMusic CostasTsatsoulis,DeanoftheToulouse GraduateSchool Bowling, Micah. Intraoral pressure and sound pressure during woodwind performance. Doctor of Musical Arts (Performance), May 2016, 57 pp., 5 tables, 4 figures, references, 15 titles. For woodwind and brass performers, intraoral pressure is the measure of force exerted on the surface area of the oral cavity by the air transmitted from the lungs. This pressure is the combined effect of the volume of air forced into the oral cavity by the breathing apparatus and the resistance of the embouchure, reed opening, and instrument’s back pressure. Recent research by Michael Adduci shows that intraoral pressures during oboe performance can exceed capabilities for corresponding increases in sound output, suggesting a potentially hazardous situation for the development of soft tissue disorders in the throat and velopharyngeal insufficiencies. However, considering that oboe back pressure is perhaps the highest among the woodwind instruments, this problem may or may not occur in other woodwinds. There has been no research of this type for the other woodwind instruments. My study was completed to expand the current research by comparing intraoral pressure (IOP) and sound pressure when performing with a characteristic tone on oboe, clarinet, flute, bassoon, and saxophone. The expected results should show that, as sound pressure levels increase, intraoral pressure will also increase. The subjects, undergraduate and graduate music majors at the University of North Texas, performed a series of musical tasks on bassoon, clarinet, flute, oboe, and alto saxophone. The musical tasks cover the standard ranges of each instrument, differences between vibrato and straight-tone, and a variety of musical dynamics. The data was collected and examined for trends. The specific aims of this study are to (1) determine whether there is a correlation between IOP and sound pressure, (2) shed light on how well each instrument responds to rapid fluctuation, and (3) determine which instruments are most efficient when converting air pressure into sound output. Results of this study raised concerns shared by previous studies – that woodwind players are potentially causing harm to their oropharynx by inaccurately perceiving intraoral pressure needed to achieve a characteristic sound. Evidence found by this study suggests that while oboists generate high intraoral pressure for relatively little sound output (a fact corroborated by past studies), the same cannot be said for all of the woodwind instruments, particularly the flute. Copyright2016 By MicahBowling ii TABLEOFCONTENTS LISTOFTABLES..................................................................iv LISTOFILLUSTRATIONS...........................................................v FOREWORD.....................................................................vi Chapters 1. INTRODUCTION.........................................................1 StatementofPurpose 2. BACKGROUNDANDFOUNDATIONALKNOWLEDGE............................7 3. EXPERIMENTALMETHOD.................................................13 DescriptionofMusicalTasks EquipmentandExperimentalSetup ExperimentalProcedure ProtocolforDataAnalysis 4. RESULTS...............................................................24 5. DISCUSSIONOFRESULTS.................................................42 6. CONCLUSIONS..........................................................51 7. APPENDIX............................................................54 8. BIBLIOGRAPHY........................................................57 iii LISTOFTABLES 1. TABLE1DemographicInformation...............................................14 2. TABLE2NumericalDatafromSelectedGroupSamples..............................30 3. TABLE3NumericalDatafromSelectedIndividualSamples...........................32 3. TABLE4NumericalDatafromSelectedMultipleWoodwindPerformerSamples.........34 3. TABLE5VibratoAmplitudeData.................................................46 iv LISTOFILLUSTRATIONS 1. FIGURE1MusicalTask1........................................................18 2. FIGURE2MusicalTask2&3....................................................19 3. FIGURE3LinearRepresentationofData...........................................25 4. FIGURE4PearsonCorrelationGraphs.............................................39 v FOREWORD Myinterestinintraoralpressurestemmedfrommyownpersonalexperienceswithnasalleaks duringperformance.Asawoodwindperformancemajor,Isoughtoutinformationpertainingto nasalleaksinsearchofasolutiontotheproblem.Thesesearchesledmetothetopicof intraoralpressureanditseffectsonperformance. vi CHAPTER1.INTRODUCTION InrecentresearchbyMichaelAdduci,themodelforthisstudy,oboeperformancewas studiedtoshowthetrendsintherelationshipbetweenintraoralpressureandsoundpressure levels.Hisstudywasdesignedtocreateascientificbasisforpedagogicaltechniquesamong oboeperformers.1 Formanyyears,thestudyofmusicalinstrumentshasbeenanoraltraditioninan apprenticeship-likesetting.Often,theinstructorwilltrytobestdescribetheresultsdesired fromtheirmusicstudents.Thiscommontraditionlacksamethodicalorscientificbasis.The topicofrespirationisakeyexampleofthisdiscrepancy.Manyinstructorstelltheirstudentsto exhaleusingthediaphragmmuscle,butananatomicalstudyofthebodyprovesthatthe diaphragmonlyactsasanactivemuscleduringtheinspiratoryprocess.Duringforced expiration,thebodyreliesontheuseofthemusclesoftheabdominalwall(rectusabdominus, internalandexternalobliques,andtransversusabdominusmuscles)andtheinternalintercostal muscles.Asthesemusclescontract,thereisanincreaseinabdominalpressureand compensatorydecreaseinthoracicvolume,resultinginairbeingforcedoutofthelungs. Contrarytowhatiscommonlytaught,duringthisentireprocessofexhalation,thediaphragm servesonlyinapassivecapacity.2 Thisgeneralization(“supportfromthediaphragm”)byperformanceinstructorsisnot meanttocauseconfusionforthestudentormisleadthemaboutthewaythebodyfunctions; rather,thisimprecisedescriptionandgeneralizedinstructionisaresultofthebody’sinabilityto 1 Adduci,M.D.(2011).DynamicMeasurementofIntraoralpressureandSoundPressureWithLaryngoscopic CharacterizationDuringOboePerformance.Denton,Texas. 2 Patton,K.,&Thibodeau,G.(2009).Anatomy&Physiology(7thEditioned.).Mosby. 1 physicallydistinguishthedelicateintricaciesoftherespirationprocess.Involuntaryrespiration activatestheautonomicnervoussystem,thesystemthatcontrolsinvoluntaryactionsand reflexesinthebody.Severalfactorsoutsideofthecontrolofconsciousnessregulatethe differentvariablesofventilation,suchasthelevelofcarbondioxideintheblood(PaCO2), oxygentension(PaO2),andpH.Respiratorycontrolisachievedthroughinvoluntaryactivation ofneuralandchemicalreceptorslocatedthroughoutthebody.Thisactivationsignals respiratorycentersinthebraintoalterbreathingpatternsaccordingly.Althoughitistruethat, toanextent,somebreathcontrolisvoluntary,itcanneverbecompletelyregulatedbythe conscious.Musiciansareperhapsmoreawareoftheirbodythanthegeneralpopulation,but thisaccuracydiminishesgreatlyastheamountofrespiratorypressureincreases. A.J.Paynedeterminedthathumansarecapableofdistinguishingexpirationpressures withinthemagnituderequiredforspeaking.Astheexpirationpressureincreasespastthe speakingmagnitude,however,theabilityofhumanstoaccuratelydistinguishthesepressures diminishesasthepressuremagnitudetargetlevelincreased.3Thesefindingswerefurther supportedinastudybyA.AnastasioandBussard,whichshowedthatduringoboe performance,oboistswereonlycapableofproducing1PSI(poundspersquareinch),lower thantheirmaximumpressureof2.5–3.5PSIandsubstantiallylowerthantheself-estimations of20-90PSImadebytheoboistspriortoperformance.4Thisconceptsuggeststhatperformers’ perceptionsoftheirmaximalexpirationpressuresvarygreatlyfromthereality,servingasthe 3 Payne,A.J.(1987).IntraoralAirPressureDiscriminationforanOpenVersusClosedTubePressureSystem. UniversityofFlorida. 4 Anastasio,A.a.(1971).MouthAirPressureandIntensityProfilesoftheOboe.JournalofResearchinMusic Education,19,62-76. 