Anthropological Review • Vol. 61, pp. 75-8 3 , Poznaii 1998 Facial growth and remodeling in the australopithecines - a review K atarzyna A. Kaszycka Abstract The purpose o f this paper is to review the previous investigations o f the facial grow th and rem odeling patterns o f early hom inids (the australopithecines), and to present som e o f the problem s that arise from these kinds o f analysis. : Katarzyna A. Kaszycka 1998; Anthropological Review, vol. 61, Poznan 1998, pp. 7 5 -8 3 , figs 4, ISBN 83-8696935-0, ISSN 0033-2003 Introduction Growth o f the face is influenced by a variety o f factors which play different roles in different stages o f development. It appears that during the late prenatal and early postnatal stages, the dominant factor contributing to facial growth is the growth o f the cranial base, including the nasal capsule, and the nasal septum. Later, growth is known to occur by re modeling processes (apposition and re sorption), sutural growth, neural and synchondroseal growth, dental develop ment, and the development o f the maxil lary alveolar process. By age seven, once the anterior cranial base has become stable, the growth o f the midface is in fluenced mainly by the process o f down ward and forward displacement and pe riosteal remodeling [CARLSON 1985], The basic concept o f the growth and Institute o f Anthropology . Adam Mickiewicz University 61-701 Poznan, Poland remodeling of the craniofacial skeleton originated more than 200 years ago with the pioneer works o f J. Hunter [HUNTER 1771]. In the 1920s and 1930s Brash revised and developed Hunter’s “remo deling” theory claiming that cranial growth was due to ectocranial apposition and endocranial resorption [BRASH 1934]. During the 1940s-1960s three hypotheses were put forward to explain the mechanisms influencing midfacial growth. These were: the sutural hy pothesis (see e.g. PRITCHARD ET AL. [1956]), the nasal septum hypothesis [SCOTT 1953], and the functional matrix hypothesis [M O SS 1976]. Other major contributions to the study o f facial growth were made in the 1960s and 1970s by Enlow and Bjork. Enlow’s contribution consisted in making major generalizations about the facial growth of both humans and rhesus monkeys. In 1966 the author wrote: D etailed studies o f remodeling patterns in the facial skeleton o f extinct members o f the genus Homo as well as other related genera 76 Katarzyna A. Kaszycka and species, both living and fossil, are now needed. It should be determined if t e distinctive resorptive nature o f the forw ard p a rt o f the maxillary and mandibular arch is a specific characteristic o f H. sapiens. [E n lo w 1966a, p. 302]. Follow ing this directive, T. Brom age performed studies to answer the question o f how bones o f the face grew and rem odeled in extinct australopithecine species. The purpose o f this paper is to review tlie previous investigations o f the facial bone growth processes o f early hominids, and to present some o f the problems that arise from these kinds o f analysis. 1 Facial growth of Homo and Macaca A ccording to Enlow [EN LO W 1968; & H a r r i s 1964; ENLOW & 1965; D UTERLOO & ENLOW 1965], three principles apply to bone ENLOW BANG growth and remodeling: (1) The concept o f “area relocation” (the changing rela tive positions o f all areas within a bone); (2) The principle o f the “V” (the enlarging V involves deposition on its inner surface and resorption on its outer surface); and (3) The principle o f “cortical drift” (surfaces that face the actual direction o f growth are depository, while surfaces that face away from the direction o f growth are resorptive; the result is a drift movement o f the bone in the direction o f the depository surface), One o f the major points made in Enlow’s generalization is that the maxilla grows downward and forward by a process o f bone deposition on the posterior and superior surfaces. There are two major areas o f maxillary growth: the maxillary tuberosity, and the roof o f the oral cavity, both o f which receive new bone deposits. In contrast, the anterior surface o f the maxillary complex is resorptive in character. The mandible, like Fig. 1. T he distribution o f depository (light) and resorptive (dark) surfaces in (A) the rhesus m onkey, and (B) human faces. A fte r E n l o w [ 1966a] Facial growth and rem odeling in the australopithecines. the maxilla, is continuously repositioned in a forward