The Taylor Decomposition: A Unified Generalization of the

The Taylor Decomposition: A Unified Generalization of
the Oaxaca Method to Nonlinear Models
Stephen Bazen, Xavier Joutard
To cite this version:
Stephen Bazen, Xavier Joutard. The Taylor Decomposition: A Unified Generalization of the
Oaxaca Method to Nonlinear Models. 2013.
HAL Id: halshs-00828790
https://halshs.archives-ouvertes.fr/halshs-00828790
Submitted on 31 May 2013
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
Working Papers / Documents de travail
The Taylor Decomposition: A Unified Generalization
of the Oaxaca Method to Nonlinear Models
Stephen Bazen
Xavier Joutard
WP 2013 - Nr 32
!"
(
)
- $
$
!%
*+ %
*
,
&
"
" !"
'
"
'
.
2 & 13
#
!
42
*
'
" 5
/
""
0!
1
6
!'
!
"
6
""
2
#
)
"
!
+ %
" !
)
"
"
"
' #
#
"
%
!""
% "
%
"
'3
'
"
" ! "
"
!"
" !
"!
!
"
' % "
"
"
'#
"
) "" ")
!
)
"
"
"
"
!
#
%
!
#
)
" '
!
)
"
)
"
"
!
" ' #
-
7
"
)
! ! ""
8! "
"
! "
"
!
!
"
) 9
)
" /
! "
!
' #
+ %
%
:+ %
)
"
>
)
!
! 1
)
"!
" > ! ! ""
%
)
!
"
' #
!
?
;< =
!
*
% "
7 !
!
)
% "
?
!
@"
8!
7
!
' 2
: ;< =
" '#
"
!
8! )
%
! !
""
)
! "
"
+ %
"
)
)
%
!
'A
"
$
:
7
%
" !
"
"
!
" /
!
"' &!
@
:
"
@
B
!
!
"
$
!%
"
,
"
&
:
+ %
,
,
G D!
C=
"
"
)
!
)
<,
!
!
D!
"
F=
)
/
;=
#
='
1
"
@ !
+ %
"
)
'
"
!""!
"/
"
A
"
)
!
!
!
!
E,
" :
" :
+ %
"
;;C, D!
!
A
=
='
2
:
/
'B )
!
!
)
" '
"
!
!
"
"
+ %
!
' 2 9
! "
+ %
!
!
!
#
)
'
!
!
+ %
"
"/
"
/
#
!
!
! 7
)
"
"
%
!
' A
"" )
! 7
% "
" ' #
%
!"
"
+ %
)
9
"/
"
"
+ %
"
"/
"
"
"
"
!
' #
"+ %
9
#
!"
' #
%
+ %
!
"
%
"
""!
!
"
+ %
)
I
) "
% "
#
"
)
)
"
"
H
1"
:)
"
! ! I
"
!
"
#
'A
"
H % "
%
8!
'A
' A
!
"
1"
"
"
!"
"
"
G'
=
"
"
"
)
"
$
%
A
!
!
"/
!
)
+ %
"
%
'
"
% "
"" ) ' #
"
" "
=' #
:)
! $
% "
ε ' #
=
"
β
)
"
"
β +ε
:
"
"
=
) 9)
"
"
#
)
=
!
' #
! 1
!
=
: =
+ %
!
"
8!
:
!
β
+$&=
! "
!
"!
"
β
:
β =
"
)
)
!
'J
β −
∆=
β
!
!
! "
*
∆=
(β
−β
)+ β (
−
)
: =
!"
"" )
#
!
>
)
% "
! !
)
)
!
!
"
) !"
)
! ""
% "
>
!
' #
! !
1/
+ %
: ;<
"
' F;< 8!
=' A
"" )
'2
"!
"!
"
: = #
"
!
!
!
!
'
"
"
+$&
"
"' B )
+
#
: =
!
8! "
8! "
>)
/
>
8!
"
"
% "
*
*
β +
! "
"!
%
!
!
+$&
)
+ %
' '
=β
)
! "
"
"
! '
! )
!
−
*
"
! ) !"
)
=
)
'#
:=#
A
'#
"
"
" 'A
@"
: ;<
' G ;= >
=β
−
(
β − β
+
=β
−β
#
+
(β
−β
8!
)
β
+
)+ β
(
)
−
:G=
+$&
'+ %
8! "
: ;< =
:G=
"
"
'
: = 2"
!