2 impetusforAdduci’sstudyonintraoralpressureandsoundpressurelevelduringoboe performance. TheresearchconductedbyMichaelAdducidemonstratesthatintraoralpressureduring oboeperformancecanexceedthecapabilitiesforcorrespondingincreasesinsoundoutput levels(SPL).5Hefoundthat,priortoproducingasound,theoboistwouldtypicallybuildup intraoralpressure(IOP)beforereleasingthetongueandallowingthereedtovibrate.Asimilar anomalywasfoundfollowingtheendofeachnote,withtheoboistsustainingpressurepastthe endofthecurrentsoundingnote.Additionally,Adducideterminedthatoboistsoftenincreased theintraoralpressurebeyondtheamountneededtoincreasethedynamicofeachnote.He foundthatperformersoftencreatedmoreintraoralpressurethantheirinstrumentandreed couldhandle,leadingtotheinstrumentreachingitsmaximumvolumeoutputpotentialbefore theperformerhadachievedhisorhermaximumpotentialforintraoralpressure.The performersmaynotbeawareofthissituation,causingaconsistentexcessiveforcewhen playingwoodwindinstruments,particularlyinlouddynamics,whichmayleadtoanextraneous amountofstresswithintheoralcavity. Thisexcessforcecancreateapotentiallyhazardoussituation.Theforcecanallowfor thedevelopmentofsofttissuedisordersofthethroatandpotentialvelopharyngeal insufficiencies.Velopharyngealinsufficiency,commonlyreferredtoasa“nasalleak”withinthe woodwindcommunity,occurswhenairescapesoutofthenasalpassagesduringperformance, whichmayaffecttheresultingsoundquality.Duetoexcessivestrain,theperformer’ssoft palateisweakened,thusopeningthepathwayforairtoflowinvoluntarilyintothenasalcavity. 5 Adduci,M.D.(2011).DynamicMeasurementofIntraoralpressureandSoundPressureWithLaryngoscopic CharacterizationDuringOboePerformance.Denton,Texas. 3 Velopharyngealinsufficiencyisfrequentlyseenintheclarinetcommunityandmanyhave soughttofindremediesforthecondition.Dr.ChrisGibsonfoundinhisstudythatcommon causesofvelopharyngealinsufficiencyinclude: • • • • Intensive, short-term performance experiences such as summer music camporanAll-Stategroup. Preparationforauditionsorimportantrecitals. Changes in routine such as beginning with a new instructor, or playing againafteravacation. Equipment changes, such as a different mouthpiece, harder reed strength,orevenadifferentinstrument.6 Inadditiontotheclarinetcommunity,Gibsonalsostatedthatvelopharyngeal insufficiencyisfrequentlyfoundamongoboeandbassoonplayers.Abriefmentionofintraoral pressurewasgivenasapossiblereasonforthisfinding,butthereislittlescientificevidence substantiatingtheseclaims.Anotherconditionthatcanarisesecondarytointraoralpressure whenplayingawoodwindinstrumentisapharyngocele.Apharyngoceleistheherniation (outpouching)ofpharyngealsofttissuecausedbyextraneousairforce.7Thiscausesthetissue tobulgeoutoftheneckbilaterallywhileperforming.Thisconditionispredominantlyseen amongtrumpetplayers(Gillespie’spouches),buthasalsobeenreportedinsomeoboe performers.Oboebackpressureisknowntobethehighestamongthewoodwindinstruments, whichiswhyitmightbeseenprimarilyinoboeperformerscomparedtoperformersonthe otherwoodwindinstruments.Thelowerbackpressureobservedwhenplayingtheother woodwindsmayormaynotaffectthedevelopmentofpharyngocelesinotherwoodwind performers. 6 Gibson,C.(2007).CurrentTrendsinTreatingthePalateAirLeak(StressVelopharyngealInsufficiency). (ClarinetFest)RetrievedAugust13,2015,fromInternationClarinetAssociation: https://www.clarinet.org/clarinetFestArchive.asp?archive=30 7 Bowdler,D.(1987).PharyngealPouches.InA.Kerr,&J.Groves,Laryngology(5thEditioned.,pp.264-282). London. 4 Thereasonthattheoboeisknowntohavethehighestamountofbackpressureamong thewoodwindinstrumentsisbecausethetipopeningofthereedisrelativelysmallwhen comparedtotheapertureforairflowfoundinotherwoodwindinstruments.Sincetheother woodwindshavelessbackpressureduetolessresistance,thistheoreticallymightleadtolower intraoralpressure.Therationalebehindexpandingcurrentstudiesistoquantifyandclarifythe differencesinintraoralpressurebetweeneachofthewoodwindinstruments. STATEMENTOFPURPOSE Thepurposeofthisstudyistoexaminethedataandtrendsintheamountofintraoral pressureandthesoundpressurelevelsproducedwhenperformingeachofthewoodwind instruments.Thisstudywasconductedinordertoexpandthecurrentresearchsuggestingthat oboistsexhibitanexorbitantamountofintraoralpressurerelativetotheamountofsound output.Thisstudywillexamineintraoralpressureasrelatedtosoundpressurelevelswiththe otherwoodwindinstrumentstodetermineifthereisacorrespondingcorrelation.Specifically, intraoralpressureandsoundpressurewillbemeasuredonflute,oboe,clarinet,saxophone, andbassoonforpitchesperformed(1)undervariousdynamics,(2)withastraighttone,and(3) withvibrato.Soundpressurelevelsmaybeagoodmeasureofthephysiologicalstrainplaced ontheperformer.Anysustainedstrainontheperformercanleadtovariousperformancerelatedinjuries,aspreviousresearchhasshown.Thegoalofthisstudyistoprovideadeeper understandingoftheforcesinvolvedinplayingwoodwindinstrumentsinordertopreventsuch injuries.Theseindicatorsmayreflectvarieddemandsacrossinstrumentgroups.Itismyhopeto addressthescientificrelationshipbetweenintraoralpressureandsoundpressurelevelswhen 5 playingwoodwindinstrumentsandprovidepedagogicalsuggestionsforperformingwith efficiency. Thespecificaimsofthisstudyareto(1)determinewhetherthereisacorrelation betweenintraoralpressureandsoundpressure,(2)shedlightonhowwelleachinstrument respondstorapidfluctuation,and(3)determinewhichinstrumentismostefficientfor convertingintraoralpressureintosoundpressure. 6 CHAPTER2.BACKGROUNDANDFOUNDATIONALKNOWLEDGE Intraoralpressure(IOP)isaquantifiablemeasureofforceexertedonthesurfaceareaof theoralcavity.Thistypeofpressureisincreasedbyasurgeinairvolumeorbyresistancetoair flowescapingtheoralcavity.Woodwindperformersrarelydiscussintraoralpressurewhen speakingcolloquiallybutcommonlyreferto“backpressure”whenattemptingtodescribethe resistancetooralairflow.However,“backpressure”isbetterdefinedasthepressureopposing thedirectionofdesiredairflow–apressurewhichiscausedbyboththeinstrument,thereed, andtheembouchureoftheplayer.8Thischaracterizationoftheforcesbywoodwind performersis,forallpracticalpurposes,agooddescriptionoftheperceivedresistancecreated bytheirinstrument.However,intraoralpressurecanstillbefoundinperformersplayingthe flutewherethereisnodirectobstructionopposingthedirectionofairflowtocreatea measurablebackpressure.Additionally,backpressureitselfisimpossibletoeasilymeasure. Thisleadstotheconclusionthatthedifferenceincalculationbetweenintraoralpressureand backpressurealsocannotbespecificallymeasuredinanymeaningfulway.Inthisstudy, intraoralpressurewasmeasuredacrossallwoodwindinstrumentstostudythephysicalforces associatedwithcommonmedicalproblemsshowntobecausedbyhighintraoralpressure levelsinwoodwindperformers. Itisimportanttofundamentallyunderstandthedifferencesinthedefinitionsofforce, pressure,andstress.Inphysics,aforceisanyinteractionthat,whenunopposed,willchange themotionofanobject.Intuitively,forcecanalsobedescribedasa“push”ora“pull”onan 8 Merriam-Webster.(n.d.).BackPressure.RetrievedJune20,2015,fromMerriam-Webster.com: http://www.merriam-webster.com/dictionary/backpressure 7 object.Aforcehasbothmagnitudeanddirection,makingitavectorquantity.9Incontrast, pressureistheperpendicularforceappliedtothesurfaceofanobjectperunitareaoverwhich thatforceisdistributed.10Inotherwords,pressuredescribesthevolumeofairpressing outwardonasurface,liketheoralcavity,similartothewayairinsideaballoonforcesthewalls oftheballoontostretchoutward. Inadditiontointraoralpressure,soundpressurelevelswerealsoexaminedinthisstudy inordertodemonstratechangesinintraoralpressurebasedondynamics.Soundsareproduced bypressurewavesinteractingwiththetympanicmembraneoftheear.Theamplitudeof pressurevariationsmeasuredintheaircanbeusedtodeterminetherelativeloudnessofthe perceivedsound.Soundpressureismeasuredindecibels(dB),whichreferstoalogarithmic representationofpressurevariations.11Pressureisasimpletypeofstress,whichcauseseither deformationofsolidmaterialsorachangeofflowinfluidssuchaswaterorair.12Intheoral cavity,mechanicalstresscancausedeformationoftheshapeoftheoralcavity,leadingto numerousmedicalconditions. Aspreviouslymentioned,thisstudyspecificallyexaminesintraoralpressure(IOP)and theconsequencestoincreasingthispressureinwoodwindperformers.Pressurerelatedtothe respiratorytractinhumanscanbemeasuredinseveraldifferentregionsotherthantheoral cavity.Measuringlungpressureorsubglotticpressureasopposedtointraoralpressure, however,involvesinvasiveproceduresbeyondthescopeofthisstudy.Intraoralpressureisa 9 Cutnell,J.,&Johnson,K.(2001).Physics(5thEditioned.).NewYork:JohnWileyandSonsInc. Giancoli,D.G.(2004).Physics:principleswithapplications.UpperSaddieRiver,NewJersey:PearsonEducation. 11 SoundandNoise:CharacteristicsofSoundandtheDecibelScale.(n.d.).(EnvironmentalProtectionDepartment: TheGovernmentofHongKong)RetrievedAugust12,2015,fromEnvironmentalProtectionDepartment: http://www.epd.gov.hk/epd/noise_education/web/ENG_EPD_HTML/m1/intro_5.html 12 Batchelor,G.(1967).AnIntroductiontoFluidDynamics.CambridgeUniversityPress. 