and downward direction as actual new growth proceeds posteriorly; the mandibular ; condyle represents an important growth site. ENLOW [1966a, 1970, 1982] com pared and contrasted the remodeling changes that occur during the growth o f the human and rhesus monkey faces. The detailed distributions o f resorptive and depositionary surfaces were determined and mapped in the diagram (Fig. 1). His findings are as follows: (1) The general plan o f facial growth is similar in both species. (2) The m ajor differences exist in the muzzle area. In the monkey the whole anterior surface o f the m axilla is depositionary, w hile in the human the forward part o f the m axillary arch is resorptive. These differences, accord ing to Enlow, provide the basis for the reduced degree o f prognathism which is characteristic o f the human skull. (3) The anterior part o f the mandible also demonstrates differences. In the rhesus monkey, the entire labial side o f the mandible is depositionary, while in the human mandible the alveolar portion located between the mental foramina is resorptive. This could be one o f the rea sons for chin formation in the human mandible. The opposite (lingual) side o f the human mandible is entirely deposi tory, while in the rhesus monkey it is a combination o f resorption and deposi tion. This combined process produces the “simian sh e lf’. (4) Rem odeling differences in the zygomatic area also exist, although the general pattern, i.e., resorption at the anterior surfaces, rem ains the same for both species. 77 Facial growth in the australopithecines Brom age’s . study [BROM AGE 1985, 1989, 1992] is an “Enlowian” type o f study; his interpretations are based on concepts and principles o f craniofacial growth and remodeling taken from Enlow’s studies o f modern humans [ENLOW 1966b, E n l o w & B a n g 1965, E n l o w & HARRIS 1964], and from a comparative study o f Homo sapiens and Macaca mulatto [E n l o w 1966a, E n l o w 1982, D u t e r l o o & E n l o w 1970]. , Bromage used bone surface replicas to study bone formation and resorption with the scanning electron microscope. The periosteal surfaces o f immature early hominid specimens were analyzed. The australopithecine specimens were di vided into two groups [BROMAGE 1989]: (1) Australopithecus, including^, africanus and A. afarensis (10 specimens), and (2 ) Paranthropus, including P. robustus and P. boisei (15 specimens). The age range for the first group o f the early hominids (“gracile” australopithecines) was from 3.3 to 11.3 years, according to Bromage’s estimation based on pongid dental development [BROM AGE 1987, B r o m a g e & D e a n 1985], or from 5.0 to 15.6 years based on human-like dental ages at death taken by Bromage from M a n n [1975] and S k in n e r & S p e r b e r [1 9 8 2 ], The youngest specimen o f this group is one numbered LH 2 (mandible) with complete deciduous dentition and first perm anent m olars. The oldest specimen, STS 52 (maxilla and mandi ble), has all its permanent dentition with M 3 ju st erupting. The age range for the second group o f early hominids (“robust” australopithecines) is from 1.0 to 11.3 , based on pongid dental ages 78 Katarzyna A. Kaszycka [BROMAGE 1987], or from 2.0 to 15.4 years using the more conventional method o f M a n n [1975]. The specim en num bered SK 438 (m andibular fragm ent) w ith dm2 was the youngest specim en, w hile SK 52 (m axilla) was the oldest specim en - w ith com plete perm anent dentition —considered. As can be seen in Enlow’s work, and also according to Bromage, the bones of the face grow and change shape through a combination o f two processes: deposi tion and resorption. These are said to be the key mechanisms accounting for the different craniofacial forms in each species. Australopithecus africanus (the Taung child) was shown by BROMAGE [1985, 1989, 1992] to have an ape-like pattern o f facial growth and remodeling, while the facial growth o f the “robust” australopithecines (in Bromage’s papers Paranthropus) resembles that o f humans. The different degrees o f prognathism between these early hominids can be explained on the basis o f different re modeling patterns. Maps o f distribution o f bone deposits and locations o f bone resorption are presented in Fig. 2. B Fig. 2. Frontal and lateral views o f (A) A. africanus, and (B) A. robustus facial rem odeling. Light represents areas o f deposition, and dark represents