)
""
%
)
%
!"
"
:
%
"
"
"
=' #
"
: =' #
+ %
*
(
)− ( ) =
=
( )β
( ) [β
−
( )β
−β
' A
%
!
"
( )β
:E=
)
"
)
+$&
: =
")
−
'
!"
: =
( )β
]+ ( )− ( ) β
(ε ) = (ε ) =
!
+
'
! " ε
"
!
: = ) ""
8! "
/
'
: = #
+ %
! K
" !"
(β
)
−β
%
β
!
!
!
"
% "
8!
(β
' A
)
−β
: =' #
!
/
%
%
! 8!
!
β
)
!
! !
% "
=β
8!
!
: =
%
+ %
:"
=
"
"
)
+$&
"+ %
"
"
"
"
) ""
% "
)
"
!
"
) ""
%
!
-
"
!
7
8! "
≠
' J!
!
!
"
8! "
"
!
!
1
:E=
%
"
"
'
!
) !"
"
)
+ %
"
"!
%
"
%
! "
" ' #
'#
"
!
( )
%
"
"
""
"
% "
"
!
"
=
!
1
"
)
"
:
+ %
"
)' #
"
'&
%
8!
!"
! "9 "
8!
"
: =
(
"
"
"
:=
'
'#
"
#
"
'
%
=
:G=' A
'
=
( )
""
' #
" + %
"
−
"
!
)
+$&
=
=
#
!
"
!
"" )
( )
"
8! "
G
∑
=
)
*
=
!
'#
!
!
%
' # ! )
+ %
"
"
"
*
: =
"
: =
"
"
−
∑
−
=
: =
!
!
!
"!
"
)
-
"/
'
7
:
−
!
8! "
" @ !
: =
=
! !"
" )
"
"
&
:
"
"
−
C=
: ;;C=
!
#
!
!
"
=
)
:
D!
: =' #
=*
( )− ( )+ ( )− ( )
(
"
:
G=
!
"!
!
=
( )− ( )'
! "9 "
"
8!
"
"! =
: =
' #
"
( )− ( ) ,
=
=
"!
A
,
"!
∑
=
−
"
:F=
! "
=
'
:
∑ ( )'
=
)
A
!"
=
"" )
B )
"
"/
)
)
+ %
"
(
L
( )
*
: =
:F=
'
"
8!
-
)− ( ) ≠ (
( )
−
!
(
!
7
8! "
)− ( )
)
*
:<=
"
'A
)
% "
)
8! "
)
/
!
:
!
"
+ %
! !
=
'#
! ) 9
"
!
9
!
)
!
( )
"
' &
"
−
!
"
%
)
9
)
!
=
" '
"!
( )− ( ) *
"
8! "
8! "
"
"
"
"
"9 "
"
2
: =
"
"
%
%
!
'
!
8!
"
""
%
!
'L
:' '
+ %
)
) ""
"
!
=' &
) ""
""
%
"
% "
)
"
!
!""!
:
F=
:<=
)
"
"
8! "
D!
"
:
;==' 3
"
/
%
A
"
'
%
" H+ %
"
!
!
:
) 9
!
( )− ( )'
: =
"
#
"
%
( )
!
:
8!
: = )
( )=
"
"
2
"
"
9
"/
I
"
"
!"
%
)
!
!
"
!
"
+ %
'#
)
!
1"
"
"
"
'
+ %
"
"
!
")
!
!
! "
!
! "
H
! 1
!
' #
!
' # !
"I
!
"
!
! "
'B )
"
!
"
%
)
'A
K!
!
) !"
)
)
%
""
K
"
)
9
!
8!
)
)
+ %
%
)
"
−
"
=
' #
"
"
)
)
!
! "
'
A
"/
"
"
+ %
!
!
%
' L ! ""
! K!
" :
M
'A
!
( )− ( )=
=
)
K
=
)
"!
)
!
!
:! ! ""
"!
! 7
*
'#
!"
"
"
)
"
) ""
)
"
"
:
"!
"!
H+ %
1"
!
I
( )− ( )
!
% "
A
"
) ""
:F='
2
+ %
1
)
)
(
%
:
)
)
!
:
'2
!"
"
%
( )=
*
( )
"
"!
2 !
=
( ) = ( )+
( )− ( )
!
)− (
"
−
+
!
! 7
( )
)
∂ (
= 
 ∂
∂
)
∂
"
"
!
