Intraoral pressure and sound pressure during woodwind performance.

INTRAORALPRESSUREANDSOUNDPRESSUREDURINGWOODWINDPERFORMANCE
MicahBowling
DissertationfortheDegreeof
DOCTOROFMUSICALARTS
UNIVERSITYOFNORTHTEXAS
May 2016
APPROVED:
KathleenReynolds,MajorProfessor
MaryKarenClardy,CommitteeMember
DarylCoad,CommitteeMember
JohnHolt,ChairoftheDivisionofInstrumental
StudiesfortheCollegeofMusic
BenjaminBrand,DirectorofGraduateStudiesfor
theCollegeofMusic
JamesScott,DeanoftheCollegeofMusic
CostasTsatsoulis,DeanoftheToulouse
GraduateSchool
Bowling, Micah. Intraoral pressure and sound pressure during woodwind performance.
Doctor of Musical Arts (Performance), May 2016, 57 pp., 5 tables, 4 figures, references, 15
titles.
For woodwind and brass performers, intraoral pressure is the measure of force exerted
on the surface area of the oral cavity by the air transmitted from the lungs. This pressure is the
combined effect of the volume of air forced into the oral cavity by the breathing apparatus and
the resistance of the embouchure, reed opening, and instrument’s back pressure. Recent
research by Michael Adduci shows that intraoral pressures during oboe performance can
exceed capabilities for corresponding increases in sound output, suggesting a potentially
hazardous situation for the development of soft tissue disorders in the throat and
velopharyngeal insufficiencies. However, considering that oboe back pressure is perhaps the
highest among the woodwind instruments, this problem may or may not occur in other
woodwinds. There has been no research of this type for the other woodwind instruments.
My study was completed to expand the current research by comparing intraoral
pressure (IOP) and sound pressure when performing with a characteristic tone on oboe,
clarinet, flute, bassoon, and saxophone.
The expected results should show that, as sound pressure levels increase, intraoral
pressure will also increase. The subjects, undergraduate and graduate music majors at the
University of North Texas, performed a series of musical tasks on bassoon, clarinet, flute, oboe,
and alto saxophone. The musical tasks cover the standard ranges of each instrument,
differences between vibrato and straight-tone, and a variety of musical dynamics. The data was
collected and examined for trends. The specific aims of this study are to (1) determine whether
there is a correlation between IOP and sound pressure, (2) shed light on how well each
instrument responds to rapid fluctuation, and (3) determine which instruments are most
efficient when converting air pressure into sound output.
Results of this study raised concerns shared by previous studies – that woodwind
players are potentially causing harm to their oropharynx by inaccurately perceiving intraoral
pressure needed to achieve a characteristic sound. Evidence found by this study suggests that
while oboists generate high intraoral pressure for relatively little sound output (a fact
corroborated by past studies), the same cannot be said for all of the woodwind instruments,
particularly the flute.
Copyright2016
By
MicahBowling
ii
TABLEOFCONTENTS
LISTOFTABLES..................................................................iv
LISTOFILLUSTRATIONS...........................................................v
FOREWORD.....................................................................vi
Chapters
1. INTRODUCTION.........................................................1
StatementofPurpose
2. BACKGROUNDANDFOUNDATIONALKNOWLEDGE............................7
3. EXPERIMENTALMETHOD.................................................13
DescriptionofMusicalTasks
EquipmentandExperimentalSetup
ExperimentalProcedure
ProtocolforDataAnalysis
4. RESULTS...............................................................24
5. DISCUSSIONOFRESULTS.................................................42
6. CONCLUSIONS..........................................................51
7. APPENDIX............................................................54
8. BIBLIOGRAPHY........................................................57
iii
LISTOFTABLES
1. TABLE1DemographicInformation...............................................14
2. TABLE2NumericalDatafromSelectedGroupSamples..............................30
3. TABLE3NumericalDatafromSelectedIndividualSamples...........................32
3. TABLE4NumericalDatafromSelectedMultipleWoodwindPerformerSamples.........34
3. TABLE5VibratoAmplitudeData.................................................46
iv
LISTOFILLUSTRATIONS
1. FIGURE1MusicalTask1........................................................18
2. FIGURE2MusicalTask2&3....................................................19
3. FIGURE3LinearRepresentationofData...........................................25
4. FIGURE4PearsonCorrelationGraphs.............................................39
v
FOREWORD
Myinterestinintraoralpressurestemmedfrommyownpersonalexperienceswithnasalleaks
duringperformance.Asawoodwindperformancemajor,Isoughtoutinformationpertainingto
nasalleaksinsearchofasolutiontotheproblem.Thesesearchesledmetothetopicof
intraoralpressureanditseffectsonperformance.
vi
CHAPTER1.INTRODUCTION
InrecentresearchbyMichaelAdduci,themodelforthisstudy,oboeperformancewas
studiedtoshowthetrendsintherelationshipbetweenintraoralpressureandsoundpressure
levels.Hisstudywasdesignedtocreateascientificbasisforpedagogicaltechniquesamong
oboeperformers.1
Formanyyears,thestudyofmusicalinstrumentshasbeenanoraltraditioninan
apprenticeship-likesetting.Often,theinstructorwilltrytobestdescribetheresultsdesired
fromtheirmusicstudents.Thiscommontraditionlacksamethodicalorscientificbasis.The
topicofrespirationisakeyexampleofthisdiscrepancy.Manyinstructorstelltheirstudentsto
exhaleusingthediaphragmmuscle,butananatomicalstudyofthebodyprovesthatthe
diaphragmonlyactsasanactivemuscleduringtheinspiratoryprocess.Duringforced
expiration,thebodyreliesontheuseofthemusclesoftheabdominalwall(rectusabdominus,
internalandexternalobliques,andtransversusabdominusmuscles)andtheinternalintercostal
muscles.Asthesemusclescontract,thereisanincreaseinabdominalpressureand
compensatorydecreaseinthoracicvolume,resultinginairbeingforcedoutofthelungs.
Contrarytowhatiscommonlytaught,duringthisentireprocessofexhalation,thediaphragm
servesonlyinapassivecapacity.2
Thisgeneralization(“supportfromthediaphragm”)byperformanceinstructorsisnot
meanttocauseconfusionforthestudentormisleadthemaboutthewaythebodyfunctions;
rather,thisimprecisedescriptionandgeneralizedinstructionisaresultofthebody’sinabilityto
1
Adduci,M.D.(2011).DynamicMeasurementofIntraoralpressureandSoundPressureWithLaryngoscopic
CharacterizationDuringOboePerformance.Denton,Texas.
2
Patton,K.,&Thibodeau,G.(2009).Anatomy&Physiology(7thEditioned.).Mosby.
1
physicallydistinguishthedelicateintricaciesoftherespirationprocess.Involuntaryrespiration
activatestheautonomicnervoussystem,thesystemthatcontrolsinvoluntaryactionsand
reflexesinthebody.Severalfactorsoutsideofthecontrolofconsciousnessregulatethe
differentvariablesofventilation,suchasthelevelofcarbondioxideintheblood(PaCO2),
oxygentension(PaO2),andpH.Respiratorycontrolisachievedthroughinvoluntaryactivation
ofneuralandchemicalreceptorslocatedthroughoutthebody.Thisactivationsignals
respiratorycentersinthebraintoalterbreathingpatternsaccordingly.Althoughitistruethat,
toanextent,somebreathcontrolisvoluntary,itcanneverbecompletelyregulatedbythe
conscious.Musiciansareperhapsmoreawareoftheirbodythanthegeneralpopulation,but
thisaccuracydiminishesgreatlyastheamountofrespiratorypressureincreases.
A.J.Paynedeterminedthathumansarecapableofdistinguishingexpirationpressures
withinthemagnituderequiredforspeaking.Astheexpirationpressureincreasespastthe
speakingmagnitude,however,theabilityofhumanstoaccuratelydistinguishthesepressures
diminishesasthepressuremagnitudetargetlevelincreased.3Thesefindingswerefurther
supportedinastudybyA.AnastasioandBussard,whichshowedthatduringoboe
performance,oboistswereonlycapableofproducing1PSI(poundspersquareinch),lower
thantheirmaximumpressureof2.5–3.5PSIandsubstantiallylowerthantheself-estimations
of20-90PSImadebytheoboistspriortoperformance.4Thisconceptsuggeststhatperformers’
perceptionsoftheirmaximalexpirationpressuresvarygreatlyfromthereality,servingasthe
3
Payne,A.J.(1987).IntraoralAirPressureDiscriminationforanOpenVersusClosedTubePressureSystem.
UniversityofFlorida.
4
Anastasio,A.a.(1971).MouthAirPressureandIntensityProfilesoftheOboe.JournalofResearchinMusic
Education,19,62-76.
2
impetusforAdduci’sstudyonintraoralpressureandsoundpressurelevelduringoboe
performance.
TheresearchconductedbyMichaelAdducidemonstratesthatintraoralpressureduring
oboeperformancecanexceedthecapabilitiesforcorrespondingincreasesinsoundoutput
levels(SPL).5Hefoundthat,priortoproducingasound,theoboistwouldtypicallybuildup
intraoralpressure(IOP)beforereleasingthetongueandallowingthereedtovibrate.Asimilar
anomalywasfoundfollowingtheendofeachnote,withtheoboistsustainingpressurepastthe
endofthecurrentsoundingnote.Additionally,Adducideterminedthatoboistsoftenincreased
theintraoralpressurebeyondtheamountneededtoincreasethedynamicofeachnote.He
foundthatperformersoftencreatedmoreintraoralpressurethantheirinstrumentandreed
couldhandle,leadingtotheinstrumentreachingitsmaximumvolumeoutputpotentialbefore
theperformerhadachievedhisorhermaximumpotentialforintraoralpressure.The
performersmaynotbeawareofthissituation,causingaconsistentexcessiveforcewhen
playingwoodwindinstruments,particularlyinlouddynamics,whichmayleadtoanextraneous
amountofstresswithintheoralcavity.
Thisexcessforcecancreateapotentiallyhazardoussituation.Theforcecanallowfor
thedevelopmentofsofttissuedisordersofthethroatandpotentialvelopharyngeal
insufficiencies.Velopharyngealinsufficiency,commonlyreferredtoasa“nasalleak”withinthe
woodwindcommunity,occurswhenairescapesoutofthenasalpassagesduringperformance,
whichmayaffecttheresultingsoundquality.Duetoexcessivestrain,theperformer’ssoft
palateisweakened,thusopeningthepathwayforairtoflowinvoluntarilyintothenasalcavity.