areas o f resorption. A fter BROMAGE [1989] Facial growth and rem odeling in the australopithecines. As can be seen from Figure 2, Austra lopithecus africanus’ facial growth is. char acterized by bone deposition on the whole of the anteriorly-facing aspect o f the face. The “robust” australopithecines differ from the former by having resorptive areas on the anterior wall o f the temporal fossa, the “nasoalveolar clivus”, and the anterolateral comers o f the mandibular corpus. The two latter features are said to correspond to remodeling patterns that are characteristic o f modem humans [BROMAGE 1989], Downward facial growth in the “robust” australopithecines is opposed to downward and forward facial growth in A. africanus. Remodeling fields have four main at tributes, according to BROMAGE [1985]: size, shape, placement, and rate o f activity. Bromage suggests that the first three are the same for the Taung baby and the chimpan zee. Differences in the last one, i.e., the rate of activity o f remodeling fields, show that the Taung baby is not an ape. Discussion As was mentioned before, Enlow’s contribution to the study o f facial growth and remodeling was making generaliza tions about these processes. His studies were based on looking at the surface of the bone to establish whether it was re sorptive or depository. According to Enlow [e.g. ENLOW & BANG 1965], not much growth occurred in the sutures, and therefore practically all the growth was the result o f remodeling (deposition and resorption). After SCOTT [1953] put for ward the hypothesis that the maxilla grew in length by apposition o f its ante rior^, surface, Enlow [e.g. ENLOW 1966b] was"the first to report that the surface of the human maxilla was not depository but resorptive. 79 Another series o f major contributions to our understanding o f facial growth and remodeling was made by BJORK and SKIELLER [1972, 1976], Their longitudinal studies o f a group o f children, using metal lic implants as reference points, focused on individuals, and not on averages. Their findings were that while remodeling played a role in craniofacial growth, sutures were important too. The midface increases in height (vertically), depth (anteriorly) and width. An increase in maxillaiy height takes place by sutural growth and by ap position. Growth in width is not only a result o f remodeling processes but occurs by growth o f the median suture as well. In addition, growth in length o f the maxilla occurs suturally (toward the palatine bone) as well as appositionally in the maxillary tuberosities. B jo rk ’s n ext fin d in g [BJORK & SKIELLER 1976] w as that the anterior sur face o f the maxilla w as neither depository nor resorptive, but sagittally stable (from the age o f about 4 to 21). A lso, the anterior surface (contour) o f zygom atic process appears to be stable, in contrast to ENLOW and BANG’S [1965] classical v iew that the anterior surface o f that process is resorptive and the posterior surface is depository. Enlow also postulated that deposition took place on the posterior maxillary surface, Bjork argues, however, that this is not the case because sutures are able to grow. There are other problems with the point o f view of Enlow and Bromage. Firstly, these authors establish which portion o f a bone is depository and which is resorptive at the point o f death o f an individual. This does not allow a knowledge o f what hap pened during the lifetime of the individual. Everything, which can be observed, would have happened only recently. The next problem arises from looking at dead bones 80 Katarzyna A. Kaszycka to determine how much, for how long and how long ago growth occurred. These ¡questions simply cannot be answered from observations o f the bones. Yet another problem is that there is age variation in growth patterns. In order to account for this, growth series were studied, but then one general •pattern o f facial remodeling was presented as if there was no variation, and as if areas o f deposition and resorption were immutable for the entire life o f an individual. Finally, there is the problem o f individual variation. Bjork’s studies [BJORK & SKIELLER 1972, 1976] clearly reveal that not all individuals have the same growth and remodeling patterns. Bromage has said that the face becomes more prominent during growth if deposi tion o f bone on the front surfaces is com bined with resorption o f the back. There