10 8 representationofthepressurecreatedontheinternalsurfaceareaoftheoralcavityand extendingintothesuperiorportionofthetrachea(abovetheglottis).Itisalsotheresulting pressurecausedbythecombinedforceoftheaircolumnbeginninginthelungsandextending upthetracheaandoutoftheoralcavity,althoughtheseforcesarenotadditiveandintraoral pressureisnotnecessarilythesumofalloftheseforces.Factorsthatcanaffectintraoral pressureincludevolumeofair,strengthoftheperformer’sexhalation,dimensionsoftheoral cavityandsuperiortrachea,andinterferenceintheapertureoftheinstrument(reedopening dimensionsandcyclicvibratoryopeningandclosingofthereedagainstthemouthpiece). Airflowintotheinstrumentthroughthebreathingapparatususedinthisstudyfollows Bernoulli’sprinciple,characterizingfluidmechanicsinphysics.Bernoulli’sprinciple encompassestheideathatthepressureofastreamoffluidisreducedasthespeedoftheflow isincreased.13Withthisprincipleinmind,theconceptofintraoralpressurecanbedescribedas aresultofthechangeincross-sectionalareaalongthepathwayofairflow.Thelargercrosssectionalareafoundinthetracheaandoralcavitycreateshigherairpressureandslower velocityofair.Thisisincontrasttothesmallercross-sectionalareafoundattheaperture, whichleadstolowerairpressureandafastervelocityofaircreatingafunnelingeffect.This funnelingeffectisoneoftheaspectsofthecreationofintraoralpressure-thecombinedeffect ofthevolumeofairforcedintotheoralcavityandtheresistanceoftheaperture,reedopening, orequipmentbackpressure. Thefluteisthemostuniquewoodwindinstrumentinthatitdoesnotuseeitherasingle ordoublereedunitthatcyclesopenandclosedtocreatesound.Thevibrationoftheheadjoint 13 Mulley,R.(2004).FlowofIndustrialFluids:TheoryandEquations.CRCPress. 9 isoutsideoftheoralcavityandaperture,anditdoesnotinterferewiththeflowofthe airstream.Thislackofinterferencecreatesanopensysteminwhichairfreelyflowsoutofthe apertureintotheinstrument.Theonlyresistancepresentinthesystemiscreatedbythe performer’scontrolofaperture,resultinginthefunneleffectpreviouslydescribed.Itispossible foraflutisttocontroltheopeningofhisorherembouchure,directlyaffectingthisresistance present.Smalleraperturecreatedbyamoreclosedembouchureprovidesmoreresistancedue toasmallercross-sectionalareathatleadstolowerairpressure.Alargeraperturecreatedbya moreopenembouchure,ontheotherhand,leadstoalargercross-sectionalareaandalossof thefunnelingeffect,becauseoflowerairpressureandslowervelocity. Theclarinetandsaxophonehavemorefeaturesthatinterferewithairflow.Insingle reedinstruments,thereedvibratingagainstthemouthpieceproducesthesound.Thisvibratory processhasmanyfactorsthatcanaffecttheresistance.Thevibrationsmaybealteredbythe strength(orrelativehardness)ofthereed.Aharderreedismoreresistanttovibrating.Many characteristicsaffectreedstrengthincludingdensityofthecane,flexibilityofthecane,and thicknessofthereed.Anotherimportantfactoristherelativedistancethereedmusttravelto vibrateagainstthemouthpiece.Thisdistanceiscommonlydescribedasthemouthpiecefacing, inwhichmouthpiecescurveawayfromthereed.Mouthpiecefacingsvaryamongmouthpieces, andthechoiceofmouthpiecefacingisapointofpersonalpreferenceamongsinglereed performers.Mouthpieceswithmoreopenfacingscreatealargerdistanceforthereedtotravel, thereforecreatingmoreresistanceinthevibratoryprocess. Anotherelementseeninsinglereedinstrumentsisthatthemannerinwhichthereed vibratescancreatemoreresistancetoairflowthanthatfoundinnon-reedinstruments,suchas 10 theflute.Thisresistanceistheresultofvibrationscausingthesystemtocyclebetweenopen andclosed.Whenthereedisnotincompletecontactwiththemouthpiece,airfreelyflows throughtheopeningbetweenthereedandmouthpiece.Thisisconsideredanopensystem; however,whenthereedisincompletecontactwiththemouthpiece,theairisnotallowedto exittheoralcavityandflowintotheinstrument,creatingaclosedsystem.Inthisclosedsystem, pressureishigherbecausetheperformerisconsistentlypushingairtowardtheaperture. Withoutaroutefortheairtoescape,however,thepressuresimplyincreasesuntilthereed movesawayfromthemouthpiecereleasingtheair.InTheArtofSaxophonePlaying,LarryTeal statesthatasthereedvibratesagainstthemouthpiece,itspendshalfofthetimeincomplete contactwiththemouthpiece,onefourthofthetimetravelingawayfromthemouthpiece,and onefourthofthetimetravelingtowardthemouthpiece.14Thisvibratoryprocessthatis creatingresistancecanalsobeseenindoublereedinstruments,theoboeandbassoon. Inmanyways,doublereedinstrumentsproducesoundinasimilarfashiontosinglereed instruments,withsoundproducedbythevibrationofthereed;however,indoublereed instrumentsthereisnomouthpiecetocreateastationarypointforthereedtovibrateagainst. Rather,therearetwoseparatebladesofeachreed,andthebladesvibrateagainsteachother tocreatesound.Inthissystem,thereismorevariabilityfoundintheamountofresistanceeach reedcreates.Aspectsthatcreateresistanceincludethestrengthorrelativehardnessofthe reedcane,thethicknessoftheblades,andthetipopening(distancebetweenthetwobladesof thereed). 14 Teal,L.(1963).TheArtofSaxophonePlaying.AlfredPublishingCo.Inc. 11 Additionally,intraoralpressuremaynotbetheonlypressurethatplaysarolein exhalation.Airpressuresthroughouttheaircolumncanvarygreatly,andstudiesrelatedto speechandsinginghavemeasuredsubglotticpressure,theairpressurepresentinthetrachea belowtheglottis,insteadofintraoralpressure.Thesestudiesmeasuredsubglotticpressure throughinvasiveprocesses.Onemethodrequiredthesubjecttoswallowapressuretransducer toplaceitintheesophagusbelowthevocalfolds.Theairpressureinthetracheabelowthe vocalfoldscantranslatetotheesophagusformeasurement.Asecondmethodinvolved insertinganeedletransducerintothesubglottalregionofthetracheabypenetratingthrough theexteriorsufaceoftheneck.15AnothermethodintroducedbyBouhuyscallsfor anesthetizingtheglottisandinsertingacathetertubedownthetracheaformeasurement.16 Thoughanunderstandingofsubglotticpressuremightbebeneficialtoacompleteknowledge oftheforcesinvolvedintherespiratoryprocess,duetotheinvasivemethodsrequiredto measurethesubglotticpressure,intraoralpressurewasmeasuredinthisstudybecauseofthe nonintrusivemethodsavailable. 15 Draper,M.,Ladefoged,P.,&Whitteridge,D.(1959).RespiratoryMusclesinSpeech.JournalofSpeechand HearingResearch,2(1),16-27. 16 Bouhuys,A.,Proctor,D.,&Mead,J.(1966).KineticAspectsofSinging.JournalofAppliedPhysiology,21(2),483-96. 12 CHAPTER3.EXPERIMENTALMETHODS Sixteen(16)graduateandundergraduatelevelwoodwindperformersattheUniversity ofNorthTexasparticipatedinthisstudy.Three(3)ofthesixteenperformersweremultiple woodwindperformerswhospecializeinplayingthefivewoodwindinstrumentsforvarious theatrepitorchestras,andtheseperformerswererecordedperformingoneachofthe instrumentssuccessively.Therewereatotaloftwenty-eight(28)performancesrecorded, thirteen(13)fromsingleinstrumentperformers,andfive(5)fromeachofthethree(3)multiple woodwindperformersmakinguptheremainingfifteen(15)performances.Table1summarizes therelevantdemographicdataofeachperformer. 13 TABLE1DemographicInformationasreportedbytheperformers SubjectID Gender(M/F) Age Degreesought Major Flute1 F 29 DMA Performance Flute2 F 23 MM Performance Flute3 F 31 DMA Performance Oboe1 M 22 BM Performance Oboe2 F 24 MM Performance Clarinet1 M 23 MM Performance Clarinet2 M 24 DMA Performance Clarinet3 F 23 BM Performance/MusicEducation Saxophone1 M 22 BM MusicEducation Saxophone2 F 18 BM Performance Bassoon1 M 24 MM Performance Bassoon2 M 24 BM Education Bassoon3 M 21 BM Performance WW1Flute F 25 MM Performance WW1Oboe F 25 MM Performance WW1Clarinet F 25 MM Performance WW1Saxophone F 25 MM Performance WW1Bassoon F 25 MM Performance WW2Flute M 25 DMA Performance WW2Oboe M 25 DMA Performance WW2Clarinet M 25 DMA Performance WW2Saxophone M 25 DMA Performance WW2Bassoon M 25 DMA Performance WW3Flute M 56 DMA Performance WW3Oboe M 56 DMA Performance WW3Clarinet M 56 DMA Performance WW3Saxophone M 56 DMA Performance WW3Bassoon M 56 DMA Performance 14 TABLE1Demographicinformationcontinued SubjectID InstrumentModel MouthpieceorHeadjoint Reed Flute1 Miyazawa602 Miyazawa XXX Flute2 Nagahara Nagahara XXX Flute3 MuramatsuDS Muramatsu XXX Oboe1 BuffetGreenline Pisonibrassstaple Handmade Oboe2 LoreeRoyal Chudnowsilverstaple Handmade Clarinet1 BuffetR13Festival VandorenM30 RicoReserveClassic4 Clarinet2 BuffetR13Vintage RicoReserveX0 VandorenRueLepic3.5+ Clarinet3 BuffetR13 NathanBeaty-ZinnerBlank RicoGCSEvolution4 Saxophone1 Selmer/Ref.54Flamingo RousseauNC4 Vandoren3.5 Saxophone2 Yamaha875-Ex RousseauNC4 RicoReserve3 Bassoon1 Fox601 HeckelBocal Handmade Bassoon2 Fox201 HeckelBocal Handmade Bassoon3 Heckel#9921 HeckelBocal Handmade WW1Flute Yamaha481 Yamaha XXX WW1Oboe Cabart ChudnowBrassStaple Handmade WW1Clarinet BuffetR13Festival VandorenM13Lyre RicoReserveClassic3.5+ WW1Saxophone Yamaha23 SelmerCStar Vandoren3 WW1Bassoon Fox220 FoxBocal Handmade WW2Flute Yamaha684 EC XXX WW2Oboe LoreeAK Pisonisilverstaple Handmade WW2Clarinet BuffetR13 BackunOt RicoGCS3.5 WW2Saxophone Yamaha875 RousseauR3 Eastman3 WW2Bassoon Puchner#5839 FoxBocal Handmade WW3Flute Armstrong Armstrong XXX WW3Oboe Signet Jones Jonesmediumhard WW3Clarinet BuffetR13 Vandoren Vandoren4 WW3Saxophone SelmerMark6 Rousseau Vandoren3.5 WW3Bassoon Reynolds Reynolds Jonesmediumhard 15 Theperformerswereaskediftheysufferedfromcommonrespiratoryailments, includingallergies,asthma,velopharyngealinsufficiency,orotherailments.Fourreported havingallergiesbutonlyonesufferedsevereconstantallergieswiththeothersnotingonly seasonalallergies.Threereportedhavingasthma.Nosubjectsreportedvelopharyngeal insufficiencyorotherailments. Priortoconductingthisexperiment,thestudywasapprovedbytheInstitutionalReview Board(IRB)attheUniversityofNorthTexas.Theprojectdescriptionandinformedconsent formapprovedbytheIRBandpresentedtoallsubjectsisincludedintheAppendix.The informedconsentformwasreadaloudtoallofthesubjectsandsignedbeforecollectingany demographicdataandbeginningtheexperiment. 