5
Adduci,M.D.(2011).DynamicMeasurementofIntraoralpressureandSoundPressureWithLaryngoscopic
CharacterizationDuringOboePerformance.Denton,Texas.
3
Velopharyngealinsufficiencyisfrequentlyseenintheclarinetcommunityandmanyhave
soughttofindremediesforthecondition.Dr.ChrisGibsonfoundinhisstudythatcommon
causesofvelopharyngealinsufficiencyinclude:
•
•
•
•
Intensive, short-term performance experiences such as summer music
camporanAll-Stategroup.
Preparationforauditionsorimportantrecitals.
Changes in routine such as beginning with a new instructor, or playing
againafteravacation.
Equipment changes, such as a different mouthpiece, harder reed
strength,orevenadifferentinstrument.6
Inadditiontotheclarinetcommunity,Gibsonalsostatedthatvelopharyngeal
insufficiencyisfrequentlyfoundamongoboeandbassoonplayers.Abriefmentionofintraoral
pressurewasgivenasapossiblereasonforthisfinding,butthereislittlescientificevidence
substantiatingtheseclaims.Anotherconditionthatcanarisesecondarytointraoralpressure
whenplayingawoodwindinstrumentisapharyngocele.Apharyngoceleistheherniation
(outpouching)ofpharyngealsofttissuecausedbyextraneousairforce.7Thiscausesthetissue
tobulgeoutoftheneckbilaterallywhileperforming.Thisconditionispredominantlyseen
amongtrumpetplayers(Gillespie’spouches),buthasalsobeenreportedinsomeoboe
performers.Oboebackpressureisknowntobethehighestamongthewoodwindinstruments,
whichiswhyitmightbeseenprimarilyinoboeperformerscomparedtoperformersonthe
otherwoodwindinstruments.Thelowerbackpressureobservedwhenplayingtheother
woodwindsmayormaynotaffectthedevelopmentofpharyngocelesinotherwoodwind
performers.
6
Gibson,C.(2007).CurrentTrendsinTreatingthePalateAirLeak(StressVelopharyngealInsufficiency).
(ClarinetFest)RetrievedAugust13,2015,fromInternationClarinetAssociation:
https://www.clarinet.org/clarinetFestArchive.asp?archive=30
7
Bowdler,D.(1987).PharyngealPouches.InA.Kerr,&J.Groves,Laryngology(5thEditioned.,pp.264-282).
London.
4
Thereasonthattheoboeisknowntohavethehighestamountofbackpressureamong
thewoodwindinstrumentsisbecausethetipopeningofthereedisrelativelysmallwhen
comparedtotheapertureforairflowfoundinotherwoodwindinstruments.Sincetheother
woodwindshavelessbackpressureduetolessresistance,thistheoreticallymightleadtolower
intraoralpressure.Therationalebehindexpandingcurrentstudiesistoquantifyandclarifythe
differencesinintraoralpressurebetweeneachofthewoodwindinstruments.
STATEMENTOFPURPOSE
Thepurposeofthisstudyistoexaminethedataandtrendsintheamountofintraoral
pressureandthesoundpressurelevelsproducedwhenperformingeachofthewoodwind
instruments.Thisstudywasconductedinordertoexpandthecurrentresearchsuggestingthat
oboistsexhibitanexorbitantamountofintraoralpressurerelativetotheamountofsound
output.Thisstudywillexamineintraoralpressureasrelatedtosoundpressurelevelswiththe
otherwoodwindinstrumentstodetermineifthereisacorrespondingcorrelation.Specifically,
intraoralpressureandsoundpressurewillbemeasuredonflute,oboe,clarinet,saxophone,
andbassoonforpitchesperformed(1)undervariousdynamics,(2)withastraighttone,and(3)
withvibrato.Soundpressurelevelsmaybeagoodmeasureofthephysiologicalstrainplaced
ontheperformer.Anysustainedstrainontheperformercanleadtovariousperformancerelatedinjuries,aspreviousresearchhasshown.Thegoalofthisstudyistoprovideadeeper
understandingoftheforcesinvolvedinplayingwoodwindinstrumentsinordertopreventsuch
injuries.Theseindicatorsmayreflectvarieddemandsacrossinstrumentgroups.Itismyhopeto
addressthescientificrelationshipbetweenintraoralpressureandsoundpressurelevelswhen
5
playingwoodwindinstrumentsandprovidepedagogicalsuggestionsforperformingwith
efficiency.
Thespecificaimsofthisstudyareto(1)determinewhetherthereisacorrelation
betweenintraoralpressureandsoundpressure,(2)shedlightonhowwelleachinstrument
respondstorapidfluctuation,and(3)determinewhichinstrumentismostefficientfor
convertingintraoralpressureintosoundpressure.
6
CHAPTER2.BACKGROUNDANDFOUNDATIONALKNOWLEDGE
Intraoralpressure(IOP)isaquantifiablemeasureofforceexertedonthesurfaceareaof
theoralcavity.Thistypeofpressureisincreasedbyasurgeinairvolumeorbyresistancetoair
flowescapingtheoralcavity.Woodwindperformersrarelydiscussintraoralpressurewhen
speakingcolloquiallybutcommonlyreferto“backpressure”whenattemptingtodescribethe
resistancetooralairflow.However,“backpressure”isbetterdefinedasthepressureopposing
thedirectionofdesiredairflow–apressurewhichiscausedbyboththeinstrument,thereed,
andtheembouchureoftheplayer.8Thischaracterizationoftheforcesbywoodwind
performersis,forallpracticalpurposes,agooddescriptionoftheperceivedresistancecreated
bytheirinstrument.However,intraoralpressurecanstillbefoundinperformersplayingthe
flutewherethereisnodirectobstructionopposingthedirectionofairflowtocreatea
measurablebackpressure.Additionally,backpressureitselfisimpossibletoeasilymeasure.
Thisleadstotheconclusionthatthedifferenceincalculationbetweenintraoralpressureand
backpressurealsocannotbespecificallymeasuredinanymeaningfulway.Inthisstudy,
intraoralpressurewasmeasuredacrossallwoodwindinstrumentstostudythephysicalforces
associatedwithcommonmedicalproblemsshowntobecausedbyhighintraoralpressure
levelsinwoodwindperformers.
Itisimportanttofundamentallyunderstandthedifferencesinthedefinitionsofforce,
pressure,andstress.Inphysics,aforceisanyinteractionthat,whenunopposed,willchange
themotionofanobject.Intuitively,forcecanalsobedescribedasa“push”ora“pull”onan
8
Merriam-Webster.(n.d.).BackPressure.RetrievedJune20,2015,fromMerriam-Webster.com:
http://www.merriam-webster.com/dictionary/backpressure
7
object.Aforcehasbothmagnitudeanddirection,makingitavectorquantity.9Incontrast,
pressureistheperpendicularforceappliedtothesurfaceofanobjectperunitareaoverwhich
thatforceisdistributed.10Inotherwords,pressuredescribesthevolumeofairpressing
outwardonasurface,liketheoralcavity,similartothewayairinsideaballoonforcesthewalls
oftheballoontostretchoutward.
Inadditiontointraoralpressure,soundpressurelevelswerealsoexaminedinthisstudy
inordertodemonstratechangesinintraoralpressurebasedondynamics.Soundsareproduced
bypressurewavesinteractingwiththetympanicmembraneoftheear.Theamplitudeof
pressurevariationsmeasuredintheaircanbeusedtodeterminetherelativeloudnessofthe
perceivedsound.Soundpressureismeasuredindecibels(dB),whichreferstoalogarithmic
representationofpressurevariations.11Pressureisasimpletypeofstress,whichcauseseither
deformationofsolidmaterialsorachangeofflowinfluidssuchaswaterorair.12Intheoral
cavity,mechanicalstresscancausedeformationoftheshapeoftheoralcavity,leadingto
numerousmedicalconditions.
Aspreviouslymentioned,thisstudyspecificallyexaminesintraoralpressure(IOP)and
theconsequencestoincreasingthispressureinwoodwindperformers.Pressurerelatedtothe
respiratorytractinhumanscanbemeasuredinseveraldifferentregionsotherthantheoral
cavity.Measuringlungpressureorsubglotticpressureasopposedtointraoralpressure,
however,involvesinvasiveproceduresbeyondthescopeofthisstudy.Intraoralpressureisa
9
Cutnell,J.,&Johnson,K.(2001).Physics(5thEditioned.).NewYork:JohnWileyandSonsInc.
Giancoli,D.G.(2004).Physics:principleswithapplications.UpperSaddieRiver,NewJersey:PearsonEducation.
11
SoundandNoise:CharacteristicsofSoundandtheDecibelScale.(n.d.).(EnvironmentalProtectionDepartment:
TheGovernmentofHongKong)RetrievedAugust12,2015,fromEnvironmentalProtectionDepartment:
http://www.epd.gov.hk/epd/noise_education/web/ENG_EPD_HTML/m1/intro_5.html
12
Batchelor,G.(1967).AnIntroductiontoFluidDynamics.CambridgeUniversityPress.
10
8
representationofthepressurecreatedontheinternalsurfaceareaoftheoralcavityand
extendingintothesuperiorportionofthetrachea(abovetheglottis).Itisalsotheresulting
pressurecausedbythecombinedforceoftheaircolumnbeginninginthelungsandextending
upthetracheaandoutoftheoralcavity,althoughtheseforcesarenotadditiveandintraoral
pressureisnotnecessarilythesumofalloftheseforces.Factorsthatcanaffectintraoral
pressureincludevolumeofair,strengthoftheperformer’sexhalation,dimensionsoftheoral
cavityandsuperiortrachea,andinterferenceintheapertureoftheinstrument(reedopening
dimensionsandcyclicvibratoryopeningandclosingofthereedagainstthemouthpiece).