fore, according to him [B r o m a g e 1992], the Taung face, for example, is typical o f a monkey (or ape) because it does not have resorption areas as seen in modem humans. However, as BJORK and SKIELLER [1976] noticed, maxillary projection in the face (alveolar prognathism) depends not only on its growth in length, but may also be a re sult o f displacement and rotation o f the maxilla. In addition, there is little evidence that surface deposition could account for downward and forward midfacial growth in humans during the first seven years o f life [CARLSON : 1985]. It has, however, been noticed that in prognathic apes after a cer tain age, all maxillary growth in length is by surface deposition. In the phylogenetic development o f primates, prognathism decreases as a result of shortening of. the jaw s [BJORK 1951]. Among the australopithecines there are differences in the degree o f facial pro gnathism . The A. africanus face is pro gnathic, w hile the face o f the “robust” specimens is considered to be more orthognathic,'and therefore more like the Homo face. However, as RAK [1983] has pointed out, similar degrees o f prognathism in Homo and A. boisei reflect two different configurations (Fig. 3). In modem Homo, it Fig. 3. A comparison between (A) a prognathic chimpanzee, and two orthognathic primates - (B) “robust” australopithecine, and (C) modem Homo. After RAK [1983] Facial growth and rem odeling in the australopithecines. is not a result o f the retraction o f the palate as seen in the “robust” australopithecines, but a result o f reduction in the length o f the palate. In fact, when the length o f the palate is expressed as a percentage o f independent measurements, the index value in A. boisei does not differ from that of a chimpanzee. In contrast, A. ajriccmus has strong facial prognathism - the index o f prognathism can be as high as 137% [WOLPOFF 1975], The upper jaw and therefore the palate, project far anteriorly. The medial part of the midface is located more anteriorly than its lateral (peripheral) portion. Although all the australopithecine faces are prognathic, this feature in the “robust” forms is not as pronounced. The most orthognathic face is that o f A. boisei, where the index o f pro gnathism can be as low as 113%. Fig. 4. Lateral view o f the face o f (A) A. africanus, and (B) A. boisei. A fter R a k [1983] 81 , Generally, the medial part o f the face and the dental arcade are located more posteriorly in the “robust” specimens, while the lateral part o f the face is lo cated more anteriorly. With such a posi tion o f the peripheral face, i.e., the zy gomatic bones (see Fig. 4), the medial part becomes concave and the nose, in lateral view, is hidden behind it. This configuration is also a reason why the face o f the “robust” australopithecines seems to be more orthognathic. *** To sum up, one can say that although Bromage is probably right in what he observes, there are certain problems, as presented in this paper, with that kind o f analysis. While bones reflect remodeling processes, the whole o f the growth his tory o f bone is not reflected in the tissue itself. Detailed sequences o f growth changes, therefore, cannot all be recon structed. One additional point can be made here. Even if certain early hominids ex hibit remodeling patterns more consistent with macaques, and even if Enlow and Bromage are correct in claiming that this leads to, or is consistent with, greater maxillary prognathism, this means noth ing as far as human lineage and adapta tion/evolution are concerned. It may simply mean that in order to have pro gnathism one must have more bone deposition at the labial surface o f the maxillary complex. We already know that monkeys and apes tend to be more prognathic than modern humans, so by definition they must exhibit greater bone deposition along the surface o f the maxil lary complex, if we assume Enlow to be correct. One test o f this, which would still not be definitive with respect to 82 Katarzyna A. Kaszycka questions o f lineage, would be to look at remodeling patterns in prognathous vs. ortoganthous primates. Also, it would be interesting to examine the remodeling patterns in different humans with age: prognathous vs. orthognathous. References B j ÛRK A ., 1951, The nature o f facial prognathism and its relation to normal occlusion o f the teeth, A m . J. O rthod., 37: 106-124 B j Or k A ., V . S k iell er , 1972, Facial development an d tooth eruption, A m . J. O rthod., 62: 3 39-383 B jô r k A ., V . S k ieller , 1976, Postnatal growth and development o f the maxillary complex, [in:] Factors affecting the growth o f the mid fa ce, J; M cN am ara Jr. ed., C en ter fo r H um an G row th and D evelopm ent, U niversity o f M ichigan, A nn A rbor, pp. 61-99 B rash J.C .. 