16 DESCRIPTIONOFMUSICALTASKS Eachofthesubjectsperformedseveralmusicalexercises.Ametronomewasusedto standardizethelengthofeachsample,andtheclickofthemetronomewasrecordedalong withtheintraoralpressureandsoundpressurevaluesforaccuratedatapointselection.The taskswereperformedat88beatsperminute.Subjectsplayingflute,clarinet,oboe,and saxophoneperformedthetasksatthewrittenpitchesD4,G4,C5,andA5.Octavemodifications weremadeforthesubjectsplayingbassoon,withthetasksperformedonthewrittenpitches D2,G2,C3,andA3. MUSICALTASKSINCLUDED: 1)dynamicexercise(crescendo–diminuendo)onthewrittenpitchesD4,G4,C5,A5 2)straighttoneexerciseonthewrittenpitchesD4,G4,C5,A5 3)vibratoexerciseonthewrittenpitchesD4,G4,C5,A5 *Asmentionedpreviously,octavemodificationsweremadeforthebassoonandallexercises wereperformedonthewrittenpitchesD2,G2,C3,A3. 17 Figures1and2showthemusicalexamplesusedforthisstudy. FIGURE1MusicalTask1-Dynamics Thesubjectswereinstructedtoplayintheextremesoftheirdynamicrange.Thesubjectseach reachedadifferentmaximumandminimumsoundpressurelevel,butallsubjectssuccessfully followedthedynamicmarkings. 18 FIGURE2MusicalTask2&3–StraightToneandVibrato Inthistask,thesubjectswereinstructedtoplayeachpitchatacomfortabledynamicwhich couldbemaintainedforthedurationofthenote.Theperformerswereinstructedtousefree (unmeasured)vibratoforthatportionofthetask.Samplesofclarinetperformancedidnot includethevibratotasksasisstandardinclarinetperformanceintheUnitedStates. 19 EQUIPMENTANDEXPERIMENTALSETUP TheexperimentwasconductedintheTexasCenterforMusicandMedicineofficeatthe UniversityofNorthTexasCollegeofMusicroom1007.Theroomisconstructedwithtilefloor, cementwalls,andstandardcommerciallay-inceilingpanels.Thesubjectsperformedthetask seatedwithamusicstandinfrontofthem.Thechair(WengerMusicianChair)wasplaced24 inchesawayfromthemusicstand.Thedosimeter17wassuspendedabovethesubjects6feet and6inchesfromthegroundtoreducevariationbetweeninstrumentsandperformers. Theexperimentutilizedthreechannelsofdataacquisition:measurementofintraoral pressure(IOP),measurementofsoundpressurelevel(SPL),andmetronometiming. Intraoralpressurewasmeasuredusingapressure-to-voltagetransducer.Thistransducerwas fixedtoheadgearwithVelcro.Asmallcathetertubewasfittedtoeachsubject.Thecatheter tubewasplacedinsidetheoralcavitythroughthecorneroftheembouchure.Eachperformer wasgiventimetoexperimentwiththecathetertubeinplacepriortorecordingthe performancestoallowforproperfittingandtominimizeobstructionoftheembouchure.While subjectsplayedtheirinstruments,thecathetertubeconductedtheairpressureinsidethe subject’soralcavitytothepressure-to-voltagetransducerformeasurement.Allsubjects toleratedthissetupwithoutchallenge.Atthistime,thepressure-to-voltagetransducerwas calibratedtoaccountfortheambientpressureoftheroomduringtheperformancesothatonly theincreaseinintraoralpressureabovetheatmosphericpressurewouldberecorded. Soundpressurelevelsweremeasuredusingaloggingdosimeter.Thedatawasrecorded indecibels(dB). 17 Anoisedosimeterisaspecializedsoundlevelmeterusedtomeasuresoundexposureovertime. 20 Eachofthethreechannelswasrecordedusingcontinuousrecordingsoftware.The pressure-to-voltagetransducer,dosimeter,andstandardmetronomewereconnectedtoa DATAQInstrumentsmodelDI-720dataacquisitionsystem.18TheDATAQsystemwasthen connectedtoaDelldesktopcomputerrunningtheWinDaq/Litesoftwaresuitetocollectthe intraoralpressureandsoundpressuredataalongwiththemetronomeforastandardized accuratetimemeasurement.TheDATAQsystemandWinDaq/Litesoftwarepackagerecorded 240samplespersecondforintraoralpressure(measuredinvolts19)andsoundpressure (measuredindB).Thereal-timemonitoringofeachnoteallowedfordetailedexaminationof eachnote,includinginitiation,propagation,andtermination.Therawdatarecordedby WinDaq/LitewasexportedtoMicrosoftExcel2010andIBMSPSSStatistics17.0foranalysis. EXPERIMENTALPROCEDURE Afterlisteningtotheexperimentalprotocolandprivacypolicyforthestudy,the subjectssignedaninformedconsentformapprovedbytheIRB.Ashortdemographic questionnairewascompleted.Thesubjectswerethenseatedandfittedwiththepressure-tovoltagetransducercathetertube.Theentireexperimentalprocesstook5minutestocomplete paperwork,10minutestosetup,and15minutesforeachiterationofthemusicalexercises. PROTOCOLFORDATAANALYSIS 18 DATAQInstrumentsmodelDI-720isadeviceusedtocollectandtranslatedatafromvariousinputchannels.This devicecanutilizeuptosixteendifferentdatachannelssimultaneously. 19 Topresentthedatainameaningfulformat,thevoltagereadingsfromthepressuretransducerwereconverted tommHg.Forthepressuretransducerusedinthisstudy,1voltisequalto101.4mmHg.Theformulausedfor conversionwasp=(v-a)*101.4,wherevisavoltageeventrecordedbythepressuretransducer,aistheambient pressureinvoltsmeasuredduringthattask,andpistheresultantintraoralpressureforthatevent,converted fromvoltstommHg. 21 Graphical,descriptive,andcorrelationaltechniqueswereemployedtoshowdifferences acrosstasks,acrossinstruments,andregardingtherelationshipbetweensoundpressureand intraoralpressures.TherawdatarecordedbyWinDaq/LitewasexportedtoMicrosoftExcel 2010andIBMSPSSStatistics23.0foranalysis.Duringthisstudy,Ihavedecidedtoonlyusedata pointscollectedonemetronomeclickpriortotheinitiation,throughpropagationofthenote, andconcludingonemetronomeclickfollowingtheterminationofthenote.Datapoints betweenindividualnoteswereexcluded.Ineffortstoexcludeoutliers,anaveragewastakenof eachdatapointbeforeprocessingthedata.Theseaverages,minimum,maximum,andstandard deviationswerecalculatedusingdatafromallsamplesoflikeinstrumenttrials.Thesevalues wereorganizedintoTable2.ThegraphsinFigure3areexamplesofindividualperformerdata samplesofeachmusicaltask.Theindividualperformerspresentedinthegraphswerechosen basedontheconsistencyofthereadingsforeachtrial.Theseperformersshowcasedrelatively minimaloutlyingdatapoints.Thedatafromthisstudywasfoundtobestatisticallysignificantat the0.01level,indicatingthatthereisstrongevidencesuggestingthattheserelationshipsare statisticallysignificant. Inordertoaddressthespecificaimsofthisstudy,theexperimentwasdesignedwith particularexercisesinmind.Aftertheinstrumentalistsperformedthemusicaltasksoutlined earlier,(1)IassessedPearsonCorrelationValues,whichcanrevealordisprovestrong associationsbetweentwovariables,todeterminewhetherthereisasignificantcorrelation betweenIntraoralpressureandsoundpressureoutput.PearsonCorrelationValuesandhow theyrelatetothisstudyarepresentedthoroughlyintheDiscussionsection.(2)Ievaluatedthe vibratomusicaltasksbycomparinghoweasilyeachinstrumentrespondstoitsinstrument- 22 specificvibrato.Thiswasassessedbyexaminingintraoralpressureversusthesoundpressure levelwhiletheperformerisusingvibrato.(3)Ievaluatedtheoverallefficiencyofeach instrument.Acomparisonofvibratoversusstraighttonewillhelpdeterminehowefficienteach instrumentisinconvertingairpressureintosoundpressure. 