Airflowintotheinstrumentthroughthebreathingapparatususedinthisstudyfollows
Bernoulli’sprinciple,characterizingfluidmechanicsinphysics.Bernoulli’sprinciple
encompassestheideathatthepressureofastreamoffluidisreducedasthespeedoftheflow
isincreased.13Withthisprincipleinmind,theconceptofintraoralpressurecanbedescribedas
aresultofthechangeincross-sectionalareaalongthepathwayofairflow.Thelargercrosssectionalareafoundinthetracheaandoralcavitycreateshigherairpressureandslower
velocityofair.Thisisincontrasttothesmallercross-sectionalareafoundattheaperture,
whichleadstolowerairpressureandafastervelocityofaircreatingafunnelingeffect.This
funnelingeffectisoneoftheaspectsofthecreationofintraoralpressure-thecombinedeffect
ofthevolumeofairforcedintotheoralcavityandtheresistanceoftheaperture,reedopening,
orequipmentbackpressure.
Thefluteisthemostuniquewoodwindinstrumentinthatitdoesnotuseeitherasingle
ordoublereedunitthatcyclesopenandclosedtocreatesound.Thevibrationoftheheadjoint
13
Mulley,R.(2004).FlowofIndustrialFluids:TheoryandEquations.CRCPress.
9
isoutsideoftheoralcavityandaperture,anditdoesnotinterferewiththeflowofthe
airstream.Thislackofinterferencecreatesanopensysteminwhichairfreelyflowsoutofthe
apertureintotheinstrument.Theonlyresistancepresentinthesystemiscreatedbythe
performer’scontrolofaperture,resultinginthefunneleffectpreviouslydescribed.Itispossible
foraflutisttocontroltheopeningofhisorherembouchure,directlyaffectingthisresistance
present.Smalleraperturecreatedbyamoreclosedembouchureprovidesmoreresistancedue
toasmallercross-sectionalareathatleadstolowerairpressure.Alargeraperturecreatedbya
moreopenembouchure,ontheotherhand,leadstoalargercross-sectionalareaandalossof
thefunnelingeffect,becauseoflowerairpressureandslowervelocity.
Theclarinetandsaxophonehavemorefeaturesthatinterferewithairflow.Insingle
reedinstruments,thereedvibratingagainstthemouthpieceproducesthesound.Thisvibratory
processhasmanyfactorsthatcanaffecttheresistance.Thevibrationsmaybealteredbythe
strength(orrelativehardness)ofthereed.Aharderreedismoreresistanttovibrating.Many
characteristicsaffectreedstrengthincludingdensityofthecane,flexibilityofthecane,and
thicknessofthereed.Anotherimportantfactoristherelativedistancethereedmusttravelto
vibrateagainstthemouthpiece.Thisdistanceiscommonlydescribedasthemouthpiecefacing,
inwhichmouthpiecescurveawayfromthereed.Mouthpiecefacingsvaryamongmouthpieces,
andthechoiceofmouthpiecefacingisapointofpersonalpreferenceamongsinglereed
performers.Mouthpieceswithmoreopenfacingscreatealargerdistanceforthereedtotravel,
thereforecreatingmoreresistanceinthevibratoryprocess.
Anotherelementseeninsinglereedinstrumentsisthatthemannerinwhichthereed
vibratescancreatemoreresistancetoairflowthanthatfoundinnon-reedinstruments,suchas
10
theflute.Thisresistanceistheresultofvibrationscausingthesystemtocyclebetweenopen
andclosed.Whenthereedisnotincompletecontactwiththemouthpiece,airfreelyflows
throughtheopeningbetweenthereedandmouthpiece.Thisisconsideredanopensystem;
however,whenthereedisincompletecontactwiththemouthpiece,theairisnotallowedto
exittheoralcavityandflowintotheinstrument,creatingaclosedsystem.Inthisclosedsystem,
pressureishigherbecausetheperformerisconsistentlypushingairtowardtheaperture.
Withoutaroutefortheairtoescape,however,thepressuresimplyincreasesuntilthereed
movesawayfromthemouthpiecereleasingtheair.InTheArtofSaxophonePlaying,LarryTeal
statesthatasthereedvibratesagainstthemouthpiece,itspendshalfofthetimeincomplete
contactwiththemouthpiece,onefourthofthetimetravelingawayfromthemouthpiece,and
onefourthofthetimetravelingtowardthemouthpiece.14Thisvibratoryprocessthatis
creatingresistancecanalsobeseenindoublereedinstruments,theoboeandbassoon.
Inmanyways,doublereedinstrumentsproducesoundinasimilarfashiontosinglereed
instruments,withsoundproducedbythevibrationofthereed;however,indoublereed
instrumentsthereisnomouthpiecetocreateastationarypointforthereedtovibrateagainst.
Rather,therearetwoseparatebladesofeachreed,andthebladesvibrateagainsteachother
tocreatesound.Inthissystem,thereismorevariabilityfoundintheamountofresistanceeach
reedcreates.Aspectsthatcreateresistanceincludethestrengthorrelativehardnessofthe
reedcane,thethicknessoftheblades,andthetipopening(distancebetweenthetwobladesof
thereed).
14
Teal,L.(1963).TheArtofSaxophonePlaying.AlfredPublishingCo.Inc.
11
Additionally,intraoralpressuremaynotbetheonlypressurethatplaysarolein
exhalation.Airpressuresthroughouttheaircolumncanvarygreatly,andstudiesrelatedto
speechandsinginghavemeasuredsubglotticpressure,theairpressurepresentinthetrachea
belowtheglottis,insteadofintraoralpressure.Thesestudiesmeasuredsubglotticpressure
throughinvasiveprocesses.Onemethodrequiredthesubjecttoswallowapressuretransducer
toplaceitintheesophagusbelowthevocalfolds.Theairpressureinthetracheabelowthe
vocalfoldscantranslatetotheesophagusformeasurement.Asecondmethodinvolved
insertinganeedletransducerintothesubglottalregionofthetracheabypenetratingthrough
theexteriorsufaceoftheneck.15AnothermethodintroducedbyBouhuyscallsfor
anesthetizingtheglottisandinsertingacathetertubedownthetracheaformeasurement.16
Thoughanunderstandingofsubglotticpressuremightbebeneficialtoacompleteknowledge
oftheforcesinvolvedintherespiratoryprocess,duetotheinvasivemethodsrequiredto
measurethesubglotticpressure,intraoralpressurewasmeasuredinthisstudybecauseofthe
nonintrusivemethodsavailable.
15
Draper,M.,Ladefoged,P.,&Whitteridge,D.(1959).RespiratoryMusclesinSpeech.JournalofSpeechand
HearingResearch,2(1),16-27.
16
Bouhuys,A.,Proctor,D.,&Mead,J.(1966).KineticAspectsofSinging.JournalofAppliedPhysiology,21(2),483-96.
12
CHAPTER3.EXPERIMENTALMETHODS
Sixteen(16)graduateandundergraduatelevelwoodwindperformersattheUniversity
ofNorthTexasparticipatedinthisstudy.Three(3)ofthesixteenperformersweremultiple
woodwindperformerswhospecializeinplayingthefivewoodwindinstrumentsforvarious
theatrepitorchestras,andtheseperformerswererecordedperformingoneachofthe
instrumentssuccessively.Therewereatotaloftwenty-eight(28)performancesrecorded,
thirteen(13)fromsingleinstrumentperformers,andfive(5)fromeachofthethree(3)multiple
woodwindperformersmakinguptheremainingfifteen(15)performances.Table1summarizes
therelevantdemographicdataofeachperformer.
13
TABLE1DemographicInformationasreportedbytheperformers
SubjectID
Gender(M/F) Age
Degreesought
Major
Flute1
F
29
DMA
Performance
Flute2
F
23
MM
Performance
Flute3
F
31
DMA
Performance
Oboe1
M
22
BM
Performance
Oboe2
F
24
MM
Performance
Clarinet1
M
23
MM
Performance
Clarinet2
M
24
DMA
Performance
Clarinet3
F
23
BM
Performance/MusicEducation
Saxophone1
M
22
BM
MusicEducation
Saxophone2
F
18
BM
Performance
Bassoon1
M
24
MM
Performance
Bassoon2
M
24
BM
Education
Bassoon3
M
21
BM
Performance
WW1Flute
F
25
MM
Performance
WW1Oboe
F
25
MM
Performance
WW1Clarinet
F
25
MM
Performance
WW1Saxophone
F
25
MM
Performance
WW1Bassoon
F
25
MM
Performance
WW2Flute
M
25
DMA
Performance
WW2Oboe
M
25
DMA
Performance
WW2Clarinet
M
25
DMA
Performance
WW2Saxophone
M
25
DMA
Performance
WW2Bassoon
M
25
DMA
Performance
WW3Flute
M
56
DMA
Performance
WW3Oboe
M
56
DMA
Performance
WW3Clarinet
M
56
DMA
Performance
WW3Saxophone
M
56
DMA
Performance
WW3Bassoon
M
56
DMA
Performance
14
TABLE1Demographicinformationcontinued
SubjectID
InstrumentModel
MouthpieceorHeadjoint Reed
Flute1
Miyazawa602
Miyazawa
XXX
Flute2
Nagahara
Nagahara
XXX
Flute3
MuramatsuDS
Muramatsu
XXX
Oboe1
BuffetGreenline
Pisonibrassstaple
Handmade
Oboe2
LoreeRoyal
Chudnowsilverstaple
Handmade
Clarinet1
BuffetR13Festival
VandorenM30
RicoReserveClassic4
Clarinet2
BuffetR13Vintage
RicoReserveX0
VandorenRueLepic3.5+
Clarinet3
BuffetR13
NathanBeaty-ZinnerBlank
RicoGCSEvolution4
Saxophone1
Selmer/Ref.54Flamingo
RousseauNC4
Vandoren3.5
Saxophone2
Yamaha875-Ex
RousseauNC4
RicoReserve3
Bassoon1
Fox601
HeckelBocal
Handmade
Bassoon2
Fox201
HeckelBocal
Handmade
Bassoon3
Heckel#9921
HeckelBocal
Handmade
WW1Flute
Yamaha481
Yamaha
XXX
WW1Oboe
Cabart
ChudnowBrassStaple
Handmade
WW1Clarinet
BuffetR13Festival
VandorenM13Lyre
RicoReserveClassic3.5+
WW1Saxophone
Yamaha23
SelmerCStar
Vandoren3
WW1Bassoon
Fox220
FoxBocal
Handmade
WW2Flute
Yamaha684
EC
XXX
WW2Oboe
LoreeAK
Pisonisilverstaple
Handmade
WW2Clarinet
BuffetR13
BackunOt
RicoGCS3.5
WW2Saxophone
Yamaha875
RousseauR3
Eastman3
WW2Bassoon
Puchner#5839
FoxBocal
Handmade
WW3Flute
Armstrong
Armstrong
XXX
WW3Oboe
Signet
Jones
Jonesmediumhard
WW3Clarinet
BuffetR13
Vandoren
Vandoren4
WW3Saxophone
SelmerMark6
Rousseau
Vandoren3.5
WW3Bassoon
Reynolds
Reynolds
Jonesmediumhard
15
Theperformerswereaskediftheysufferedfromcommonrespiratoryailments,
includingallergies,asthma,velopharyngealinsufficiency,orotherailments.Fourreported
havingallergiesbutonlyonesufferedsevereconstantallergieswiththeothersnotingonly
seasonalallergies.Threereportedhavingasthma.Nosubjectsreportedvelopharyngeal
insufficiencyorotherailments.