1934, Some problem s in the growth and developmental mechanics o f bone, E d in b urgh M ed. J .,n .s . 4th", 41: 305-387 B r o m a g e T .G ., 1985, Taurig fa cia l remodeling: a growth and development study, [in:] Hominid evolution: Past, present and future, P .V . T o b ias ed., A . L iss Inc., N e w Y ork, pp. 239-245 B r o m a g e T .G ., 1987, The biological and chroni cal maturation o f early hominids, J. H um . E vol., 16: 2 5 7 -2 7 2 B r o m a g e T .G ., 1989, Ontogeny o f the early hominid face, J. H um . E vol., 1 8 :7 5 1 -7 7 3 B r o m a g e T .G ., 1992, Faces from the past, N ew Sci., 11 January, pp. 38-41 B r o m a g e T .G ', M .C . D e a n , 1985 , Re-evaluation o f the age at death o f immature fo ssil homii : nids. N ature, 317: 525-527 C a r lso n D .S., 1985, Introduction to craniofacial biology. Growth and adaptation o f the cranio facial complex, C enter for Hum an Growth and Developm ent, University o f M ichigan, A nn A rbor D u ter l o o H .S., D .H . E n l o w , 1970, À compara tive study o f cranial growth in Homo and M acaca, A m . J. A nat., 127: 357-368 E n l o w D.H., 1966a, A comparative study o f facial growth in Homo and Macaca, Am. J. Phys. Anthrop., 24: 293-308 E n l o w D.H., 1966b, /( morphogenetic analysis o f fa cia l growth, Am. J. Orthod., 52: 283-299 E n l o w D.H.; 1968, The human face. An account o f the postnatal growth and development o f the craniofacial skeleton, Hoeber Med. Div., Harper & Row Publ., New York ENLOW D.H., 1982, Facial growth and develop ment in the Rhesus monkey, [in:] Handbook o f fa cia l growth. Second ed., W.B. Saunders, Philadelphia, pp. 283-293 E n l o w D.H., S. B ang, 1965, G rowth and re modeling o f the human maxilla, Am. J. Orthod., 51: 446-464 E n l o w D.H., D.B. H a r r is , 1964, A study o f the postnatal growth o f the human mandible, Am. : J. Orthod., 50: 25-50 H u n t e r J., 1771, The natural history o f the human teeth, explaining their structure, use, form a tion, growth, and disease, J. Johnson, London M ann A.E., 1975, Paleodemographic aspects o f the South African australopithecines, Univ. Pennsylvania Publ. No. 1, Philadelphia M oss M.L., 1976, The role o f the nasal septal cartilage in midfacial growth, [in:] Factors affecting the growth o f the midface, J. McNamara Jr. ed., Center for Human Growth and Development, University o f Michigan, Ann Arbor P r it c h a r d J.J., J.H. S c o t t , F.G. G ir g is , 1956, The structure and development o f cranial and fa cia l sutures, J. Anat., 90: 73 R a k Y., 1983, The australopithecine face, Acad. Press, N ew York SCOTT J.H., 1953, The growth o f the human face, Proc. Roy. Soc. Med., 47: 91-100 S k in n e r M.S., G.H. S p e r b e r , 1982, Atlas o f radiographs o f early man, A.R. Liss, New York W OLPOFF M.H., 1975, Some aspects o f human mandibular evolution, [in:] Determinants o f mandibular form and growth, J. McNamara Jr. ed., Center for Human Growth and Develop ment, University o f Michigan, Ann Arbor, pp. 1-64 Facial growth and rem odeling in the australopithecines.. 83 Streszczenie N a wzrastanie szkieletu tw arzy wpływa wiele czynników. W fazie okolourodzeniowej głów nym czynnikiem jest powiększanie się podstaw y czaszki, w tym ścian i przegrody jam y nosow ej. N ieco później, rozrost tw arzy odbyw a się dzięki procesom rem odelow ania (apozycji i resorpcji), w zrastania śródszwowego i w obrębie chrząstkozrostów , rozwo jow i zębów i wyrostka zębodołowego szczęki. Od 7 roku życia na rozrost tw arzy zasadniczo oddziałuje ju ż tylko proces dyslokacji ku dołowi i ku przodowi oraz rem odelowanie odokostnowe. Podstaw ow a koncepcja wzrostu i rem odelow ania szkieletu kraniofacjalnego liczy ponad 200 lat, a rozwój badań nad tą problem atyką nastąpił w naszym stuleciu dzięki pracom m .in. Brasha, Pritcharda, Scotta, M ossa, Enlow a i BjOrka. Celem przedstaw ianej pracy jest ocena dotychczasowych badań nad zagadnieniem w zrostu i rem odelow ania szkieletu twarzy u naszych przodków - australopiteków i zaprezentow anie niektórych problem ów, które pow stają przy tego