!
!
! "
'&
"
"
#
)
%
* 2 :
!
: =
D! :
( )
( )− ( ) =
G=
'B
1"
'#
) "" "
( )=
β
"
β −
"
9
"
'
1
!
β +ε
!
β
β
=
E
%
8!
"
'
: =
!
= #
!"
I
( )=
=
8!
"!
!
!
( )=
)
'
"
!
H+ %
:C=
( )
!
"" )
"
+
%
+ %
*#
−
) !"
−
A
( )
)
""
8!
*
!
!
"
( )
+ %
( )− ( ) = ( )− ( )+
%


' &!
−
"
#
∂
( ) 
=
" !"
8!
∂
( ) ⋅⋅⋅⋅⋅
'
( )
!
:C=' 3
β =
+$&
(β
"
−β
!
!
)>)
!
8!
:F=
*
% "
!
'
!"
!
"
"
'
( )
: =
=β
−
: =&
!
−
"
% "
'
""
8! "
/
= '
!
#
*
( )− ( ) =
(β
)+ β (
−β
)
* #
"
!
>
)
−
( )
!
!
+ %
: ='
β =
8! "
#
:
"
: ;< = )
)
+ %
"
( )
−
8! "
)
β
"
=' #
/
β
"!
"!
8!
!
%
!
+ %
: ;< =
'
+ %
%
)
+ %
) " @"
"
2
"
8!
"
#
"
"
%
!
! '#
#
"
'
*
!
( )
=
' $
" '#
"" )
=[
−
#
)
)
F
"
"
)
)
!
*
( ) − ( )] +
!"
( )
=
( )
+ %
−
+
:C7=
8!
!
( )=
:
!
'
*A
"
) 9
:
!
"!
" %
"!
"!
=
! ) !"
*
=
(
)= ( )
A
"
% "
"
!
"
' #
)
% "
"
!
:
)
2@
"
) !"
! ! ""
!
"
"
!"
"
"!
! ")
!
)
!
)
'#
! " )
)
%
!
=' A
"
!
)
!
!
9
!
'
'2
'#
"
"
"
!
!"
/
"
"
"
)
!
!
:
:
)
K!
%
" '
!
)
"
!
!
:
#
) ""
"
!
"
' A
"
"
"
% "
7< '
)
/
!
#
:=#
)
"
'
!
! '2
"
"
#
"!
"
H
( )− ( ) = ( )− ( )+ ( )− ( )
#
!
8! "
:C7=
*
( )
A
−
)
+
=[
( ) − ( )]
! !
%
"
'
:
=
! "
' '
−
?
!
J =' +
""
A
" =
)
% "
J=' A
!""
"
'
"I
: =L "9
#
D! :
"
@ !
%
"
:
=' A
)
!
"
!
8! "
/
#
)
=' # !
:
) "
"
)
%
'
−
8! "
:
8!
/
/
) ""
C=
% "
/
"
#
:
"
"
!
&
"
8! "
/
@
=
)
"
$
&
= )
*
( )
−
=
( )
)
"
"
: = #
−
=(
%
"
)
" /
"
!
! !
% "
( )
−
#
+
#
=
( )
'#
'
"
*
−
+
( )
−
8!
!
))
=
'
=
"
!
G=
+K+
"
K!
! ! "
( )
−
+
!
!
"!
'A
/
: =#
#
"
"
'
"
)
!
! "
' A
8!
"!
'
"
!
"
"
"
)
!
""
C
: = $9
"
!
#
8!
"!
8!
#
'#
) !"
!
"
' #
! K
%
%
"!
!
!
% "
) ""
'
"
#
"
%
"
)
"
)
!
"
' A
#
' A
! !
"
"
%
( )
%
=' #
!
+ %
"
%
"
"
!
!
:
!
!"
( )
)
!"
'
+ %
!
"
' 8! "
"
"
"
+$&
!
"!
%
")
!
:
!
!
( )=
"
% "
!
:
=
"
' #
!
"
#
"
! !
"
"
)
"
8!
!
! >
" )'
"
)
!
9
/
"
8!
'A
' A
"
"
!
!
"
:
!
"
'
"
"
) !"
8! "
−
" :
!
=
-
7
'
!"
"
"
"
!
#
"
'A
! "
!
)
!
""
:
!
=' #
)
!
)
"!
8! "
J
G=
"
/
−
)
!
!
@ !