Priortoconductingthisexperiment,thestudywasapprovedbytheInstitutionalReview
Board(IRB)attheUniversityofNorthTexas.Theprojectdescriptionandinformedconsent
formapprovedbytheIRBandpresentedtoallsubjectsisincludedintheAppendix.The
informedconsentformwasreadaloudtoallofthesubjectsandsignedbeforecollectingany
demographicdataandbeginningtheexperiment.
16
DESCRIPTIONOFMUSICALTASKS
Eachofthesubjectsperformedseveralmusicalexercises.Ametronomewasusedto
standardizethelengthofeachsample,andtheclickofthemetronomewasrecordedalong
withtheintraoralpressureandsoundpressurevaluesforaccuratedatapointselection.The
taskswereperformedat88beatsperminute.Subjectsplayingflute,clarinet,oboe,and
saxophoneperformedthetasksatthewrittenpitchesD4,G4,C5,andA5.Octavemodifications
weremadeforthesubjectsplayingbassoon,withthetasksperformedonthewrittenpitches
D2,G2,C3,andA3.
MUSICALTASKSINCLUDED:
1)dynamicexercise(crescendo–diminuendo)onthewrittenpitchesD4,G4,C5,A5
2)straighttoneexerciseonthewrittenpitchesD4,G4,C5,A5
3)vibratoexerciseonthewrittenpitchesD4,G4,C5,A5
*Asmentionedpreviously,octavemodificationsweremadeforthebassoonandallexercises
wereperformedonthewrittenpitchesD2,G2,C3,A3.
17
Figures1and2showthemusicalexamplesusedforthisstudy.
FIGURE1MusicalTask1-Dynamics
Thesubjectswereinstructedtoplayintheextremesoftheirdynamicrange.Thesubjectseach
reachedadifferentmaximumandminimumsoundpressurelevel,butallsubjectssuccessfully
followedthedynamicmarkings.
18
FIGURE2MusicalTask2&3–StraightToneandVibrato
Inthistask,thesubjectswereinstructedtoplayeachpitchatacomfortabledynamicwhich
couldbemaintainedforthedurationofthenote.Theperformerswereinstructedtousefree
(unmeasured)vibratoforthatportionofthetask.Samplesofclarinetperformancedidnot
includethevibratotasksasisstandardinclarinetperformanceintheUnitedStates.
19
EQUIPMENTANDEXPERIMENTALSETUP
TheexperimentwasconductedintheTexasCenterforMusicandMedicineofficeatthe
UniversityofNorthTexasCollegeofMusicroom1007.Theroomisconstructedwithtilefloor,
cementwalls,andstandardcommerciallay-inceilingpanels.Thesubjectsperformedthetask
seatedwithamusicstandinfrontofthem.Thechair(WengerMusicianChair)wasplaced24
inchesawayfromthemusicstand.Thedosimeter17wassuspendedabovethesubjects6feet
and6inchesfromthegroundtoreducevariationbetweeninstrumentsandperformers.
Theexperimentutilizedthreechannelsofdataacquisition:measurementofintraoral
pressure(IOP),measurementofsoundpressurelevel(SPL),andmetronometiming.
Intraoralpressurewasmeasuredusingapressure-to-voltagetransducer.Thistransducerwas
fixedtoheadgearwithVelcro.Asmallcathetertubewasfittedtoeachsubject.Thecatheter
tubewasplacedinsidetheoralcavitythroughthecorneroftheembouchure.Eachperformer
wasgiventimetoexperimentwiththecathetertubeinplacepriortorecordingthe
performancestoallowforproperfittingandtominimizeobstructionoftheembouchure.While
subjectsplayedtheirinstruments,thecathetertubeconductedtheairpressureinsidethe
subject’soralcavitytothepressure-to-voltagetransducerformeasurement.Allsubjects
toleratedthissetupwithoutchallenge.Atthistime,thepressure-to-voltagetransducerwas
calibratedtoaccountfortheambientpressureoftheroomduringtheperformancesothatonly
theincreaseinintraoralpressureabovetheatmosphericpressurewouldberecorded.
Soundpressurelevelsweremeasuredusingaloggingdosimeter.Thedatawasrecorded
indecibels(dB).
17
Anoisedosimeterisaspecializedsoundlevelmeterusedtomeasuresoundexposureovertime.
20
Eachofthethreechannelswasrecordedusingcontinuousrecordingsoftware.The
pressure-to-voltagetransducer,dosimeter,andstandardmetronomewereconnectedtoa
DATAQInstrumentsmodelDI-720dataacquisitionsystem.18TheDATAQsystemwasthen
connectedtoaDelldesktopcomputerrunningtheWinDaq/Litesoftwaresuitetocollectthe
intraoralpressureandsoundpressuredataalongwiththemetronomeforastandardized
accuratetimemeasurement.TheDATAQsystemandWinDaq/Litesoftwarepackagerecorded
240samplespersecondforintraoralpressure(measuredinvolts19)andsoundpressure
(measuredindB).Thereal-timemonitoringofeachnoteallowedfordetailedexaminationof
eachnote,includinginitiation,propagation,andtermination.Therawdatarecordedby
WinDaq/LitewasexportedtoMicrosoftExcel2010andIBMSPSSStatistics17.0foranalysis.
EXPERIMENTALPROCEDURE
Afterlisteningtotheexperimentalprotocolandprivacypolicyforthestudy,the
subjectssignedaninformedconsentformapprovedbytheIRB.Ashortdemographic
questionnairewascompleted.Thesubjectswerethenseatedandfittedwiththepressure-tovoltagetransducercathetertube.Theentireexperimentalprocesstook5minutestocomplete
paperwork,10minutestosetup,and15minutesforeachiterationofthemusicalexercises.
PROTOCOLFORDATAANALYSIS
18
DATAQInstrumentsmodelDI-720isadeviceusedtocollectandtranslatedatafromvariousinputchannels.This
devicecanutilizeuptosixteendifferentdatachannelssimultaneously.
19
Topresentthedatainameaningfulformat,thevoltagereadingsfromthepressuretransducerwereconverted
tommHg.Forthepressuretransducerusedinthisstudy,1voltisequalto101.4mmHg.Theformulausedfor
conversionwasp=(v-a)*101.4,wherevisavoltageeventrecordedbythepressuretransducer,aistheambient
pressureinvoltsmeasuredduringthattask,andpistheresultantintraoralpressureforthatevent,converted
fromvoltstommHg.
21
Graphical,descriptive,andcorrelationaltechniqueswereemployedtoshowdifferences
acrosstasks,acrossinstruments,andregardingtherelationshipbetweensoundpressureand
intraoralpressures.TherawdatarecordedbyWinDaq/LitewasexportedtoMicrosoftExcel
2010andIBMSPSSStatistics23.0foranalysis.Duringthisstudy,Ihavedecidedtoonlyusedata
pointscollectedonemetronomeclickpriortotheinitiation,throughpropagationofthenote,
andconcludingonemetronomeclickfollowingtheterminationofthenote.Datapoints
betweenindividualnoteswereexcluded.Ineffortstoexcludeoutliers,anaveragewastakenof
eachdatapointbeforeprocessingthedata.Theseaverages,minimum,maximum,andstandard
deviationswerecalculatedusingdatafromallsamplesoflikeinstrumenttrials.Thesevalues
wereorganizedintoTable2.ThegraphsinFigure3areexamplesofindividualperformerdata
samplesofeachmusicaltask.Theindividualperformerspresentedinthegraphswerechosen
basedontheconsistencyofthereadingsforeachtrial.Theseperformersshowcasedrelatively
minimaloutlyingdatapoints.Thedatafromthisstudywasfoundtobestatisticallysignificantat
the0.01level,indicatingthatthereisstrongevidencesuggestingthattheserelationshipsare
statisticallysignificant.
Inordertoaddressthespecificaimsofthisstudy,theexperimentwasdesignedwith
particularexercisesinmind.Aftertheinstrumentalistsperformedthemusicaltasksoutlined
earlier,(1)IassessedPearsonCorrelationValues,whichcanrevealordisprovestrong
associationsbetweentwovariables,todeterminewhetherthereisasignificantcorrelation
betweenIntraoralpressureandsoundpressureoutput.PearsonCorrelationValuesandhow
theyrelatetothisstudyarepresentedthoroughlyintheDiscussionsection.(2)Ievaluatedthe
vibratomusicaltasksbycomparinghoweasilyeachinstrumentrespondstoitsinstrument-
22
specificvibrato.Thiswasassessedbyexaminingintraoralpressureversusthesoundpressure
levelwhiletheperformerisusingvibrato.(3)Ievaluatedtheoverallefficiencyofeach
instrument.Acomparisonofvibratoversusstraighttonewillhelpdeterminehowefficienteach
instrumentisinconvertingairpressureintosoundpressure.
23
CHAPTER4.RESULTS
Thisstudyproducedatotaloftwenty-eight(28)performancesofeachmusicaltaskwith
successfulquantitativedatacollectionineachofthesamples.Samplesofclarinetperformance
didnotincludethevibratotasksasisstandardinclarinetperformanceintheUnitedStates.
Table2wascreatedusingaveragesofcorrelatingsamplepointsintimeacrosslikeinstrument
performers.Eachmusicaltaskislabeledinthetablewiththepitchperformed(C).Thedynamic
exerciseisnotedatjust(C),thestraighttoneexerciseislabeledasCsandthevibratoexerciseis
labeledatCv.Table3isavisualrepresentationofdata(min,max,mean,stddev)from
individualinstrumentperformers(thoseonlyperformingononeinstrument,excludingmultiple
woodwindperformers).Table4representsdatafromthemultiplewoodwindperformertrials.