23 CHAPTER4.RESULTS Thisstudyproducedatotaloftwenty-eight(28)performancesofeachmusicaltaskwith successfulquantitativedatacollectionineachofthesamples.Samplesofclarinetperformance didnotincludethevibratotasksasisstandardinclarinetperformanceintheUnitedStates. Table2wascreatedusingaveragesofcorrelatingsamplepointsintimeacrosslikeinstrument performers.Eachmusicaltaskislabeledinthetablewiththepitchperformed(C).Thedynamic exerciseisnotedatjust(C),thestraighttoneexerciseislabeledasCsandthevibratoexerciseis labeledatCv.Table3isavisualrepresentationofdata(min,max,mean,stddev)from individualinstrumentperformers(thoseonlyperformingononeinstrument,excludingmultiple woodwindperformers).Table4representsdatafromthemultiplewoodwindperformertrials. ThegraphsinFigure3areexamplesofindividualperformerdatasamplesofeachmusicaltask. TheperformerspresentedinthegraphsinFigure3werechosenbecausetheyshowedthemost consistentreadingsforeachtrial.Oneperformerperinstrumentispresentedinthegraphs. Figure3showsthelinearrepresentationoftheintraoralpressure(IOP)andsound pressurelevel(SPL)forthepitchC5. • BluelinesrepresentthedynamicexerciseinMusicalTask1. • RedlinesrepresentthestraighttoneexerciseinMusicalTask2. • GreenlinesrepresentthevibratoexerciseinMusicalTask3. 24 FIGURE3LinearRepresentationofData MusicalTask1------------ MusicalTask2------------ MusicalTask3------------ FluteIntraoralPressure(IOPinmmHg) FluteSoundPressureLevel(SPLindB) 25 OboeIntraoralPressure(IOPinmmHg) OboeSoundPressureLevel(SPLindB) 26 ClarinetIntraoralPressure(IOPinmmHg) ClarinetSoundPressureLevel(SPLindB) 27 SaxophoneIntraoralPressure(IOPinmmHg) SaxophoneSoundPressureLevel(SPLindB) 28 BassoonIntraoralPressure(IOPinmmHg) BassoonSoundPressureLevel(SPLindB) 29 TABLE2representsthenumericaldataassociatedwithgroupdatafromeachinstrumenttrial. Descriptive Statistics N Minimum Maximum Mean Std. Deviation Sound Level Flute C 5047 73.7000 104.0000 82.769802 6.2717121 Sound Level Flute Cs 4988 72.6000 94.1000 82.486087 4.7128215 Sound Level Flute Cv 5049 73.6000 97.5000 83.253337 5.3025673 Intraoral Pressure Flute C mmHg 5047 -22.8150 6.5910 1.101752 3.2303852 Intraoral Pressure Flute Cs mmHg 4988 -8.6190 5.5770 1.404719 3.1727566 Intraoral Pressure Flute Cv mmHg 5049 -11.6610 7.6050 1.919651 3.2835218 Valid N (listwise) 4988 Descriptive Statistics N Minimum Mean Std. Deviation Sound Level Oboe C 4447 74.6000 89.2000 80.148145 3.5920672 Sound Level Oboe Cs 4507 73.1000 91.4000 80.534968 3.4140089 Sound Level Oboe Cv 4386 73.2000 92.3000 80.890538 3.3493299 Intraoral Pressure Oboe C mmHg 4447 -5.5770 50.1930 24.532438 13.4985917 Intraoral Pressure Oboe Cs mmHg 4507 -35.9970 41.0670 21.830923 13.5412355 Intraoral Pressure Oboe Cv mmHg 4386 -39.0390 41.0670 21.908041 14.7010054 Valid N (listwise) 4386 Maximum 30 Descriptive Statistics N Minimum Maximum Mean Std. Deviation Sound Level Clarinet C 5407 75.3000 107.0000 86.260403 9.6589688 Sound Level Clarinet Cs 5154 71.8000 98.4000 86.301785 6.9712704 Intraoral Pressure Clarinet C mmHg 5407 -3.5490 43.0950 20.546768 10.8506990 Intraoral Pressure Clarinet Cs mmHg 5154 -3.5490 29.9130 20.616623 9.2936191 Valid N (listwise) 5154 Descriptive Statistics N Minimum Maximum Mean Std. Deviation Sound Level Sax C 4148 74.6000 113.0000 88.846649 11.1296733 Sound Level Sax Cs 4326 72.5000 101.0000 86.111049 7.5105652 Sound Level Sax Cv 4326 72.4000 105.0000 87.643597 8.1812154 Intraoral Pressure Sax C mmHg 4148 -4.5630 30.9270 16.680153 8.5214015 Intraoral Pressure Sax Cs mmHg 4326 -6.5910 23.8290 15.546125 6.8548486 Intraoral Pressure Sax Cv mmHg 4326 -31.9410 24.8430 15.437599 9.9962420 Valid N (listwise) 4148 Descriptive Statistics N Minimum Mean Std. Deviation Sound Level Bassoon C 5107 72.4000 98.7000 85.072273 6.4477431 Sound Level Bassoon Cs 5046 71.4000 103.0000 87.615834 6.3806603 Sound Level Bassoon Cv 4990 71.2000 102.0000 85.536493 5.6464958 Intraoral Pressure Bassoon C mmHg 5107 -7.6050 29.9130 13.890926 8.2424484 Intraoral Pressure Bassoon Cs mmHg 5046 -8.6190 25.8570 13.211540 7.7571158 Intraoral Pressure Bassoon Cv mmHg 4990 -32.9550 25.8570 12.957457 8.6831732 Valid N (listwise) 4990 Maximum 31 TABLE3representsthenumericaldataassociatedwithindividualsamplesoftheMusicalTask1 Descriptive Statistics N Minimum Maximum Mean Std. Deviation Sound Level Flute1 C 842 74.9200 98.2660 86.871844 6.9129585 Sound Level Flute2 C 841 75.3350 87.6820 80.559948 2.8427817 Sound Level Flute3 C 841 75.7500 103.6600 82.926911 7.4271440 Intraoral Pressure Flute1 C mmHg 842 -.0203 4.5529 2.755708 1.1750270 Intraoral Pressure Flute2 C mmHg 841 -.3346 3.3868 1.699288 .6356090 Intraoral Pressure Flute3 C mmHg 841 -.6185 3.7112 1.633963 .9170714 Valid N (listwise) 841 Descriptive Statistics N Minimum Mean Std. Deviation Sound Level Oboe1 C 902 75.7500 89.2390 80.458192 3.7736316 Sound Level Oboe2 C 961 75.7000 88.4000 79.679501 3.5318235 Intraoral Pressure Oboe1 C mmHg 902 .1420 48.9154 32.885122 14.8812924 Intraoral Pressure Oboe2 C mmHg 961 -.5070 42.0810 27.830132 12.5942645 Valid N (listwise) 902 Maximum 32 Descriptive Statistics N Minimum Maximum Mean Std. Deviation Sound Level Clarinet1 C 901 75.4910 104.4400 88.277676 10.4589124 Sound Level Clarinet2 C 901 75.4000 97.5000 85.449057 7.2016134 Sound Level Clarinet3 C 901 75.3000 102.0000 85.429967 8.8167096 Intraoral Pressure Clarinet1 C mmHg 901 .2941 39.5359 25.411763 10.8900846 Intraoral Pressure Clarinet2 C mmHg 901 -2.5350 31.9410 21.069479 10.2415158 Intraoral Pressure Clarinet3 C mmHg 901 -1.5210 38.0250 23.857135 11.0398430 Valid N (listwise) 901 Descriptive Statistics N Minimum Maximum Mean Std. Deviation Sound Level Sax1 C 662 74.5570 101.5300 86.663008 9.5586404 Sound Level Sax2 C 842 75.7000 98.1000 85.266746 8.0180955 Intraoral Pressure Sax1 C mmHg 662 -.7909 27.4287 14.774960 8.7661703 Intraoral Pressure Sax2 C mmHg 842 .5070 26.8710 19.910287 6.0457559 Valid N (listwise) 662 Descriptive Statistics N Minimum Maximum Mean Std. Deviation Sound Level Bassoon1 C 841 73.6750 94.2190 86.117157 5.2369632 Sound Level Bassoon2 C 841 72.4000 98.7000 89.548870 7.5026758 Sound Level Bassoon3 C 842 74.9000 94.3000 84.350475 5.7320557 Intraoral Pressure Bassoon1 C mmHg 841 .1521 22.3080 16.271650 5.1502123 Intraoral Pressure Bassoon2 C mmHg 841 -3.5490 19.7730 12.772662 6.5615168 Intraoral Pressure Bassoon3 C mmHg 842 -7.6050 29.9130 16.262537 9.1758527 Valid N (listwise) 841 33 TABLE4representthenumericaldataassociatedwiththemultiplewoodwindperformers Descriptive Statistics N Minimum Mean Std. Deviation Sound Level WW1 Flute C 841 73.7270 95.8280 83.633127 6.7331589 Sound Level WW1 Oboe C 901 75.7000 85.5000 78.393785 2.2448670 Sound Level WW1 Clarinet C 901 75.7000 96.4000 83.404107 6.7665217 Sound Level WW1 Sax C 841 75.4000 97.9000 84.526159 7.0484990 Sound Level WW1 Bassoon C 901 74.6000 86.1000 80.241287 3.0153614 Intraoral Pressure WW1 Flute C mmHg 841 .3245 2.3119 .757040 .1559994 Intraoral Pressure WW1 Oboe C mmHg 901 -2.5350 27.8850 19.009968 8.9762903 Intraoral Pressure WW1 Clarinet C mmHg 901 -2.5350 23.8290 16.494663 6.2743448 Intraoral Pressure WW1 Sax C mmHg 841 -4.5630 16.7310 12.226477 5.3682581 Intraoral Pressure WW1 Bassoon C mmHg 901 -2.5350 11.6610 6.058678 3.5460514 Valid N (listwise) 841 Maximum 34 Descriptive Statistics N Minimum Mean Std. Deviation Sound Level WW2 Flute C 841 75.7500 88.3570 79.356171 3.6089000 Sound Level WW2 Oboe C 901 74.6000 87.7000 81.377469 3.5787106 Sound Level WW2 Clarinet C 902 75.4000 105.0000 87.369180 10.8247919 Sound Level WW2 Sax C 901 74.8000 113.0000 97.254939 13.7523190 Sound Level WW2 Bassoon C 841 75.2000 91.7000 84.495719 5.1772723 Intraoral Pressure WW2 Flute C mmHg 841 -2.8899 5.4046 2.837271 1.4342676 Intraoral Pressure WW2 Oboe C mmHg 901 -5.5770 38.0250 27.022931 12.1902676 Intraoral Pressure WW2 Clarinet C mmHg 902 -3.5490 43.0950 22.803758 12.8217439 Intraoral Pressure WW2 Sax C mmHg 901 -3.5490 30.9270 20.157892 9.2502260 Intraoral Pressure WW2 Bassoon C mmHg 841 -4.5630 26.8710 17.023987 8.4276228 Valid N (listwise) 841 Maximum 35 Descriptive Statistics N Minimum Maximum Mean Std. Deviation Sound Level WW3 Flute Cs 842 73.4670 86.3330 80.485452 2.2512520 Sound Level WW3 Oboe C 782 74.7000 88.5000 80.965729 3.8478026 Sound Level WW3 Clarinet C 901 75.4000 107.0000 87.627636 11.9039359 Sound Level WW3 Sax C 902 74.6000 104.0000 89.418958 10.1986521 Sound Level WW3 Bassoon C 841 75.5000 96.2000 86.025446 7.1848713 Intraoral Pressure WW3 Flute C mmHg 841 -18.7083 1.4703 .185570 2.3399763 Intraoral Pressure WW3 Oboe C mmHg 782 -.5070 20.7870 12.750207 4.4633020 Intraoral Pressure WW3 Clarinet C mmHg 901 -2.5350 33.9690 17.811400 10.7999932 Intraoral Pressure WW3 Sax C mmHg 902 -4.5630 26.8710 14.173517 9.1804861 Intraoral Pressure WW3 Bassoon C mmHg 841 -.5070 26.8710 19.789880 7.3133776 Valid N (listwise) 782 36 DATAPRESENTATION Thenumericaldatafromthemultiplewoodwindperformershasbeenreported separatelytoallowforcross-examinationofintraoralpressureandsoundpressurelevels