The Taylor Decomposition: A Unified Generalization of the Oaxaca Method to Nonlinear Models Stephen Bazen, Xavier Joutard To cite this version: Stephen Bazen, Xavier Joutard. The Taylor Decomposition: A Unified Generalization of the Oaxaca Method to Nonlinear Models. 2013. HAL Id: halshs-00828790 https://halshs.archives-ouvertes.fr/halshs-00828790 Submitted on 31 May 2013 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Working Papers / Documents de travail The Taylor Decomposition: A Unified Generalization of the Oaxaca Method to Nonlinear Models Stephen Bazen Xavier Joutard WP 2013 - Nr 32 !" ( ) - $ $ !% *+ % * , & " " !" ' " ' . 2 & 13 # ! 42 * ' " 5 / "" 0! 1 6 !' ! " 6 "" 2 # ) " ! + % " ! ) " " " ' # # " % !"" % " % " '3 ' " " ! " " !" " ! "! ! " ' % " " " '# " ) "" ") ! ) " " " " ! # % ! # ) " ' ! ) " ) " " ! " ' # - 7 " ) ! ! "" 8! " " ! " " ! ! " ) 9 ) " / ! " ! ' # + % % :+ % ) " > ) ! ! 1 ) "! " > ! ! "" % ) ! " ' # ! ? ;< = ! * % " 7 ! ! ) % " ? ! @" 8! 7 ! ' 2 : ;< = " '# " ! 8! ) % ! ! "" ) ! " " + % " ) ) % ! 'A " $ : 7 % " ! " " ! " / ! "' &! @ : " @ B ! ! " $ !% " , " & : + % , , G D! C= " " ) ! ) <, ! ! D! " F= ) / ;= # =' 1 " @ ! + % " ) ' " !""! "/ " A " ) ! ! ! ! E, " : " : + % " ;;C, D! ! A = =' 2 : / 'B ) ! ! ) " ' " ! ! " " + % ! ' 2 9 ! " + % ! ! ! # ) ' ! ! + % " "/ " / # ! ! ! 7 ) " " % ! ' A "" ) ! 7 % " " ' # % !" " + % ) 9 "/ " " + % " "/ " " " " ! ' # "+ % 9 # !" ' # % + % ! " % " ""! ! " + % ) I ) " % " # " ) ) " " H 1" :) " ! ! I " ! " # 'A " H % " % 8! 'A ' A ! " 1" " " !" " " G' = " " " ) " $ % A ! ! "/ ! ) + % " % ' " % " "" ) ' # " " " =' # :) ! $ % " ε ' # = " β ) " " β +ε : " " = ) 9) " " # ) = ! ' # ! 1 ! = : = + % ! " 8! : ! β +$&= ! " ! "! " β : β = " ) ) ! 'J β − ∆= β ! ! ! " * ∆= (β −β )+ β ( − ) : = !" "" ) # ! > ) % " ! ! ) ) ! ! " ) !" ) ! "" % " > ! ' # ! ! 1/ + % : ;< " ' F;< 8! =' A "" ) '2 "! "! " : = # " ! ! ! ! ' " " +$& " "' B ) + # : = ! 8! " 8! " >) / > 8! " " % " * * β + ! " "! % ! ! +$& ) + % ' ' =β ) ! " " " ! ' ! ) ! − * " ! ) !" ) = ) '# :=# A '# " " " 'A @" : ;< ' G ;= > =β − ( β − β + =β −β # + (β −β 8! ) β + )+ β ( ) − :G= +$& '+ % 8! " : ;< = :G= " " ' : = 2" ! ) "" % ) % !" " : % " " " =' # " : =' # + % * ( )− ( ) = = ( )β ( ) [β − ( )β −β ' A % ! " ( )β :E= ) " ) +$& : = ") − ' !" : = ( )β ]+ ( )− ( ) β (ε ) = (ε ) = ! + ' ! " ε " ! : = ) "" 8! " / ' : = # + % ! K " !" (β ) −β % β ! ! ! " % " 8! (β ' A ) −β : =' # ! / % % ! 8! ! β ) ! ! ! % " =β 8! ! : = % + % :" = " " ) +$& "+ % " " " " ) "" % " ) " ! " ) "" % ! - " ! 