ThegraphsinFigure3areexamplesofindividualperformerdatasamplesofeachmusicaltask.
TheperformerspresentedinthegraphsinFigure3werechosenbecausetheyshowedthemost
consistentreadingsforeachtrial.Oneperformerperinstrumentispresentedinthegraphs.
Figure3showsthelinearrepresentationoftheintraoralpressure(IOP)andsound
pressurelevel(SPL)forthepitchC5.
•
BluelinesrepresentthedynamicexerciseinMusicalTask1.
•
RedlinesrepresentthestraighttoneexerciseinMusicalTask2.
•
GreenlinesrepresentthevibratoexerciseinMusicalTask3.
24
FIGURE3LinearRepresentationofData
MusicalTask1------------
MusicalTask2------------
MusicalTask3------------
FluteIntraoralPressure(IOPinmmHg)
FluteSoundPressureLevel(SPLindB)
25
OboeIntraoralPressure(IOPinmmHg)
OboeSoundPressureLevel(SPLindB)
26
ClarinetIntraoralPressure(IOPinmmHg)
ClarinetSoundPressureLevel(SPLindB)
27
SaxophoneIntraoralPressure(IOPinmmHg)
SaxophoneSoundPressureLevel(SPLindB)
28
BassoonIntraoralPressure(IOPinmmHg)
BassoonSoundPressureLevel(SPLindB)
29
TABLE2representsthenumericaldataassociatedwithgroupdatafromeachinstrumenttrial.
Descriptive Statistics
N
Minimum
Maximum
Mean
Std. Deviation
Sound Level Flute C
5047
73.7000
104.0000
82.769802
6.2717121
Sound Level Flute Cs
4988
72.6000
94.1000
82.486087
4.7128215
Sound Level Flute Cv
5049
73.6000
97.5000
83.253337
5.3025673
Intraoral Pressure Flute C mmHg
5047
-22.8150
6.5910
1.101752
3.2303852
Intraoral Pressure Flute Cs mmHg
4988
-8.6190
5.5770
1.404719
3.1727566
Intraoral Pressure Flute Cv mmHg
5049
-11.6610
7.6050
1.919651
3.2835218
Valid N (listwise)
4988
Descriptive Statistics
N
Minimum
Mean
Std. Deviation
Sound Level Oboe C
4447
74.6000
89.2000
80.148145
3.5920672
Sound Level Oboe Cs
4507
73.1000
91.4000
80.534968
3.4140089
Sound Level Oboe Cv
4386
73.2000
92.3000
80.890538
3.3493299
Intraoral Pressure Oboe C mmHg
4447
-5.5770
50.1930
24.532438
13.4985917
Intraoral Pressure Oboe Cs mmHg
4507
-35.9970
41.0670
21.830923
13.5412355
Intraoral Pressure Oboe Cv mmHg
4386
-39.0390
41.0670
21.908041
14.7010054
Valid N (listwise)
4386
Maximum
30
Descriptive Statistics
N
Minimum
Maximum
Mean
Std. Deviation
Sound Level Clarinet C
5407
75.3000
107.0000
86.260403
9.6589688
Sound Level Clarinet Cs
5154
71.8000
98.4000
86.301785
6.9712704
Intraoral Pressure Clarinet C mmHg
5407
-3.5490
43.0950
20.546768
10.8506990
Intraoral Pressure Clarinet Cs mmHg
5154
-3.5490
29.9130
20.616623
9.2936191
Valid N (listwise)
5154
Descriptive Statistics
N
Minimum
Maximum
Mean
Std. Deviation
Sound Level Sax C
4148
74.6000
113.0000
88.846649
11.1296733
Sound Level Sax Cs
4326
72.5000
101.0000
86.111049
7.5105652
Sound Level Sax Cv
4326
72.4000
105.0000
87.643597
8.1812154
Intraoral Pressure Sax C mmHg
4148
-4.5630
30.9270
16.680153
8.5214015
Intraoral Pressure Sax Cs mmHg
4326
-6.5910
23.8290
15.546125
6.8548486
Intraoral Pressure Sax Cv mmHg
4326
-31.9410
24.8430
15.437599
9.9962420
Valid N (listwise)
4148
Descriptive Statistics
N
Minimum
Mean
Std. Deviation
Sound Level Bassoon C
5107
72.4000
98.7000
85.072273
6.4477431
Sound Level Bassoon Cs
5046
71.4000
103.0000
87.615834
6.3806603
Sound Level Bassoon Cv
4990
71.2000
102.0000
85.536493
5.6464958
Intraoral Pressure Bassoon C mmHg
5107
-7.6050
29.9130
13.890926
8.2424484
Intraoral Pressure Bassoon Cs mmHg
5046
-8.6190
25.8570
13.211540
7.7571158
Intraoral Pressure Bassoon Cv mmHg
4990
-32.9550
25.8570
12.957457
8.6831732
Valid N (listwise)
4990
Maximum
31
TABLE3representsthenumericaldataassociatedwithindividualsamplesoftheMusicalTask1
Descriptive Statistics
N
Minimum
Maximum
Mean
Std. Deviation
Sound Level Flute1 C
842
74.9200
98.2660
86.871844
6.9129585
Sound Level Flute2 C
841
75.3350
87.6820
80.559948
2.8427817
Sound Level Flute3 C
841
75.7500
103.6600
82.926911
7.4271440
Intraoral Pressure Flute1 C mmHg
842
-.0203
4.5529
2.755708
1.1750270
Intraoral Pressure Flute2 C mmHg
841
-.3346
3.3868
1.699288
.6356090
Intraoral Pressure Flute3 C mmHg
841
-.6185
3.7112
1.633963
.9170714
Valid N (listwise)
841
Descriptive Statistics
N
Minimum
Mean
Std. Deviation
Sound Level Oboe1 C
902
75.7500
89.2390
80.458192
3.7736316
Sound Level Oboe2 C
961
75.7000
88.4000
79.679501
3.5318235
Intraoral Pressure Oboe1 C mmHg
902
.1420
48.9154
32.885122
14.8812924
Intraoral Pressure Oboe2 C mmHg
961
-.5070
42.0810
27.830132
12.5942645
Valid N (listwise)
902
Maximum
32
Descriptive Statistics
N
Minimum
Maximum
Mean
Std. Deviation
Sound Level Clarinet1 C
901
75.4910
104.4400
88.277676
10.4589124
Sound Level Clarinet2 C
901
75.4000
97.5000
85.449057
7.2016134
Sound Level Clarinet3 C
901
75.3000
102.0000
85.429967
8.8167096
Intraoral Pressure Clarinet1 C mmHg
901
.2941
39.5359
25.411763
10.8900846
Intraoral Pressure Clarinet2 C mmHg
901
-2.5350
31.9410
21.069479
10.2415158
Intraoral Pressure Clarinet3 C mmHg
901
-1.5210
38.0250
23.857135
11.0398430
Valid N (listwise)
901
Descriptive Statistics
N
Minimum
Maximum
Mean
Std. Deviation
Sound Level Sax1 C
662
74.5570
101.5300
86.663008
9.5586404
Sound Level Sax2 C
842
75.7000
98.1000
85.266746
8.0180955
Intraoral Pressure Sax1 C mmHg
662
-.7909
27.4287
14.774960
8.7661703
Intraoral Pressure Sax2 C mmHg
842
.5070
26.8710
19.910287
6.0457559
Valid N (listwise)
662
Descriptive Statistics
N
Minimum
Maximum
Mean
Std. Deviation
Sound Level Bassoon1 C
841
73.6750
94.2190
86.117157
5.2369632
Sound Level Bassoon2 C
841
72.4000
98.7000
89.548870
7.5026758
Sound Level Bassoon3 C
842
74.9000
94.3000
84.350475
5.7320557
Intraoral Pressure Bassoon1 C mmHg
841
.1521
22.3080
16.271650
5.1502123
Intraoral Pressure Bassoon2 C mmHg
841
-3.5490
19.7730
12.772662
6.5615168
Intraoral Pressure Bassoon3 C mmHg
842
-7.6050
29.9130
16.262537
9.1758527
Valid N (listwise)
841
33
TABLE4representthenumericaldataassociatedwiththemultiplewoodwindperformers
Descriptive Statistics
N
Minimum
Mean
Std. Deviation
Sound Level WW1 Flute C
841
73.7270
95.8280
83.633127
6.7331589
Sound Level WW1 Oboe C
901
75.7000
85.5000
78.393785
2.2448670
Sound Level WW1 Clarinet C
901
75.7000
96.4000
83.404107
6.7665217
Sound Level WW1 Sax C
841
75.4000
97.9000
84.526159
7.0484990
Sound Level WW1 Bassoon C
901
74.6000
86.1000
80.241287
3.0153614
Intraoral Pressure WW1 Flute C mmHg
841
.3245
2.3119
.757040
.1559994
Intraoral Pressure WW1 Oboe C mmHg
901
-2.5350
27.8850
19.009968
8.9762903
Intraoral Pressure WW1 Clarinet C mmHg
901
-2.5350
23.8290
16.494663
6.2743448
Intraoral Pressure WW1 Sax C mmHg
841
-4.5630
16.7310
12.226477
5.3682581
Intraoral Pressure WW1 Bassoon C mmHg
901
-2.5350
11.6610
6.058678
3.5460514
Valid N (listwise)
841
Maximum
34
Descriptive Statistics
N
Minimum
Mean
Std. Deviation
Sound Level WW2 Flute C
841
75.7500
88.3570
79.356171
3.6089000
Sound Level WW2 Oboe C
901
74.6000
87.7000
81.377469
3.5787106
Sound Level WW2 Clarinet C
902
75.4000
105.0000
87.369180
10.8247919
Sound Level WW2 Sax C
901
74.8000
113.0000
97.254939
13.7523190
Sound Level WW2 Bassoon C
841
75.2000
91.7000
84.495719
5.1772723
Intraoral Pressure WW2 Flute C mmHg
841
-2.8899
5.4046
2.837271
1.4342676
Intraoral Pressure WW2 Oboe C mmHg
901
-5.5770
38.0250
27.022931
12.1902676
Intraoral Pressure WW2 Clarinet C mmHg
902
-3.5490
43.0950
22.803758
12.8217439
Intraoral Pressure WW2 Sax C mmHg
901
-3.5490
30.9270
20.157892
9.2502260
Intraoral Pressure WW2 Bassoon C mmHg
841
-4.5630
26.8710
17.023987
8.4276228
Valid N (listwise)
841
Maximum
35
Descriptive Statistics
N
Minimum
Maximum
Mean
Std. Deviation
Sound Level WW3 Flute Cs
842
73.4670
86.3330
80.485452
2.2512520
Sound Level WW3 Oboe C
782
74.7000
88.5000
80.965729
3.8478026
Sound Level WW3 Clarinet C
901
75.4000
107.0000
87.627636
11.9039359
Sound Level WW3 Sax C
902
74.6000
104.0000
89.418958
10.1986521
Sound Level WW3 Bassoon C
841
75.5000
96.2000
86.025446
7.1848713
Intraoral Pressure WW3 Flute C mmHg
841
-18.7083
1.4703
.185570
2.3399763
Intraoral Pressure WW3 Oboe C mmHg
782
-.5070
20.7870
12.750207
4.4633020
Intraoral Pressure WW3 Clarinet C mmHg
901
-2.5350
33.9690
17.811400
10.7999932
Intraoral Pressure WW3 Sax C mmHg
902
-4.5630
26.8710
14.173517
9.1804861
Intraoral Pressure WW3 Bassoon C mmHg
841
-.5070
26.8710
19.789880
7.3133776
Valid N (listwise)
782
36
DATAPRESENTATION
Thenumericaldatafromthemultiplewoodwindperformershasbeenreported
separatelytoallowforcross-examinationofintraoralpressureandsoundpressurelevels
createdbytheseperformers.Onebenefittoexaminingthedatafromthemultiplewoodwind
performersisthatwiththeseperformersplayingeachmusicaltaskonallfiveofthewoodwind
instruments,thedimensionsoftheoralcavityandlungcapacityhasbeenstandardized.Ifthis
standardizationweretobereplicatedinfuturestudies,itcouldleadtoagreaterunderstanding
oftheeffectsofperformercharacteristics,suchasbodysizeandshape,ontheintraoral
pressurecreatedwhenplayingeachinstrument.