&
:
/ 'A
)
"
!
!
=' &
#
"
+ %
8!
" !
"
:
= D!
)
" :
"
=
!
) 9
"
/
!
" :)
""=' A
!
"
+ %
G=
:
<=
"
"
"
"
=;' +
" :
)
!"
"
/
)
:
"
! !
"
!
C= )
= '
"
"
2"
)
! !
"
:
! "
!
D! :
!
"1
% "
)
"
!"
"
'
"!
"
:
%
#
θ =
"
"
'B
!
'
# $%
$
"
(
)=
)
!
(
=
! !"
)= (
β
!
!
)
=
'&
%
)= (
β
:
"
=' L
%
"
"
−
(
=Φ
! !"
=φ
(
β
(
=Φ
β
!
)
*
)
!
)
"
β β
)
#
"
"" )
(
*
β
)
)
)− Φ (
)− Φ (
β
β
<
!
"9 "
β
:β =
"
*
)
)+
β
−
Φ
<
!
+
φ
"
" '
%
"
!"
#
"
'
!
"
(
)
β =
%
!
(
+
β
(
)
β
"
"
*
)
β
"9 "
#
)
"
!"
"*
−
(
=
(
=
β
β
)− (
)− (
β
β
)
)+
β
−
β
)
'#
β
!
=
(
"
β
)= (
β
)
−
(
"" )
β
) ×β
<
)
"
≤
*
'
!
"
"
" :
"
+
)
"!
5
β
"
"
"
: ;;C= D! :
)
G=
"
:
!
E==' A
%
!
"9 "
"" )
"
)
!
*
∑ (
=
"
β
=
)
#
!
"
H
"I
"
*
−
∑ (
=
β
=
)− ∑ (
)+ ∑ (
β
=
=
β
)− ∑ (
β
=
)
"
!
"
8!
-
7
8! "
B )
!
≠
∑ Φ(
)
!
9
"
% "
/
% "
'
!"
!
"
:
%
"
E='
"
β '
=
#
"
)
! K
!
!
%
!
' #
"
&!
"
8!
%
!
"9 "
'
# $& '
L
)
! !"
!
!
!
!
"" "
/
*
λ(
( ) = ( )
( )
− ( )
)=
)
!
!
'#
)
/
)
! #
"
) ""
"
'A
"
/
!
) !"
"" "
"
K
"
"
"
"
"" :
" !"
:
%
"
@ 9
'#
"
#
""
="
;;
@ /
- !
='
2
)
!
%
(
#
"
) !"
!
*
)= ( )
!
!
"
!
"" !
/
!
"" )
!
8! "
" 9
:
2
%
=*
#
"
!
"
""
/
) ""
'
(
A
)
)= ∫ ( )
∞
"" )
∫ ( )
∞
=
" 9
)
/
!"
%
)
+
)
/
!"
!
!
/
>
!""
" !
"
"
!
)=α
A
(
α−
%
β
α>
!
"
""
*
"!
(
)
+α 

 α 
) = Γ
≡ Γ (α )
(

−

β
)
β

α
)
β =−
β
α
#
!
'2
#
)
)
"
"
!
'A
!
"!
*
"
'
!""
*
λ(
% "
#
! ")
(
)− (
)
%
) − Γ(α
β
(
)
 +α
= Γ
 α
"
%
#
(
) = Γ (α )
"



"
!""
"
"
(
β
)>
β
'#
Γ(
' 2
"" )
β
β
/
) ""
1"
*
γ−
γ > '
)
γ
/
'
!
<γ <
'
!
!
"
)=
>
<α <
!
<γ <
+
/
α>
γ
λ( ) =
+
−
α=
)
)
!
'#
%
!
γ >
)
*
(
)=

 +
 γ
( )
)

− 
γ
!
!""
!"
)+
β
=−
"
!
(−
β ≡
'#
%
(γ )
"
)
(−
*
(γ )
(−
β
)
!"
"
! !
) "" ""
β
)<
)
"
' #
#
"
(
)− (
A
(−
) = (γ )
)−
β
(−
(γ )
)+
β
β
−
+
""
'
# !
%
"
"
' "
"
!
) !"
!
!
" %
'
!
"
() *
+
A
+
J
!
"
""
!
:
- !
' N
!
%
"
!
! "
%
"
"
"
"9 "
"
"
!
"
)
"
! "
" "
!
"
=
"
)
"
!