7 8! " ≠ ' J! ! ! " 8! " " ! ! 1 :E= % " " ' ! ) !" " ) + % " "! % " % ! " " ' # '# " ! ( ) % " " "" " % " " ! " = ! 1 " ) " : + % " )' # " '& % 8! !" ! "9 " 8! " : = ( " " " := ' '# " # " ' % = :G=' A ' = ( ) "" ' # " + % " − " ! ) +$& = = # ! " ! "" ) ( ) " 8! " G ∑ = ) * = ! '# ! ! % ' # ! ) + % " " " * : = " : = " " − ∑ − = : = ! ! ! "! " ) - "/ ' 7 : − ! 8! " " @ ! : = = ! !" " ) " " & : " " − C= : ;;C= ! # ! ! " = ) : D! : =' # =* ( )− ( )+ ( )− ( ) ( " : G= ! "! ! = ( )− ( )' ! "9 " " 8! " "! = : = ' # " ( )− ( ) , = = "! A , "! ∑ = − " :F= ! " = ' : ∑ ( )' = ) A !" = "" ) B ) " "/ ) ) + % " ( L ( ) * : = :F= ' " 8! - )− ( ) ≠ ( ( ) − ! ( ! 7 8! " )− ( ) ) * :<= " 'A ) % " ) 8! " ) / ! : ! " + % ! ! = '# ! ) 9 " ! 9 ! ) ! ( ) " ' & " − ! " % ) 9 ) ! = " ' "! ( )− ( ) * " 8! " 8! " " " " " "9 " " 2 : = " " % % ! ' ! 8! " "" % ! 'L :' ' + % ) ) "" " ! =' & ) "" "" % " % " ) " ! !""! : F= :<= ) " " 8! " D! " : ;==' 3 " / % A " ' % " H+ % " ! ! : ) 9 ! ( )− ( )' : = " # " % ( ) ! : 8! : = ) ( )= " " 2 " " 9 "/ I " " !" % ) ! ! " ! " + % '# ) ! 1" " " " ' + % " " ! ") ! ! ! " ! ! " H ! 1 ! ' # ! ' # ! "I ! " ! ! " 'B ) " ! " % ) 'A K! ! ) !" ) ) % "" K " ) 9 ! 8! ) ) + % % ) " − " = ' # " " ) ) ! ! " ' A "/ " " + % ! ! % ' L ! "" ! K! " : M 'A ! ( )− ( )= = ) K = ) "! ) ! ! :! ! "" "! ! 7 * '# !" " " ) " ) "" ) " " : "! "! H+ % 1" ! I ( )− ( ) ! % " A " ) "" :F=' 2 + % 1 ) ) ( % : ) ) ! : '2 !" " % ( )= * ( ) " "! 2 ! = ( ) = ( )+ ( )− ( ) ! )− ( " − + ! ! 7 ( ) ) ∂ ( = ∂ ∂ ) ∂ " " ! ! ! ! " '& " " # ) % * 2 : ! : = D! : ( ) ( )− ( ) = G= 'B 1" '# ) "" " ( )= β " β − " 9 " ' 1 ! β +ε ! β β = E % 8! " ' : = ! = # !" I ( )= = 8! "! ! ! ( )= ) ' " ! H+ % :C= ( ) ! "" ) " + % + % *# − ) !" − A ( ) ) "" 8! * ! ! " ( ) + % ( )− ( ) = ( )− ( )+ % ' &! − " # ∂ ( ) = " !" 8! ∂ ( ) ⋅⋅⋅⋅⋅ ' ( ) ! :C=' 3 β = +$& (β " −β ! ! )>) ! 8! :F= * % " ! ' !" ! " " ' ( ) : = =β − : =& ! − " % " ' "" 8! " / = ' ! # * ( )− ( ) = (β )+ β ( −β ) * # " ! > ) − ( ) ! ! + % : =' β = 8! " # : " : ;< = ) ) + % " ( ) − 8! " ) β " =' # / β "! "! 8! ! % ! + % : ;< = ' + % % ) + % ) " @" " 2 " 8! " # " " % ! ! '# # " ' * ! ( ) = ' $ " '# "" ) =[ − # ) ) F " " ) ) ! * ( ) − ( )] + !" ( ) = ( ) + % − + :C7= 8! ! ( )= : ! ' *A " ) 9 : ! "! " % "! "! = ! ) !" * = ( )= ( ) A " % " " ! " ' # ) % " " ! : ) 2@ " ) !" ! ! "" ! " " !" " "! ! ") ! ) ! ) '# ! " ) ) % ! =' A " ! ) ! ! 9 ! ' '2 '# " " " ! !" / " " " ) ! ! : : ) K! % " ' ! ) " ! ! : # ) "" " ! " ' A " " " % " 7< ' ) / ! # :=# ) " ' ! ! '2 " " # "! " H ( )− ( ) = ( )− ( )+ ( )− ( ) # ! 