rodzaju analizach. W kład Enlow a do badań nad wzrastaniem szkieletu tw arzy (lata 60. i 70.) polegał na stw orzeniu uogólnień doty czących zarów no człowieka ja k i małp. Jak wynika z je g o prac, kości twarzy rosną i zm ieniają kształt poprzez kom bi nację dwu procesów: apozycji i resorpcji. Jest to m echanizm w arunkujący m iędzygatunkow e zróżnicow anie kształtu twarzy. E nlo w [1966a, 1970, 1982] porów nał i zestawił przem iany w ynikające z rem odelow ania, które pojaw iają się podczas wzrostu tw arzy człow ieka i małpy rezusa. O znaczył obszary resorpcyjne i apozycyjne (przedstaw ione na rys. 1). W nioski Enlow a są następujące. (1) Ogólny plan wzrostu tw arzy u obu gatunków je s t podobny. (2) Podstaw o we różnice dotyczą okolicy pyska (szczęk). U m ałp cała przednia pow ierzchnia szczęki je s t m iejscem apozycji, pod czas gdy u człowieka w przedniej części łuku zębodołowego szczęki zachodzi resorpcja. (3) U rezusa cała policzkow a strona żuchw y je s t m iejscem apozycji, podczas gdy w przedniej części ludzkiej żuchw y, pom iędzy otworam i bródkowymi, kość ulega resorpcji. Przeciw na - językow a - strona żuchw y u człow ieka całkow icie podlega apozycji, u małp natom iast jest częściowo resorpcyjna, a częściowo apozycyjna, co pow oduje utworzenie tzw. „m ałpiej półki” . W latach 80. T. Brom age, w zorując się na pracach Enlowa, przeprow adził badania nad w zrostem i remodelowaniem kości tw arzy u w czesnych hom inidów. Brom age użył odcisków pow ierzchni kości tw arzoczaszek do badań form acji i resorpcji kości, korzystając z elektronowego m ikroskopu skaningowego. W ydzielił dw ie grupy wczesnych hom inidów - „m asywne” i „gracylne” australopiteki. U A. africanus B r o m a g e [1985, 1989, 1992] stw ierdził małpi typ rozrostu i rem odelow ania kości twarzy, podczas gdy u „m asywnych” australopiteków - ludzki. Z różnych wzorów rem odelowania w ynika zróżnicow any stopień prognatyzm u u w spom nianych grup hom inidów . M apy rozkładu apo zycji i resorpcji na kościach twarzy u australopiteków prezentuje rys. 2. Prace i uogólnienia Enlowa nie w yjaśniły jed n ak wszystkiego. B j Ork i S k ieller [1972, 1976], w wyniku badań longitudinalnych grupy dzieci, zwrócili uwagę na dodatkowy aspekt wzrostu i rem odelow ania kości tw arzy - znacze nie wzrostu śródszwowego. Stwierdzili także, że przednia pow ierzchnia szczęki nie je s t ani apozycyjna, ani resorpcyj na, ale strzałkowo stabilna (w w ieku od 4 do 21 lat). Są też inne problem y w ynikające z przyjęcia punktu w idzenia Enlowa i Brom age’a. Po pierwsze, autorzy ci posługiwali się kośćmi zm arłych osobników , z których m ożna odczytać procesy zachodzące krótko przed śm iercią. N a podstawie kości nie m ożna ustalić w jakiej fazie życia i ja k długo trwały procesy rem odelacyjne. Następnym problem em je s t fakt, że istnieje ontogenetyczna zm ienność w zorca w zra stania twarzy - nie m ożna w zw iązku z tym przedstaw iać jednego ogólnego w zorca rem odelow ania kości tw arzy oraz obszarów apozycji i resorpcji. Jest też problem indywidualnej zm ienności - prace B j Orka i S k ieller a [1972, 1976] dobitnie dowodzą, że nie w szyscy osobnicy m ają ten sam wzór wzrostu i rem odelow ania. Australopiteki m ają zróżnicow any stopień prognatyzm u twarzowego. Tw arz A. africanus je s t prognatyczna, pod czas gdy twarze „m asyw nych” australopiteków są bardziej ortognatyczne i w zw iązku z tym bardziej przypom inają twarze rodzaju Homo. Tym czasem , na co wskazuje R a k [1983], podobny stopień prognatyzm u Homo i A. boisei wynika z dwu różnych konfiguracji (rys. 3) - u w spółczesnego człow ieka je s t w ynikiem redukcji długości podniebie nia, a u „m asywnych” australopiteków, rezultatem cofnięcia podniebienia. Rów nież bardziej przednie położenie bocznych części tw arzy (kości jarzm ow ych) u A. boisei potęguje wrażenie ortognatyczności (rys. 4). C hociaż Brom age m a praw dopodobnie rację w tym, co pisze o rem odelow aniu, pozostają pew ne problem y. Kość odzw ierciedla procesy rem odelow ania, jed n ak nie cała historia wzrostu kości je s t utrw alona w tkance. W związku z tym, nie wszystkie sekw encje zm ian w zrastania m ożna szczegółowo zrekonstruow ać. Poza tym , naw et jeśli niektóre wczesne hom inidy m ają wzorce rem odelow ania zgodne z m ałpam i (co zdaniem Enlow a prowadzi do większego prognatyzm u), nie m a to znaczenia dla rekonstrukcji zm ian ewolucyjnych w ludzkiej linii.
© Copyright 2026 Paperzz