!
'#
!
A$+
)
"
"
! "
'
"
!
"
"
' #
"
)
*
!
"
)
#
$
F
!
""
)
EG
E
'<N' L
:
3! ""
"
* "
"
" 2/
"
"
"
!
!
=' A
!
EG )
"
"
"
@ /
!
"
" "
"9 "
"
)
"
!
)
"
"
"
) '#
) ""
!
! ! "
#
"
'
#
"
# !
!
"
"
"
! "
!
"
(
=
)
)− (
"
)= (
β
)( − (
β
"
)− (
β
)+
( )=
β
( )(
−
:
-
7
N=
!
8!
8! "
=' #
! ! "
)
)
) !"
"
"
"
!
" '2
:1 ' E=*
=
" ' #
!
" )
1
!
!
"
8!
"
"
9
'
"
)
"
"
" )
"
" )
!
! "
"
'#
9
"
+
( )) ' #
+
'G<N >
!
#
'#
' FN
: '
)
' 2
β
"
"
!
*
))
β
'
" '+
"
!
"
β
)
"
"
(
"
"
"
"
! "7
"
' #
"
:
"
,)
+
2
!
!
!
"
%
!
"
!
E
"
%
K
""
!
'#
)
"
3
G !
"
!
"" )
!
)
!
"
'
"
)
" !
)
G' #
B )
"
)
!"
'
'#
%
!
"
" )
)
!
!
:
! "
" *
!
!
!
!
!
"
!
"
""
!
""
9 '#
!
)
"
!
"
"" )
)
!" ! "
!
!
"
!
"" )
%
)
!
!
"
%
"" '
2
' #
G
!
""
'2
!
!
7
!
G=' #
'A
"
"
'
"
"
)
"
"!
!
#
!
!
""
!
:
""
"
" /
'#
)
"
!
='
"
"
"
! "
9
"
!
)
)
"
%
!
9
"
"
"
!
!
)
!"
"
!
!
!
! "
'A
!
!
! " "
'#
"
)
"
CN
!
)
"
"
)
)
>
!
"
#
"
"
"
!
9 'A
G' #
!
!
"
"9 "
!
'
)
!
#
#
#
!
8!
"
!
!
!
"1
)
!
/
)=α
(
α−
β
!
+α 

 α 
) = Γ
"
'A
!""
!
*
)
%
(
)
!
!
λ(
)
'
"
)
!
(
β
:
) = Γ(α ) (
#
!
"
)
=*
β
)
β =−
)
"
!
β
α
"!
")
!"
#
" E' #
!""
!
!
"
"
'#
!
)
" !
/
!
"
' 2
*
"
) ""
)
"
!
!
"
"
!
!
"
"
!
!
"!
!
!
!
!
!
"
)
!
"
""
!
"
!
"
"
!
' #
)
)
"
#
#
!
! "
!
!
"
:
= !
*
( ) − ( ) = Γ (α )
+ β ( − )+
=
!
'
%
"
)
!
"
)
!
"
( ) = Γ (α ) (
: =
(
β
β
) − Γ(α
(
)
β
)
)
! " )
:
)
=
)
' #
"1
!
!
' #
' F
:
#
" F=
:
'EG
'<
>
7
K
)
!
' #
%
!
!"
=
!
'
!
'#
)
"
:
! ! "
!
'C
""
=' #
N' #
!
!
8! "
"
"
9 !
'CF
>
!
"
!
)
"
) ""
!
!
)
! @
/
+ %
%
8!
#
)
#
#
"
"
:
"
"
=
'A
!
"! ' A
!
"
"
!
% "
?
1
?
7
"
!
)
" !
"
"
1"
" >
&
@ %1
>
'#
"
"
"!
#
1/
)
#
"
7
8!
" "
!
!
-
!
>
!
!
8!
!
%' #
"
!"
'#
"
%
"
"
% "
/
)
7
"
'
"
! !
!
"
!""
! "
"
'
%>
!
'
"!
!
"
"
!
!
#
"
"
8! "
'
!
"
"
"
%
2
)
3
2 9
#"
K
*
/
:
= .
+
L
$
'
2/
3'
+
@ 9
' 3! ""
J
%
#
!
"
J
-
"
"
&
!
%
:
C= 2
%
J
"
*
!
@
!
2 K
*
B
"
0
&
"
= #
.
F'
!
1
" 1
"
"
/
$
:
"
@!