Multiplewoodwindperformer1(WW1)producedintraoralpressuremeansbelowthe
groupmeansforeachoftheinstruments.Interestingly,therangeofintraoralpressuremeans
producedbyWW1ismorenarrowthantherangeofmeanscalculatedfromthegroupdata.
WW1producedameanintraoralpressureof0.757mmHgonthefluteandameanintraoral
pressureof19.010mmHgontheoboewitheachoftheotherinstrumentsfallingbetween
thesetwo.Whencomparedtothegroupmeansofintraoralpressureat1.102mmHgonthe
fluteand24.532mmHgontheoboe,itisimportanttonoteamorenarrowrangefoundwhen
examiningintraoralpressuredatafromWW1.Similarfindingswererecognizedinmultiple
woodwindperformer3(WW3).TheintraoralpressuremeansproducedbyWW3rangedfrom
0.186mmHgto19.790mmHg.
IncontrasttoWW1,multiplewoodwindperformer2(WW2)producedintraoral
pressuremeanswhichspannedabroaderrange.WW2producedanintraoralpressuremeanof
2.837mmHgonthefluteandanintraoralpressuremeanof27.023mmHgontheoboe.These
37
valueshaveaslightlylargerrangethanfoundinthemeansgroupdata,butWW2didnot
producethelowestintraoralpressureonfluteanddidnotproducethehighestintraoral
pressureonoboe.SinceWW2wasnotanoutlierineithersituation,itsuggeststhatthe
intraoralpressureproducedbyWW2iswithintheaveragerangeofintraoralpressureproduced
bythesingleinstrumentperformers.
38
Thefollowinggraphsweregeneratedtoshowtherelationshipbetweenintraoral
pressureandsoundpressurelevelsineachsubject.Thedatarepresentssingleinstrument
performertrialsfromoneperformeroneachinstrument.Datapointsonthegraphrepresent
recordedsamplesofintraoralpressureandsoundpressurelevelssampledatarateof240
samplespersecond.Thesegraphsalsocontainalineofbestfit(showninred).Theslopeofthe
linerepresentstherequiredchangeinintraoralpressureneededtoproduceandincreasein
soundpressurelevels.
FIGURE4PearsonCorrelationGraphs
39
40
41
CHAPTER5.DISCUSSIONOFRESULTS
Thesubjectsperformedaseriesofmusicaltasksonflute,oboe,clarinet,saxophone,and
bassoon.Musicaltaskscoveredthestandardrangesofeachinstrument,differencesbetween
vibratoandstraight-tone,andavarietyofmusicaldynamics.Thisdescriptivedatashowedthat
intraoralpressurevariesgreatlyacrosstheinstrumentsofthewoodwindfamily,withoboe
consistentlyproducingthehighestintraoralpressureandfluteproducingthelowest.
Throughoutthestudy,thefluteconsistentlyproducedtheleastamountofintraoral
pressureacrossalloftheinstruments,withameanintraoralpressureacrossaggregategroup
databetween1.10and1.92mmHg.Thesenumberstakeintoaccountdataacrosseachofthe
musicaltasks:dynamics,straighttone,andvibrato.Sincetheflutedoesnothaveanydirect
backpressure,theonlyresistanceavailabletocreateintraoralpressureistheembouchureof
theflutist.Theaperturecreatesthefunneleffect(describedintheBackgroundand
FoundationalKnowledgesection),causingtheairpressureintheoralcavitytorise.One
conclusionfromthiseffectisthatflutistsarelesslikelytosuffertheconsequencescommonly
seenwithperformerswhoplayinstrumentsthatcreatehigherintraoralpressure.
Theoboeconsistentlyproducedthehighestamountofintraoralpressure,withamean
intraoralpressurefromtheaggregategroupdatabetween21.83and24.53mmHg.These
numbersalsotakeintoaccountdataacrosseachofthemusicaltasks.Thehighvaluesof
intraoralpressurefoundinoboeperformancemaybecausedbytheverysmalltipopeningof
theoboereedandrelativeresistance.Theseconsistentlyhigherintraoralpressurelevelsleadto
agreaterprobabilitythatoboistswillsufferfromsofttissuedisordersorperformer-related
injuriesoveralifetimeofperforming.Consideringthehighvaluesofintraoralpressure,the
42
oboedidnotproducethehighestsoundpressurelevels.Thisrelationshipbetweenintraoral
pressureandsoundpressurelevelscanbecomparedtootherinstrumentsperformedinthis
study.
Withtheinstrumentsotherthanoboe,theintraoralpressureincreasedconsistentlyas
soundpressurelevelsincreasedduringperformance(withinanindividualsample)withPearson
CorrelationValues(r)reaching0.86.APearsonCorrelationValuedescribesthedegreeof
correlationbetweentwovariablesandrangesfrom-1to+1,withthesignindicationthe
directionoftheassociation.Thecloserto-1of+1thervalueis,thestrongertheassociationis
betweenthetwovariables.-1indicatesthatasonevariableincreasethesecondvariable
decreasesaccordinglywhereas+1indicatesthatbothvariablesareincreasinginapredictable
manner;however,arvalueof0indicatesnoassociationbetweenthemeasuredvariables.
TheoboehadthelowestPearsonCorrelationValueofalloftheinstruments(0.60).This
indicatesthatthereislessassociationbetweenintraoralpressureandsoundpressureinoboe
performance.ThehighPearsonCorrelationValuesseenwiththeotherinstrument
performancesinthisstudydemonstratesthatthereisacloserelationshipbetweenintraoral
pressureandsoundpressurelevelsproducedduringperformancewithmostofthewoodwind
instruments.Thistrendwasseentoadegreewithalloftheperformersinthestudy,although
thereweresomesmalldeviationsinthecorrelation.Theseresultsconfirmwhatwasseenin
previousstudies,inwhichvariabilitywasseeninboththelevelsandrelationshipsbetween
intraoralpressureandsoundpressureacrossinstrumentgroups.
Asexpected,astrongpositivecorrelationbetweendBandintraoralpressurewasseen
forallinstruments,butthelevelsandthestrengthofthisrelationshipvariedbyinstrument.The
43
pvaluespresentedinthisstudyrepresentthepercentagesofdatapointswhichfallonthebest
fitline.Thesepercentagesrangedfrom0.774to0.926andwerefoundtobestatistically
significantatthe0.01level.Thestatisticalsignificanceofthesevaluesisveryhighbecausethe
datapointsthatwerenotfounddirectlyonthebestfitlinewere(1)toofewinnumberand(2)
withinamarginoferrorrangearoundthebestfitline.Inotherwords,theoutliersofthedata
werenotprominentinnumberanddidnotreachtoofaroutsideoftherangeofthemajorityof
thedata,andthereforedidnotdecreasethesignificanceofthefindings.
Inadditiontothehighpvalues,thePearsonCorrelationvalues(r)showedrelatively
strongassociationsbetweenintraoralpressureandsoundpressure.Theinstrumentwiththe
highestPearsonCorrelationvalueisthefluteat0.86.Additionally,theslopeofthegraphfor
thefluteishigherthantheotherinstruments.Thishighsloperepresentsthattheflutemaybe
themostefficientinstrumentforconvertingrelativeairpressuretosoundpressureoutput.The
flutewillgreatlyincreaseitssoundpressureoutputwithonlyaverysmallincreaseinintraoral
pressure.IncontrasttheoboehadaPearsonCorrelationvalueof0.60,andtheoboehadthe
lowestslopeofanyoftheinstruments.Thisrelationshipshowsthattheoboeisperhapsthe
leastefficientinstrumentforconvertingrelativeairpressuretosoundpressureoutput.The
oboerequiresasignificantincreaseinintraoralpressurebeforeproducinganyincreasein
soundpressureoutput.ThisdirectlysupportsAdduci’spreviousresearchthatoboistsuse
extraneousamountsofintraoralpressurewhenplayingtheirinstrument.