createdbytheseperformers.Onebenefittoexaminingthedatafromthemultiplewoodwind performersisthatwiththeseperformersplayingeachmusicaltaskonallfiveofthewoodwind instruments,thedimensionsoftheoralcavityandlungcapacityhasbeenstandardized.Ifthis standardizationweretobereplicatedinfuturestudies,itcouldleadtoagreaterunderstanding oftheeffectsofperformercharacteristics,suchasbodysizeandshape,ontheintraoral pressurecreatedwhenplayingeachinstrument. Multiplewoodwindperformer1(WW1)producedintraoralpressuremeansbelowthe groupmeansforeachoftheinstruments.Interestingly,therangeofintraoralpressuremeans producedbyWW1ismorenarrowthantherangeofmeanscalculatedfromthegroupdata. WW1producedameanintraoralpressureof0.757mmHgonthefluteandameanintraoral pressureof19.010mmHgontheoboewitheachoftheotherinstrumentsfallingbetween thesetwo.Whencomparedtothegroupmeansofintraoralpressureat1.102mmHgonthe fluteand24.532mmHgontheoboe,itisimportanttonoteamorenarrowrangefoundwhen examiningintraoralpressuredatafromWW1.Similarfindingswererecognizedinmultiple woodwindperformer3(WW3).TheintraoralpressuremeansproducedbyWW3rangedfrom 0.186mmHgto19.790mmHg. IncontrasttoWW1,multiplewoodwindperformer2(WW2)producedintraoral pressuremeanswhichspannedabroaderrange.WW2producedanintraoralpressuremeanof 2.837mmHgonthefluteandanintraoralpressuremeanof27.023mmHgontheoboe.These 37 valueshaveaslightlylargerrangethanfoundinthemeansgroupdata,butWW2didnot producethelowestintraoralpressureonfluteanddidnotproducethehighestintraoral pressureonoboe.SinceWW2wasnotanoutlierineithersituation,itsuggeststhatthe intraoralpressureproducedbyWW2iswithintheaveragerangeofintraoralpressureproduced bythesingleinstrumentperformers. 38 Thefollowinggraphsweregeneratedtoshowtherelationshipbetweenintraoral pressureandsoundpressurelevelsineachsubject.Thedatarepresentssingleinstrument performertrialsfromoneperformeroneachinstrument.Datapointsonthegraphrepresent recordedsamplesofintraoralpressureandsoundpressurelevelssampledatarateof240 samplespersecond.Thesegraphsalsocontainalineofbestfit(showninred).Theslopeofthe linerepresentstherequiredchangeinintraoralpressureneededtoproduceandincreasein soundpressurelevels. FIGURE4PearsonCorrelationGraphs 39 40 41 CHAPTER5.DISCUSSIONOFRESULTS Thesubjectsperformedaseriesofmusicaltasksonflute,oboe,clarinet,saxophone,and bassoon.Musicaltaskscoveredthestandardrangesofeachinstrument,differencesbetween vibratoandstraight-tone,andavarietyofmusicaldynamics.Thisdescriptivedatashowedthat intraoralpressurevariesgreatlyacrosstheinstrumentsofthewoodwindfamily,withoboe consistentlyproducingthehighestintraoralpressureandfluteproducingthelowest. Throughoutthestudy,thefluteconsistentlyproducedtheleastamountofintraoral pressureacrossalloftheinstruments,withameanintraoralpressureacrossaggregategroup databetween1.10and1.92mmHg.Thesenumberstakeintoaccountdataacrosseachofthe musicaltasks:dynamics,straighttone,andvibrato.Sincetheflutedoesnothaveanydirect backpressure,theonlyresistanceavailabletocreateintraoralpressureistheembouchureof theflutist.Theaperturecreatesthefunneleffect(describedintheBackgroundand FoundationalKnowledgesection),causingtheairpressureintheoralcavitytorise.One conclusionfromthiseffectisthatflutistsarelesslikelytosuffertheconsequencescommonly seenwithperformerswhoplayinstrumentsthatcreatehigherintraoralpressure. Theoboeconsistentlyproducedthehighestamountofintraoralpressure,withamean intraoralpressurefromtheaggregategroupdatabetween21.83and24.53mmHg.These numbersalsotakeintoaccountdataacrosseachofthemusicaltasks.Thehighvaluesof intraoralpressurefoundinoboeperformancemaybecausedbytheverysmalltipopeningof theoboereedandrelativeresistance.Theseconsistentlyhigherintraoralpressurelevelsleadto agreaterprobabilitythatoboistswillsufferfromsofttissuedisordersorperformer-related injuriesoveralifetimeofperforming.Consideringthehighvaluesofintraoralpressure,the 42 oboedidnotproducethehighestsoundpressurelevels.Thisrelationshipbetweenintraoral pressureandsoundpressurelevelscanbecomparedtootherinstrumentsperformedinthis study. Withtheinstrumentsotherthanoboe,theintraoralpressureincreasedconsistentlyas soundpressurelevelsincreasedduringperformance(withinanindividualsample)withPearson CorrelationValues(r)reaching0.86.APearsonCorrelationValuedescribesthedegreeof correlationbetweentwovariablesandrangesfrom-1to+1,withthesignindicationthe directionoftheassociation.Thecloserto-1of+1thervalueis,thestrongertheassociationis betweenthetwovariables.-1indicatesthatasonevariableincreasethesecondvariable decreasesaccordinglywhereas+1indicatesthatbothvariablesareincreasinginapredictable manner;however,arvalueof0indicatesnoassociationbetweenthemeasuredvariables. TheoboehadthelowestPearsonCorrelationValueofalloftheinstruments(0.60).This indicatesthatthereislessassociationbetweenintraoralpressureandsoundpressureinoboe performance.ThehighPearsonCorrelationValuesseenwiththeotherinstrument performancesinthisstudydemonstratesthatthereisacloserelationshipbetweenintraoral pressureandsoundpressurelevelsproducedduringperformancewithmostofthewoodwind instruments.Thistrendwasseentoadegreewithalloftheperformersinthestudy,although thereweresomesmalldeviationsinthecorrelation.Theseresultsconfirmwhatwasseenin previousstudies,inwhichvariabilitywasseeninboththelevelsandrelationshipsbetween intraoralpressureandsoundpressureacrossinstrumentgroups. Asexpected,astrongpositivecorrelationbetweendBandintraoralpressurewasseen forallinstruments,butthelevelsandthestrengthofthisrelationshipvariedbyinstrument.The 43 pvaluespresentedinthisstudyrepresentthepercentagesofdatapointswhichfallonthebest fitline.Thesepercentagesrangedfrom0.774to0.926andwerefoundtobestatistically significantatthe0.01level.Thestatisticalsignificanceofthesevaluesisveryhighbecausethe datapointsthatwerenotfounddirectlyonthebestfitlinewere(1)toofewinnumberand(2) withinamarginoferrorrangearoundthebestfitline.Inotherwords,theoutliersofthedata werenotprominentinnumberanddidnotreachtoofaroutsideoftherangeofthemajorityof thedata,andthereforedidnotdecreasethesignificanceofthefindings. Inadditiontothehighpvalues,thePearsonCorrelationvalues(r)showedrelatively strongassociationsbetweenintraoralpressureandsoundpressure.Theinstrumentwiththe highestPearsonCorrelationvalueisthefluteat0.86.Additionally,theslopeofthegraphfor thefluteishigherthantheotherinstruments.Thishighsloperepresentsthattheflutemaybe themostefficientinstrumentforconvertingrelativeairpressuretosoundpressureoutput.The flutewillgreatlyincreaseitssoundpressureoutputwithonlyaverysmallincreaseinintraoral pressure.IncontrasttheoboehadaPearsonCorrelationvalueof0.60,andtheoboehadthe lowestslopeofanyoftheinstruments.Thisrelationshipshowsthattheoboeisperhapsthe leastefficientinstrumentforconvertingrelativeairpressuretosoundpressureoutput.The oboerequiresasignificantincreaseinintraoralpressurebeforeproducinganyincreasein soundpressureoutput.ThisdirectlysupportsAdduci’spreviousresearchthatoboistsuse extraneousamountsofintraoralpressurewhenplayingtheirinstrument. Insomecases,particularlyamongthesingleanddoublereedinstruments,intraoral pressureremainedhigherafterreachingthepeakdynamicandthroughthediminuendo,even thoughthelowerdynamiclevelswereperformedearlierintheexercisewithlowerintraoral 44 pressure.Theseeventsmaybecausedbytheinabilityoftheperformertoaccuratelyperceive thenecessarydecreaseinintraoralpressureneededtodiminishthesound.Itisalsoacommon practiceamongmanywoodwindperformerstomaintainafasterairstreamwhenplayinga diminuendoinordertoavoidunwantedinterruptionsinthesoundoradropinpitchattheend ofalongdiminuendo.Performersarecommonlyinstructedtoengagethemusclesofthe embouchuretodampenthevibrationsofthereedinordertodecreasethesoundpressure output.Thesepracticescanresultinthesustainedhigherintraoralpressurethrough diminuendos.Keepingtheintraoralpressurehigherthannecessarymaycauseunnecessary strainorforceonthemusicianoverthecourseofalongrehearsalorperformance,and consistentstrainoveryearscouldbehazardoustosofttissuesthatmakeuptheoralcavityand upperrespiratorytract.Thisstudyraisesconcernssharedbypreviousstudies–thatwoodwind playersarepotentiallycausingharmtotheiroropharynxbyinaccuratelyperceivingintraoral pressureneededtoachievethedesiredsound. Thevibratoexercisesshowedhowwelltheinstrumentreactstorapidfluctuationin intraoralpressure.Performersontheflute,oboe,andbassoondescribedtheirvibratoas diaphragmatic/abdominalvibratoproducedbypulsesintheairstream.Performersonthe saxophonedescribedtheirvibratoasjawvibratoproducedbysmallvariationsinembouchure pressureagainstthereed.Theinstrumentseachrespondeddifferentlytothesestylesofvibrato production.Table3showsanaverageofaggregatedatarepresentingtheamplitudeofvibrato soundpressureoutputandintraoralpressure. 