/
2"
;<1
"
=
"
+
@"
;
/
1+ %
"" '
"
.
@"
:
/
"
!
/
.
"
@
E 1 <G'
!
"
1F
!
=
:
- !
!
"
"
" /
O
"
'
"
!
!
0
&
&
!
G: = > C'
"
&
#
@ /
F=* H3
: ;CE=
*
@ !
:
I0
3
!
@
!
2'
"
-
"
" '
: ;< =
*
!
! ! "
C G F1GFE'
J ! "
:
"
E= 2
%
@"
" 0
"
#
&
$
!%
%
"
1+ %
8!
E1 F'
"
.
&
:
=J
"
2
!
1
*
'
!
&
"
"
1
)
1
2
"
G=
*
)
"
: ;;C= J
F
%
+ %
8!
:
"
0
"
'
B "
"
+ %
"
"
E1
"
"
'
: ;< =
" 1
"
"
!
"
9
G F< 1< ;'
"
)
J
"
3
!""!
"
J
"
!"
"
;
*
:
GE A
:
'
;= J
!"
3/
&!
$
2
!
"
!
/
1 F '
=J
!
5
L
&! D!
.
@
!
J
'
:
4
=
!
5
"
4
'
"
1
"
! " "
D!
:
=J
&!
:
D!
&! :
C
D!
" !
= J
!"
"
!
&!
"
$
@
3/
'
G= J
"
<E1 C '
&! :
! " 0
"
'
%
GE A
%
F=
2
)
C
:
<= 2
"
%
+ %
.
*
!
E1
'
"/
#
"
"
"
L
"
!
"
:
!
"
!""1
=
! "
2
"
' <
'
: ' =
: '
&
"
)
/
' E
=
<'G
: 'GE=
: 'G =
'F<E
'F;C
: 'G<=
: 'GF=
<' E
<' F
:;'<G=
:;'< =
' C
1 '
' ;
'CG
: ';<;=
"
J
<'C
'C
$
"
1 '
: ' F=
'<;
'<C
: 'G =
: 'G =
<GF
!
G
'
F
#
"
$
"
"
!
"
!
"
"
' <;
' GC
: ' C=
: ' <=
1 '
1 ' GG
: '
! "
2
"
=
)
: ' EC=
: ' FC=
1 ' GG
1 '
: '
: '
=
' G
: ' <G=
&
"
/
=
1 ';;
: ' C=
"
: '
1 'E
' EG
$
"
<GF
<
=
' C<
: '
=
'<F;
: ' CE=
G
F
"
#
"
#
"
!
"
:
=
(
(
(
β
β
J
β
)
)
'F
C'GE
*
)
' F
'<F
& ! ! "
'
> ' E
1 '<F
!
"
"
"
1 '<;
! "
'
C
1 ' C<
"
"
1 ' GC
"
)
'
1 ' C;
F
#
" G
"
!
J
L
!
"
;'E<
:
=
!
"
:
"
$
!
"
"
&
#
' E
'
"
'E
'EG
: '< =
: '< =
C'<C
;' G
: ' <=
: ' E=
/
" E 2
1 '<E
: 'C<=
';<
=
'EG
:;'C =
: 'CF=
!
:
:C'EF=
"
=
'
E <
"
"!
' F
;;C
#
"
!
"
!
J
!
"
!
"
"
'GG;
';<;
: ' GE=
: ' ; =
1 ' GE
1 ' FE
: '
: '
=
'
$
!
"
' G
"
: '
!""
' CG
: ' C=
&
"
/
1 '
: '
;=
'
=
E <
1 '
E=
'
: ' G=
'E
1 '
: '
<=
' FE
: '
C=
;;C
' C
#
" F #
=
"
!
( ) = Γ(α ) (
( ) = Γ (α ) (
)
)
β
β
J
( ) = Γ (α ) (
"
!
:
'<;
;'G <
)=
β
!
& ! ! "
*
' EF
'
'F;
'FF
'C
"
!
"
!
"
"!
"
'G;F
' F
"
' GE
'CF
+
(6
/
2
7
#
[
%
"!
]
( )= ∫
:
"
−∫
( )=
)
"
!
*
!
!
!
#
"
()
"
( )=
=
()
A
#
1
−
8! "
1
!
()
"
!
∫ ()
= ∫( −
=[
]
!
*
( ))
−∫
()
=
−∫
()
=
( )
%
'