Insomecases,particularlyamongthesingleanddoublereedinstruments,intraoral
pressureremainedhigherafterreachingthepeakdynamicandthroughthediminuendo,even
thoughthelowerdynamiclevelswereperformedearlierintheexercisewithlowerintraoral
44
pressure.Theseeventsmaybecausedbytheinabilityoftheperformertoaccuratelyperceive
thenecessarydecreaseinintraoralpressureneededtodiminishthesound.Itisalsoacommon
practiceamongmanywoodwindperformerstomaintainafasterairstreamwhenplayinga
diminuendoinordertoavoidunwantedinterruptionsinthesoundoradropinpitchattheend
ofalongdiminuendo.Performersarecommonlyinstructedtoengagethemusclesofthe
embouchuretodampenthevibrationsofthereedinordertodecreasethesoundpressure
output.Thesepracticescanresultinthesustainedhigherintraoralpressurethrough
diminuendos.Keepingtheintraoralpressurehigherthannecessarymaycauseunnecessary
strainorforceonthemusicianoverthecourseofalongrehearsalorperformance,and
consistentstrainoveryearscouldbehazardoustosofttissuesthatmakeuptheoralcavityand
upperrespiratorytract.Thisstudyraisesconcernssharedbypreviousstudies–thatwoodwind
playersarepotentiallycausingharmtotheiroropharynxbyinaccuratelyperceivingintraoral
pressureneededtoachievethedesiredsound.
Thevibratoexercisesshowedhowwelltheinstrumentreactstorapidfluctuationin
intraoralpressure.Performersontheflute,oboe,andbassoondescribedtheirvibratoas
diaphragmatic/abdominalvibratoproducedbypulsesintheairstream.Performersonthe
saxophonedescribedtheirvibratoasjawvibratoproducedbysmallvariationsinembouchure
pressureagainstthereed.Theinstrumentseachrespondeddifferentlytothesestylesofvibrato
production.Table3showsanaverageofaggregatedatarepresentingtheamplitudeofvibrato
soundpressureoutputandintraoralpressure.
45
TABLE5VibratoAmplitude
Instrument
Flute
Oboe
Saxophone
Bassoon
AmplitudeofVibratoSound
PressureLevel(dB)
14.246663
11.409462
17.356403
16.463507
AmplitudeofVibratoIntraoral
Pressure(mmHg)
5.685349
19.158959
9.405401
12.899543
Throughexaminingthisdata,itiseasytoseethat,again,thefluterespondedthemost
efficientlytovibratopulsesintheairstream.Theflutehadthesmallestamplitudeofintraoral
pressurevariations.Theoboeagainprovedtobetheleastresponsivetochangesinair
pressure.Theoboerequiredthehighestvariationinintraoralpressuretoproducethesmallest
variationinsoundpressureoutput.Thisevidencesuggeststhat,whileoboistsgeneratehigh
intraoralpressureforrelativelylittlesoundoutput(afactcorroboratedbypaststudies),the
samecannotbesaidforallofthewoodwindinstruments,suchasflute.
Oneinterestingdiscoverythatwasfoundinthisstudyisthatthemeansfromthe
straighttoneexercisesandthemeansfromthevibratoexerciseswerevirtuallythesame,
showingalessthan0.5mmHgincreaseinthemean.Thedatacollectedinthevibratoexercises
showedslightlyincreasedintraoralpressurethanseeninthedatafromthestraighttone
exercises.Thoughthetwotechniques(straighttonevs.vibrato)areverydifferent,intermsof
intraoralpressuretheyshowbasicallythesameamountofstrainonthebody.Inthestraight
toneexercise,theperformer’sembouchure,tongueposition,andairpressureisconsistentand
stable.Whenusingvibratotechnique,however,theperformerhasvariablejawmovement,
embouchure,andairspeedorpressure.Itispossiblethattheintraoralpressuresremainsimilar
evenifthetechniquesarevastlydifferentbecausethesinusoidalmovementofintraoral
46
pressureinthevibratoexercisecloselyoscillatesaroundthestraightlineofintraoralpressure
createdbythestraighttoneexercise.Avisualrepresentationofthisconceptcanbeseenin
Figure3.Inseveralofthechartsdepictingintraoralpressure,thegreenlinevisualizingintraoral
pressureduringthevibratoexerciseisasinusoidalwavethatseemstocloselycorrespondto
thestraightredlineofintraoralpressurecreatedduringthestraighttoneexercise.Clear
examplesofthisareseeninthesaxophoneandbassoonintraoralpressure(IOP)chartswithin
thefigure.
Initially,Iconsideredanalyzingadditionaldatausingrhythmicpulsesofvibratofrom
eachperformer.Theserhythmicvibratopulsesproduceduncharacteristicspikesinintraoral
pressureandsoundpressurelevelsthatwerenotindicativeofthefreevibratodatacollected.
Thisledmetodoubtthepracticalityofincludingtheexercisesatthistime,giventhelimited
practicalityofsuchdata.Onemajorfactorwasthatthesoundsproducedbyaheavyand
rhythmicpulsearenotwhatwouldbeexpectedinacharacteristictoneinstandardpractice.
Theslowestrhythmicpulsesshowedthemostproblemswithclarityassomeoftheslowpulses
hadissueswithextremespikesinintraoralpressureandsoundpressurelevel.Sometimesthere
wasastopofsoundfromtheperformers(byaccident)andtheintraoralpressurereadings
showedgaps(maybeduetooverdramaticchangesintheoralcavityandairpulses).
Thefindingsamongthemultiplewoodwindperformersmaysuggesttwothings.
Narrowerrangeamongmultiplewoodwindperformersmightbeduetoperformerequipment
choice.Itisprobablethateachmultiplewoodwindperformerselectedequipment,including
mouthpiece,reed,bocal,orheadjoint,whichallowedhimorhertofeelmorecomfortable
whenswitchingquicklybetweeninstruments–anecessityformanymultiplewoodwind
47
performers.Onepossiblewaytoachievethegreatestlevelofcomfortachievedbyeach
performeristhateachpieceofequipmentisabletominimizevariationsinresistanceorback
pressurebetweeninstruments.
Anotherpossibilityforthenarrowerrangeseeninmanyofthemultiplewoodwind
performerscouldbeduetotheprocessofinstrumentselectionbythesingleinstrument
performersandtheinabilityofmultiplewoodwindperformerstobeanatomicallywell-suitedto
eachinstrumentthattheyplay.Performerswhoplayonlyoneinstrumentmaygravitatetoward
aninstrumentwhichiswellsuitedtotheiranatomy;forexample,aperformerwhocancreate
andtolerateahighamountofintraoralpressuremightbemoregiftedattheoboe.This
specializationprocesscanbeattributedtothetraditionofinstrumentselectionatanearlyage,
inwhichmanyyoungmusiciansaretestedfortheirnaturalabilityoneachinstrumentbefore
beingguidedtotheinstrumentwhichbestsuitesthem.Incontrasttosingleinstrument
performers,thosewhoplaymultiplewoodwindscandevelopversatilitybutarerarelyequally
suitedforallfiveoftheinstruments.Therefore,itispossiblethatthenarrowrangeseenin
intraoralpressureamongmultiplewoodwindplayersisduetoanatomiclimitationsifeach
instrumentisbestsuitedforcertainphysicalcharacteristics,itisimprobablethatoneperson
couldshowasbroadofarangeoneachinstrumentasonewhospecificallychoseaninstrument
basedoneaseofperformance.Ananalogycanbemadebetweenperformingprofessionallyon
amusicalinstrumentandplayingprofessionalsports.Ifoneweretolookatprofessional
basketballplayersasanexample,youwillseethatalargemajorityofthebasketballplayersare
tall.Heightinbasketballisanimportantphysicalattributethathelpstheathletetosucceed.
Similarly,professionalmusiciansmaygravitatetowardinstrumentsforwhichtheyhavethe
48
physicalattributestohelpthemsucceed.Awindinstrumentperformer’ssuccessdependson
theshape,size,andcapacityoftheentirerespiratorytract.Thisisacontroversialtopicamong
musiceducators,andwithoutfurtherresearchandevidencetosuggestspecificsolutions,this
studymaysimplyinformtheinstructor’sthoughtprocesstowardotherfactorsthataccountfor
astudent’sperceivednaturalabilityorlackthereof.Thishypothesisrequiresfurtherresearch,
becauseinthisstudy,aperformer’sphysicalcharacteristicswerenotcollected.
Itistemptingtostatethatthemultiplewoodwindperformersparticipatinginthisstudy
couldbethoughtofasacontrolgroupgiventhestandardizationofthephysicalcharacteristics
oftheplayeracrosseachinstrument.Inaddition,multiplewoodwindperformancetrainingis
designedtocharacteristicsoundproductionforeachinstrument;however,thereare
limitationstothisproposal.Onelimitationisthattheyarenotasspecializedoneachspecific
instrument,possiblyskewingtheresultsofthisstudy.Also,aspreviouslystated,thereare
possibleanatomicallimitsthatmightcontributetothenarrowrangeofintraoralpressureseen
inmultiplewoodwindplayers.
Amongthemultiplewoodwindperformers,amorenarrowrangeofintraoralpressure
meanswasfoundacrossthedifferentinstrumentsintwoofthethreeperformers.Itshouldalso
benotedthattheseperformershadlowerintraoralpressurevaluesformostoftheinstruments
whencomparedtothesingleinstrumentperformers.Theseresultsmayleadtotheconclusion
thattherecouldbesignificantdifferencesinthewaymultiplewoodwindperformersplayeach
instrument,thetypeofequipmentselected,orphysicalanatomicalcharacteristicscreating
thesedifferences.Thesebroadconclusionsareonlypossibleoriginsforthesetrends,and
49
additionalstudiesexaminingmultiplewoodwindperformersandthevariablesinvolvedshould
beresearchedinordertodrawfurtherconclusions.
50
CHAPTER6.CONCLUSIONS
Therearevariouslimitingfactorstoconsiderwhendeterminingthevalidityofthis
study.Onesuchfactorissamplesize;only5-6performersparticipatedinthestudyforeach
instrument,arelativelysmallnumberofsubjectsfromwhichtodrawconclusions.Althoughthis
studywassignificantlylargerthanpreviousstudiesofthisnature,thescopemaynotbea
sizeableenoughquantitytodrawbroadconclusions.