45 TABLE5VibratoAmplitude Instrument Flute Oboe Saxophone Bassoon AmplitudeofVibratoSound PressureLevel(dB) 14.246663 11.409462 17.356403 16.463507 AmplitudeofVibratoIntraoral Pressure(mmHg) 5.685349 19.158959 9.405401 12.899543 Throughexaminingthisdata,itiseasytoseethat,again,thefluterespondedthemost efficientlytovibratopulsesintheairstream.Theflutehadthesmallestamplitudeofintraoral pressurevariations.Theoboeagainprovedtobetheleastresponsivetochangesinair pressure.Theoboerequiredthehighestvariationinintraoralpressuretoproducethesmallest variationinsoundpressureoutput.Thisevidencesuggeststhat,whileoboistsgeneratehigh intraoralpressureforrelativelylittlesoundoutput(afactcorroboratedbypaststudies),the samecannotbesaidforallofthewoodwindinstruments,suchasflute. Oneinterestingdiscoverythatwasfoundinthisstudyisthatthemeansfromthe straighttoneexercisesandthemeansfromthevibratoexerciseswerevirtuallythesame, showingalessthan0.5mmHgincreaseinthemean.Thedatacollectedinthevibratoexercises showedslightlyincreasedintraoralpressurethanseeninthedatafromthestraighttone exercises.Thoughthetwotechniques(straighttonevs.vibrato)areverydifferent,intermsof intraoralpressuretheyshowbasicallythesameamountofstrainonthebody.Inthestraight toneexercise,theperformer’sembouchure,tongueposition,andairpressureisconsistentand stable.Whenusingvibratotechnique,however,theperformerhasvariablejawmovement, embouchure,andairspeedorpressure.Itispossiblethattheintraoralpressuresremainsimilar evenifthetechniquesarevastlydifferentbecausethesinusoidalmovementofintraoral 46 pressureinthevibratoexercisecloselyoscillatesaroundthestraightlineofintraoralpressure createdbythestraighttoneexercise.Avisualrepresentationofthisconceptcanbeseenin Figure3.Inseveralofthechartsdepictingintraoralpressure,thegreenlinevisualizingintraoral pressureduringthevibratoexerciseisasinusoidalwavethatseemstocloselycorrespondto thestraightredlineofintraoralpressurecreatedduringthestraighttoneexercise.Clear examplesofthisareseeninthesaxophoneandbassoonintraoralpressure(IOP)chartswithin thefigure. Initially,Iconsideredanalyzingadditionaldatausingrhythmicpulsesofvibratofrom eachperformer.Theserhythmicvibratopulsesproduceduncharacteristicspikesinintraoral pressureandsoundpressurelevelsthatwerenotindicativeofthefreevibratodatacollected. Thisledmetodoubtthepracticalityofincludingtheexercisesatthistime,giventhelimited practicalityofsuchdata.Onemajorfactorwasthatthesoundsproducedbyaheavyand rhythmicpulsearenotwhatwouldbeexpectedinacharacteristictoneinstandardpractice. Theslowestrhythmicpulsesshowedthemostproblemswithclarityassomeoftheslowpulses hadissueswithextremespikesinintraoralpressureandsoundpressurelevel.Sometimesthere wasastopofsoundfromtheperformers(byaccident)andtheintraoralpressurereadings showedgaps(maybeduetooverdramaticchangesintheoralcavityandairpulses). Thefindingsamongthemultiplewoodwindperformersmaysuggesttwothings. Narrowerrangeamongmultiplewoodwindperformersmightbeduetoperformerequipment choice.Itisprobablethateachmultiplewoodwindperformerselectedequipment,including mouthpiece,reed,bocal,orheadjoint,whichallowedhimorhertofeelmorecomfortable whenswitchingquicklybetweeninstruments–anecessityformanymultiplewoodwind 47 performers.Onepossiblewaytoachievethegreatestlevelofcomfortachievedbyeach performeristhateachpieceofequipmentisabletominimizevariationsinresistanceorback pressurebetweeninstruments. Anotherpossibilityforthenarrowerrangeseeninmanyofthemultiplewoodwind performerscouldbeduetotheprocessofinstrumentselectionbythesingleinstrument performersandtheinabilityofmultiplewoodwindperformerstobeanatomicallywell-suitedto eachinstrumentthattheyplay.Performerswhoplayonlyoneinstrumentmaygravitatetoward aninstrumentwhichiswellsuitedtotheiranatomy;forexample,aperformerwhocancreate andtolerateahighamountofintraoralpressuremightbemoregiftedattheoboe.This specializationprocesscanbeattributedtothetraditionofinstrumentselectionatanearlyage, inwhichmanyyoungmusiciansaretestedfortheirnaturalabilityoneachinstrumentbefore beingguidedtotheinstrumentwhichbestsuitesthem.Incontrasttosingleinstrument performers,thosewhoplaymultiplewoodwindscandevelopversatilitybutarerarelyequally suitedforallfiveoftheinstruments.Therefore,itispossiblethatthenarrowrangeseenin intraoralpressureamongmultiplewoodwindplayersisduetoanatomiclimitationsifeach instrumentisbestsuitedforcertainphysicalcharacteristics,itisimprobablethatoneperson couldshowasbroadofarangeoneachinstrumentasonewhospecificallychoseaninstrument basedoneaseofperformance.Ananalogycanbemadebetweenperformingprofessionallyon amusicalinstrumentandplayingprofessionalsports.Ifoneweretolookatprofessional basketballplayersasanexample,youwillseethatalargemajorityofthebasketballplayersare tall.Heightinbasketballisanimportantphysicalattributethathelpstheathletetosucceed. Similarly,professionalmusiciansmaygravitatetowardinstrumentsforwhichtheyhavethe 48 physicalattributestohelpthemsucceed.Awindinstrumentperformer’ssuccessdependson theshape,size,andcapacityoftheentirerespiratorytract.Thisisacontroversialtopicamong musiceducators,andwithoutfurtherresearchandevidencetosuggestspecificsolutions,this studymaysimplyinformtheinstructor’sthoughtprocesstowardotherfactorsthataccountfor astudent’sperceivednaturalabilityorlackthereof.Thishypothesisrequiresfurtherresearch, becauseinthisstudy,aperformer’sphysicalcharacteristicswerenotcollected. Itistemptingtostatethatthemultiplewoodwindperformersparticipatinginthisstudy couldbethoughtofasacontrolgroupgiventhestandardizationofthephysicalcharacteristics oftheplayeracrosseachinstrument.Inaddition,multiplewoodwindperformancetrainingis designedtocharacteristicsoundproductionforeachinstrument;however,thereare limitationstothisproposal.Onelimitationisthattheyarenotasspecializedoneachspecific instrument,possiblyskewingtheresultsofthisstudy.Also,aspreviouslystated,thereare possibleanatomicallimitsthatmightcontributetothenarrowrangeofintraoralpressureseen inmultiplewoodwindplayers. Amongthemultiplewoodwindperformers,amorenarrowrangeofintraoralpressure meanswasfoundacrossthedifferentinstrumentsintwoofthethreeperformers.Itshouldalso benotedthattheseperformershadlowerintraoralpressurevaluesformostoftheinstruments whencomparedtothesingleinstrumentperformers.Theseresultsmayleadtotheconclusion thattherecouldbesignificantdifferencesinthewaymultiplewoodwindperformersplayeach instrument,thetypeofequipmentselected,orphysicalanatomicalcharacteristicscreating thesedifferences.Thesebroadconclusionsareonlypossibleoriginsforthesetrends,and 49 additionalstudiesexaminingmultiplewoodwindperformersandthevariablesinvolvedshould beresearchedinordertodrawfurtherconclusions. 50 CHAPTER6.CONCLUSIONS Therearevariouslimitingfactorstoconsiderwhendeterminingthevalidityofthis study.Onesuchfactorissamplesize;only5-6performersparticipatedinthestudyforeach instrument,arelativelysmallnumberofsubjectsfromwhichtodrawconclusions.Althoughthis studywassignificantlylargerthanpreviousstudiesofthisnature,thescopemaynotbea sizeableenoughquantitytodrawbroadconclusions. Anotherlimitationofthisstudywaspitchlevel.ThestudyusedthewrittenpitchesD4, G4,C5,A5,anddidnottakeintoconsiderationthetranspositionsnecessaryintheclarinetand saxophone.Futurestudiesmightfocusonthesoundingpitchlevelratherthanthewrittenpitch toeliminatethisdiscrepancybetweeninstruments.Also,thesewrittenpitchesdonothave similarfingeringsacrossallofthewoodwindinstruments,andthevariationinlengthof instrumentengagedbyfingeringsplusotheracousticalpropertiesmayaccountforsomeofthe variabilitybetweeninstrumentsinthisstudy.Afingerednoterequiringmoretoneholestobe closedcreatesmoreresistancefortheperformerwhencomparedtoonewithfewertoneholes closed.Pedagogically,beginnermethodbooksforwoodwindstudentsoftenstarttheperformer withanopenfingering,becauseopenfingeringsonaninstrumentallowthestudenttobecome comfortablewiththebackpressureofthereedormouthpiece-reedcombinationwithout additionalresistancefromthebodyoftheinstrument. Anotherfactoroftenignoredinstudiesofthistypeisvariabilityinthesizeandshapeof theperformers’oralcavitiesandupperrespiratorytracts.Sinceintraoralpressureistheforce exertedontheinteriorsurfaceareaoftheoralcavity,surfaceareavariationsbetweeneach subjectmayadditionallycontributetothevariabilitypresent.Itwouldbeinterestingto 51 measurethesurfaceareaoftheoralcavityandupperrespiratorytractanddetermineifthere