Anotherlimitationofthisstudywaspitchlevel.ThestudyusedthewrittenpitchesD4,
G4,C5,A5,anddidnottakeintoconsiderationthetranspositionsnecessaryintheclarinetand
saxophone.Futurestudiesmightfocusonthesoundingpitchlevelratherthanthewrittenpitch
toeliminatethisdiscrepancybetweeninstruments.Also,thesewrittenpitchesdonothave
similarfingeringsacrossallofthewoodwindinstruments,andthevariationinlengthof
instrumentengagedbyfingeringsplusotheracousticalpropertiesmayaccountforsomeofthe
variabilitybetweeninstrumentsinthisstudy.Afingerednoterequiringmoretoneholestobe
closedcreatesmoreresistancefortheperformerwhencomparedtoonewithfewertoneholes
closed.Pedagogically,beginnermethodbooksforwoodwindstudentsoftenstarttheperformer
withanopenfingering,becauseopenfingeringsonaninstrumentallowthestudenttobecome
comfortablewiththebackpressureofthereedormouthpiece-reedcombinationwithout
additionalresistancefromthebodyoftheinstrument.
Anotherfactoroftenignoredinstudiesofthistypeisvariabilityinthesizeandshapeof
theperformers’oralcavitiesandupperrespiratorytracts.Sinceintraoralpressureistheforce
exertedontheinteriorsurfaceareaoftheoralcavity,surfaceareavariationsbetweeneach
subjectmayadditionallycontributetothevariabilitypresent.Itwouldbeinterestingto
51
measurethesurfaceareaoftheoralcavityandupperrespiratorytractanddetermineifthere
aretrendsacrossinstrumentgroups.Inthisstudy,Itriedtostandardizetheoralcavitysurface
areathroughtheuseofmultiplewoodwindperformers,however,thedataproducedwasnot
enoughtodrawclearconclusions.
Futureresearchexaminingintraoralpressureshouldalsoconsiderhowthe
measurementsofsoundpressurelevelinanensemblesettingmaybeusedasameasureof
strainplacedontheperformers.Itispossiblethatastudyofintraoralpressureamong
woodwindperformersinanensemblecouldleadtopedagogicalsuggestionsforconductors.
Finally,anyfuturestudiesofthisnatureshouldseektoimproveonthefoundationsofthis
studyandaddressthelimitationsdiscussedabove.
Theresultsofthisstudyhavepracticalapplicationsthatstrengthenourpedagogical
approachtoteachingwoodwindinstruments.Preventativemeasuresmaybeintroducedto
reducetheintraoralpressureinordertominimizetheriskofdevelopingsofttissueinjuries
whenplayingwoodwindinstruments.Inhisarticle,Gibsonmakessomenon-surgical
suggestionstohelpperformerswhosufferfromvelopharyngealinsufficienciesincluding:
•
•
•
Posture: Re-evaluate from head to toe, standing and sitting. Become
awareofyourhead,neck,spine,shoulders,armsandhands,allshouldbe
freeofstress.
Breathing and breath support: Throat free of tension, good inhalation
withrelaxedshouldersthusallowingforneededexpansionandconstant
supportduringexhalation.
Embouchure: Examine the combination of instrument setup and
embouchureformationandfunctionforanembouchurethatistootight
canindicateoveralltension,andcanalsocreateadditionalstressofthe
velopharyngeal muscles. A too-resistant mouthpiece-reed combination
52
can contribute to the air leak, although if the embouchure is working
correctly,avarietyofreedstrengthsmaybetolerated.20
Pedagogically,Gibson’smostnotablesuggestionmaybetheinstrumentsetup.
Whenplayingonareedormouthpiece/reedcombinationthatcreatesexcessive
resistance,theperformerwillcreatemoreintraoralpressuretoproduceasound.Ifthe
performerishesitanttochangehisorherequipment,morefrequentbreakscanbea
solution,allowingthebodytorelaxandrecuperatewithoutthestraincreatedby
intraoralpressure.
Throughoutthescopeofthisstudy,Iaimedtoprovideascientificfoundationforthe
understandingofintraoralpressureanditsrelationshiptosoundpressureoutputwhen
performingonwoodwindinstruments.Bygainingaricherunderstandingofthesevariablesand
therelationtowoodwindperformance,Ibelievethisstudycanleadtopracticalchangesinthe
waywoodwindplayersbothperformandteach.Thisstudyprovidesafoundationforfuture
relatedfindings,andIhopethattheresultsofthisstudywillleadtofurtherexaminationofthe
effectsofrespiratorypressuresonwindplayers,leadingtogreaterpedagogicaltechniquesfor
thepreventionofperformancerelatedinjuries.
20
Gibson,C.(2007).CurrentTrendsinTreatingthePalateAirLeak(StressVelopharyngealInsufficiency).
(ClarinetFest)RetrievedAugust13,2015,fromInternationClarinetAssociation:
https://www.clarinet.org/clarinetFestArchive.asp?archive=30
53
APPENDIX
RESEARCHCONSENTFORMWITHIRBAPPROVAL
54
University of North Texas Institutional Review Board
Informed Consent Form
Before agreeing to participate in this research study, it is important that you read and understand
the following explanation of the purpose, benefits and risks of the study and how it will be
conducted.
Title of Study: Intraoral pressure and Sound Pressure in Woodwind Performance
Student Investigator: Micah Bowling, University of North Texas (UNT) Department of Music.
Supervising Investigator: Dr. Kris Chesky.
Purpose of the Study: You are being asked to participate in a research study, which involves
characterizing intraoral pressure (back pressure) in relation to sound pressure (volume output)
levels generated during performance on each of the woodwind instruments.
Study Procedures: You will be asked to play 2 short musical tasks on your instrument. A very
small (2mm diameter) plastic tube will be inserted into the corner of your mouth to measure
intraoral pressure. This will take about 30 minutes of your time.
ForeseeableRisks:Noforeseeablerisksareinvolvedinthisstudy.
BenefitstotheSubjectsorOthers:Thisstudyisnotexpectedtobeofanydirectbenefittoyou,
butwehopetolearnmoreabouttherelationshipbetweenintraoralpressureandsound
pressurelevelsinwoodwindperformance.Theresultsofthisstudymayleadothertostudy
intraoralpressureasatriggerforsofttissuedisordersinvolvedwithwoodwindperformance.
Youmaydiscoverthattheintraoralpressuremayexceedwellbeyondtheabilitytoincrease
soundoutput,whichcouldgiveyouforesightintoareastochangeorimprovedtheefficiencyof
yourplaying.
CompensationforParticipants:None
ProceduresforMaintainingConfidentialityofResearchRecords:Thesubjects’personally
identifiableinformationwillnotbecollected.Thesubjectswillberepresentedasnumberson
anygraphs,charts,orvisualrepresentationofdata.Theconfidentialityofyourindividual
informationwillbemaintainedinanypublicationsorpresentationsregardingthisstudy.
Questions about the Study: If you have any questions about the study, you may
contact Micah Bowling at [email protected] or Dr. Kris Chesky at
[email protected]
Review for the Protection of Participants: This research study has been
reviewed and approved by the UNT Institutional Review Board (IRB). The UNT
55
IRB can be contacted at (940) 565-3940 with any questions regarding the rights of
research subjects.
Research Participants’ Rights:
Your signature below indicates that you have read or have had read to you all of
the above and that you confirm all of the following:
•
•
•
•
•
•
Micah Bowling has explained the study to you and answered all of your
questions. You have been told the possible benefits and the potential risks
and/or discomforts of the study.
You understand that you do not have to take part in this study, and your
refusal to participate or your decision to withdraw will involve no penalty
or loss of rights or benefits. The study personnel may choose to stop your
participation at any time.
Your decision whether to participate or to withdraw from the study will
have no effect on your grade or standing in any course.
You understand why the study is being conducted and how it will be
performed.
You understand your rights as a research participant and you voluntarily
consent to participate in this study.
You have been told you will receive a copy of this form.
________________________________
Printed Name of Participant
________________________________
Signature of Participant
____________
Date
For the Student Investigator or Designee:
I certify that I have reviewed the contents of this form with the subject signing
above. I have explained the possible benefits and the potential risks and/or
discomforts of the study. It is my opinion that the participant understood the
explanation.
______________________________________
Signature of Student Investigator
____________
Date
56
Bibliography
Adduci,M.D.(2011).DynamicMeasurementofIntraoralpressureandSoundPressureWith
LaryngoscopicCharacterizationDuringOboePerformance.Denton,Texas.
Anastasio,A.a.(1971).MouthAirPressureandIntensityProfilesoftheOboe.Journalof
ResearchinMusicEducation,19,62-76.
Batchelor,G.(1967).AnIntroductiontoFluidDynamics.CambridgeUniversityPress.
Bouhuys,A.,Proctor,D.,&Mead,J.(1966).KineticAspectsofSinging.JournalofApplied
Physiology,21(2),483-96.
Bowdler,D.(1987).PharyngealPouches.InA.Kerr,&J.Groves,Laryngology(5thEditioned.,
pp.264-282).London.
Cutnell,J.,&Johnson,K.(2001).Physics(5thEditioned.).NewYork:JohnWileyandSonsInc.
Draper,M.,Ladefoged,P.,&Whitteridge,D.(1959).RespiratoryMusclesinSpeech.Journalof
SpeechandHearingResearch,2(1),16-27.
Giancoli,D.G.(2004).Physics:principleswithapplications.UpperSaddieRiver,NewJersey:
PearsonEducation.
Gibson,C.(2007).CurrentTrendsinTreatingthePalateAirLeak(StressVelopharyngeal
Insufficiency).(ClarinetFest)RetrievedAugust13,2015,fromInternationClarinet
Association:https://www.clarinet.org/clarinetFestArchive.asp?archive=30
Merriam-Webster.(n.d.).BackPressure.RetrievedJune20,2015,fromMerriam-Webster.com:
http://www.merriam-webster.com/dictionary/backpressure
Mulley,R.(2004).FlowofIndustrialFluids:TheoryandEquations.CRCPress..
Patton,K.,&Thibodeau,G.(2009).Anatomy&Physiology(7thEditioned.).Mosby.
Payne,A.J.(1987).IntraoralAirPressureDiscriminationforanOpenVersusClosedTube
PressureSystem.UniversityofFlorida.
SoundandNoise:CharacteristicsofSoundandtheDecibelScale.(n.d.).(Environmental
ProtectionDepartment:TheGovernmentofHongKong)RetrievedAugust12,2015,
fromEnvironmentalProtectionDepartment:
http://www.epd.gov.hk/epd/noise_education/web/ENG_EPD_HTML/m1/intro_5.html
Teal,L.(1963).TheArtofSaxophonePlaying.AlfredPublishingCo.Inc.
57