aretrendsacrossinstrumentgroups.Inthisstudy,Itriedtostandardizetheoralcavitysurface areathroughtheuseofmultiplewoodwindperformers,however,thedataproducedwasnot enoughtodrawclearconclusions. Futureresearchexaminingintraoralpressureshouldalsoconsiderhowthe measurementsofsoundpressurelevelinanensemblesettingmaybeusedasameasureof strainplacedontheperformers.Itispossiblethatastudyofintraoralpressureamong woodwindperformersinanensemblecouldleadtopedagogicalsuggestionsforconductors. Finally,anyfuturestudiesofthisnatureshouldseektoimproveonthefoundationsofthis studyandaddressthelimitationsdiscussedabove. Theresultsofthisstudyhavepracticalapplicationsthatstrengthenourpedagogical approachtoteachingwoodwindinstruments.Preventativemeasuresmaybeintroducedto reducetheintraoralpressureinordertominimizetheriskofdevelopingsofttissueinjuries whenplayingwoodwindinstruments.Inhisarticle,Gibsonmakessomenon-surgical suggestionstohelpperformerswhosufferfromvelopharyngealinsufficienciesincluding: • • • Posture: Re-evaluate from head to toe, standing and sitting. Become awareofyourhead,neck,spine,shoulders,armsandhands,allshouldbe freeofstress. Breathing and breath support: Throat free of tension, good inhalation withrelaxedshouldersthusallowingforneededexpansionandconstant supportduringexhalation. Embouchure: Examine the combination of instrument setup and embouchureformationandfunctionforanembouchurethatistootight canindicateoveralltension,andcanalsocreateadditionalstressofthe velopharyngeal muscles. A too-resistant mouthpiece-reed combination 52 can contribute to the air leak, although if the embouchure is working correctly,avarietyofreedstrengthsmaybetolerated.20 Pedagogically,Gibson’smostnotablesuggestionmaybetheinstrumentsetup. Whenplayingonareedormouthpiece/reedcombinationthatcreatesexcessive resistance,theperformerwillcreatemoreintraoralpressuretoproduceasound.Ifthe performerishesitanttochangehisorherequipment,morefrequentbreakscanbea solution,allowingthebodytorelaxandrecuperatewithoutthestraincreatedby intraoralpressure. Throughoutthescopeofthisstudy,Iaimedtoprovideascientificfoundationforthe understandingofintraoralpressureanditsrelationshiptosoundpressureoutputwhen performingonwoodwindinstruments.Bygainingaricherunderstandingofthesevariablesand therelationtowoodwindperformance,Ibelievethisstudycanleadtopracticalchangesinthe waywoodwindplayersbothperformandteach.Thisstudyprovidesafoundationforfuture relatedfindings,andIhopethattheresultsofthisstudywillleadtofurtherexaminationofthe effectsofrespiratorypressuresonwindplayers,leadingtogreaterpedagogicaltechniquesfor thepreventionofperformancerelatedinjuries. 20 Gibson,C.(2007).CurrentTrendsinTreatingthePalateAirLeak(StressVelopharyngealInsufficiency). (ClarinetFest)RetrievedAugust13,2015,fromInternationClarinetAssociation: https://www.clarinet.org/clarinetFestArchive.asp?archive=30 53 APPENDIX RESEARCHCONSENTFORMWITHIRBAPPROVAL 54 University of North Texas Institutional Review Board Informed Consent Form Before agreeing to participate in this research study, it is important that you read and understand the following explanation of the purpose, benefits and risks of the study and how it will be conducted. Title of Study: Intraoral pressure and Sound Pressure in Woodwind Performance Student Investigator: Micah Bowling, University of North Texas (UNT) Department of Music. Supervising Investigator: Dr. Kris Chesky. Purpose of the Study: You are being asked to participate in a research study, which involves characterizing intraoral pressure (back pressure) in relation to sound pressure (volume output) levels generated during performance on each of the woodwind instruments. Study Procedures: You will be asked to play 2 short musical tasks on your instrument. A very small (2mm diameter) plastic tube will be inserted into the corner of your mouth to measure intraoral pressure. This will take about 30 minutes of your time. ForeseeableRisks:Noforeseeablerisksareinvolvedinthisstudy. BenefitstotheSubjectsorOthers:Thisstudyisnotexpectedtobeofanydirectbenefittoyou, butwehopetolearnmoreabouttherelationshipbetweenintraoralpressureandsound pressurelevelsinwoodwindperformance.Theresultsofthisstudymayleadothertostudy intraoralpressureasatriggerforsofttissuedisordersinvolvedwithwoodwindperformance. Youmaydiscoverthattheintraoralpressuremayexceedwellbeyondtheabilitytoincrease soundoutput,whichcouldgiveyouforesightintoareastochangeorimprovedtheefficiencyof yourplaying. CompensationforParticipants:None ProceduresforMaintainingConfidentialityofResearchRecords:Thesubjects’personally identifiableinformationwillnotbecollected.Thesubjectswillberepresentedasnumberson anygraphs,charts,orvisualrepresentationofdata.Theconfidentialityofyourindividual informationwillbemaintainedinanypublicationsorpresentationsregardingthisstudy. Questions about the Study: If you have any questions about the study, you may contact Micah Bowling at [email protected] or Dr. Kris Chesky at [email protected] Review for the Protection of Participants: This research study has been reviewed and approved by the UNT Institutional Review Board (IRB). The UNT 55 IRB can be contacted at (940) 565-3940 with any questions regarding the rights of research subjects. Research Participants’ Rights: Your signature below indicates that you have read or have had read to you all of the above and that you confirm all of the following: • • • • • • Micah Bowling has explained the study to you and answered all of your questions. You have been told the possible benefits and the potential risks and/or discomforts of the study. You understand that you do not have to take part in this study, and your refusal to participate or your decision to withdraw will involve no penalty or loss of rights or benefits. The study personnel may choose to stop your participation at any time. Your decision whether to participate or to withdraw from the study will have no effect on your grade or standing in any course. You understand why the study is being conducted and how it will be performed. You understand your rights as a research participant and you voluntarily consent to participate in this study. You have been told you will receive a copy of this form. ________________________________ Printed Name of Participant ________________________________ Signature of Participant ____________ Date For the Student Investigator or Designee: I certify that I have reviewed the contents of this form with the subject signing above. I have explained the possible benefits and the potential risks and/or discomforts of the study. It is my opinion that the participant understood the explanation. ______________________________________ Signature of Student Investigator ____________ Date 56 Bibliography Adduci,M.D.(2011).DynamicMeasurementofIntraoralpressureandSoundPressureWith LaryngoscopicCharacterizationDuringOboePerformance.Denton,Texas. Anastasio,A.a.(1971).MouthAirPressureandIntensityProfilesoftheOboe.Journalof ResearchinMusicEducation,19,62-76. Batchelor,G.(1967).AnIntroductiontoFluidDynamics.CambridgeUniversityPress. Bouhuys,A.,Proctor,D.,&Mead,J.(1966).KineticAspectsofSinging.JournalofApplied Physiology,21(2),483-96. Bowdler,D.(1987).PharyngealPouches.InA.Kerr,&J.Groves,Laryngology(5thEditioned., pp.264-282).London. Cutnell,J.,&Johnson,K.(2001).Physics(5thEditioned.).NewYork:JohnWileyandSonsInc. Draper,M.,Ladefoged,P.,&Whitteridge,D.(1959).RespiratoryMusclesinSpeech.Journalof SpeechandHearingResearch,2(1),16-27. Giancoli,D.G.(2004).Physics:principleswithapplications.UpperSaddieRiver,NewJersey: PearsonEducation. Gibson,C.(2007).CurrentTrendsinTreatingthePalateAirLeak(StressVelopharyngeal Insufficiency).(ClarinetFest)RetrievedAugust13,2015,fromInternationClarinet Association:https://www.clarinet.org/clarinetFestArchive.asp?archive=30 Merriam-Webster.(n.d.).BackPressure.RetrievedJune20,2015,fromMerriam-Webster.com: http://www.merriam-webster.com/dictionary/backpressure Mulley,R.(2004).FlowofIndustrialFluids:TheoryandEquations.CRCPress.. Patton,K.,&Thibodeau,G.(2009).Anatomy&Physiology(7thEditioned.).Mosby. Payne,A.J.(1987).IntraoralAirPressureDiscriminationforanOpenVersusClosedTube PressureSystem.UniversityofFlorida. SoundandNoise:CharacteristicsofSoundandtheDecibelScale.(n.d.).(Environmental ProtectionDepartment:TheGovernmentofHongKong)RetrievedAugust12,2015, fromEnvironmentalProtectionDepartment: http://www.epd.gov.hk/epd/noise_education/web/ENG_EPD_HTML/m1/intro_5.html Teal,L.(1963).TheArtofSaxophonePlaying.AlfredPublishingCo.Inc. 57
© Copyright 2025 Paperzz