8! " :C7= * ( ) A − ) + =[ ( ) − ( )] ! ! % " ' : = ! " ' ' − ? ! J =' + "" A " = ) % " J=' A !"" " ' "I : =L "9 # D! : " @ ! % " : =' A ) ! " ! 8! " / # ) =' # ! : ) " " ) % ' − 8! " : 8! / / ) "" C= % " / " # : " " ! & " 8! " / @ = ) " $ & = ) * ( ) − = ( ) ) " " : = # − =( % " ) " / " ! ! ! % " ( ) − # + # = ( ) '# ' " * − + ( ) − 8! ! )) = ' = " ! G= +K+ " K! ! ! " ( ) − + ! ! "! 'A / : =# # " " ' " ) ! ! " ' A 8! "! ' " ! " " " ) ! "" C : = $9 " ! # 8! "! 8! # '# ) !" ! " ' # ! K % % "! ! ! % " ) "" ' " # " % " ) " ) ! " ' A # ' A ! ! " " % ( ) % =' # ! + % " % " " ! ! : ! !" ( ) ) !" ' + % ! " ' 8! " " " " +$& ! "! % ") ! : ! ! ( )= " % " ! : = " ' # ! " # " ! ! " " ) " 8! ! ! > " )' " ) ! 9 / " 8! 'A ' A " " ! ! " : ! " ' " " ) !" 8! " − " : ! = - 7 ' !" " " " ! # " 'A ! " ! ) ! "" : ! =' # ) ! ) "! 8! " J G= " / − ) ! ! @ ! & : / 'A ) " ! ! =' & # " + % 8! " ! " : = D! ) " : " = ! ) 9 " / ! " :) ""=' A ! " + % G= : <= " " " " =;' + " : ) !" " / ) : " ! ! " ! C= ) = ' " " 2" ) ! ! " : ! " ! D! : ! "1 % " ) " !" " ' "! " : % # θ = " " 'B ! ' # $% $ " ( )= ) ! ( = ! !" )= ( β ! ! ) = '& % )= ( β : " =' L % " " − ( =Φ ! !" =φ ( β ( =Φ β ! ) * ) ! ) " β β ) # " "" ) ( * β ) ) )− Φ ( )− Φ ( β β < ! "9 " β :β = " * ) )+ β − Φ < ! + φ " " ' % " !" # " ' ! " ( ) β = % ! ( + β ( ) β " " * ) β "9 " # ) " !" "* − ( = ( = β β )− ( )− ( β β ) )+ β − β ) '# β ! = ( " β )= ( β ) − ( "" ) β ) ×β < ) " ≤ * ' ! " " " : " + ) "! 5 β " " " : ;;C= D! : ) G= " : ! E==' A % ! "9 " "" ) " ) ! * ∑ ( = " β = ) # ! " H "I " * − ∑ ( = β = )− ∑ ( )+ ∑ ( β = = β )− ∑ ( β = ) " ! " 8! - 7 8! " B ) ! ≠ ∑ Φ( ) ! 9 " % " / % " ' !" ! " : % " E=' " β ' = # " ) ! K ! ! % ! ' # " &! " 8! % ! "9 " ' # $& ' L ) ! !" ! ! ! ! "" " / * λ( ( ) = ( ) ( ) − ( ) )= ) ! ! '# ) / ) ! # " ) "" " 'A " / ! ) !" "" " " K " " " " "" : " !" : % " @ 9 '# " # "" =" ;; @ / - ! =' 2 ) ! % ( # " ) !" ! * )= ( ) ! ! " ! "" ! / ! "" ) ! 8! " " 9 : 2 % =* # " ! " "" / ) "" ' ( A ) )= ∫ ( ) ∞ "" ) ∫ ( ) ∞ = " 9 ) / !" % ) + ) / !" ! ! / > !"" " ! " " ! )=α A ( α− % β α> ! " "" * "! ( ) +α α ) = Γ ≡ Γ (α ) ( − β ) β α ) β =− β α # ! '2 # ) ) " " ! 'A ! "! * " ' !"" * λ( % " # ! ") ( )− ( ) % ) − Γ(α β ( ) +α = Γ α " % # ( ) = Γ (α ) " " !"" " " ( β )> β '# Γ( ' 2 "" ) β β / ) "" 1" * γ− γ > ' ) γ / ' ! <γ < ' ! ! " )= > <α < ! <γ < + / α> γ λ( ) = + − α= ) ) ! '# % ! γ > ) * ( )= + γ ( ) ) − γ ! !"" !" )+ β =− " ! (− β ≡ '# % (γ ) " ) (− * (γ ) (− β ) !" " ! ! ) "" "" β )< ) " ' # # " ( )− ( A (− ) = (γ ) )− β (− (γ ) )+ β β − + "" ' # ! % " " ' " " ! ) !" ! ! " % ' ! " () * + A + J ! " "" ! : - ! ' N ! % " ! ! " % " " " "9 " " " ! " ) " ! " " " ! " = " ) " ! ! '# ! A$+ ) " " ! " ' " ! " " ' # " ) * ! " ) # $ F ! "" ) EG E '<N' L : 3! "" " * " " " 2/ " " " ! ! =' A ! EG ) " " " @ / ! " " " "9 " " ) " ! ) " " " ) '# ) "" ! ! ! " # " ' # " # ! ! " " " ! " ! " ( = ) )− ( " )= ( β )( − ( β " )− ( β )+ ( )= β ( )( − : - 7 N= ! 8! 8! " =' # ! ! " ) ) ) !" " " " ! " '2 :1 ' E=* = " ' # ! " ) 1 ! ! " 8! " " 9 ' " ) " " " ) " " ) ! ! " " '# 9 " + ( )) ' # + 'G<N > ! # '# ' FN : ' ) ' 2 β " " ! * )) β ' " '+ " ! " β ) " " ( " " " " ! "7 " ' # " : " ,) + 2 ! ! ! " % ! " ! E " % K "" ! '# ) " 3 G ! " ! "" ) ! ) ! " ' " ) " ! ) G' # B ) " ) !" ' '# % ! " " ) ) ! ! : ! " " * ! ! ! ! ! " ! " "" ! "" 9 '# ! ) " ! " "" ) ) !" ! " ! ! " ! "" ) % ) ! ! " % "" ' 2 ' # G ! "" '2 ! ! 7 ! G=' # 'A " " ' " " ) " "! ! # ! ! "" ! : "" " " / '# ) " ! =' " " " ! " 9 " ! ) ) " % ! 9 " " " ! ! ) !" " ! ! ! ! " 'A ! ! ! " " '# " ) " CN ! ) " " ) ) > ! " # " " " ! 9 'A G' # ! ! " "9 " ! ' ) ! # # # ! 8! " ! ! ! "1 ) ! / )=α ( α− β ! +α α ) = Γ " 'A !"" ! * ) % ( ) ! ! λ( ) ' " ) ! ( β : ) = Γ(α ) ( # ! " ) =* β ) β =− ) " ! β α "! ") !" # " E' # !"" ! ! " " '# ! ) " ! / ! " ' 2 * " ) "" ) " ! ! " " ! ! " " ! ! "! ! ! ! ! ! " ) ! " "" ! " ! " " ! ' # ) ) " # # ! ! " ! ! " : = ! * ( ) − ( ) = Γ (α ) + β ( − )+ = ! ' % " ) ! " ) ! " ( ) = Γ (α ) ( : = ( β β ) − Γ(α ( ) β ) ) ! " ) : ) = ) ' # "1 ! ! ' # ' F : # " F= : 'EG '< > 7 K ) ! ' # % ! !" = ! ' ! '# ) " : ! ! " ! 'C "" =' # N' # ! ! 8! " " " 9 ! 'CF > ! " ! ) " ) "" ! ! ) ! @ / + % % 8! # ) # # " " : " " = 'A ! "! ' A ! " " ! % " ? 1 ? 7 " ! ) " ! " " 1" " > & @ %1 > '# " " "! # 1/ ) # " 7 8! " " ! ! - ! > ! ! 8! ! %' # " !" '# " % " " % " / ) 7 " ' " ! ! ! " !"" ! " " ' %> ! ' "! ! " " ! ! # " " 8! " ' ! " " " % 2 ) 3 2 9 #" K * / : = . + L $ ' 2/ 3' + @ 9 ' 3! "" J % # ! " J - " " & ! % : C= 2 % J " * ! @ ! 2 K * B " 0 & " = # . F' ! 1 " 1 " " / $ : " @! / 2" ;<1 " = " + @" ; / 1+ % "" ' " . @" : / " ! / . " @ E 1 <G' ! " 1F ! = : - ! ! " " " / O " ' " ! ! 0 & & ! G: = > C' " & # @ / F=* H3 : ;CE= * @ ! : I0 3 ! @ ! 2' " - " " ' : ;< = * ! ! ! " C G F1GFE' J ! " : " E= 2 % @" " 0 " # & $ !% % " 1+ % 8! E1 F' " . & : =J " 2 ! 1 * ' ! & " " 1 ) 1 2 " G= * ) " : ;;C= J F % + % 8! : " 0 " ' B " " + % " " E1 " " ' : ;< = " 1 " " ! " 9 G F< 1< ;' " ) J " 3 !""! " J " !" " ; * : GE A : ' ;= J !" 3/ &! $ 2 ! " ! / 1 F ' =J ! 5 L &! D! . @ ! J ' : 4 = ! 5 " 4 ' " 1 " ! " " D! : =J &! : D! &! : C D! " ! = J !" " ! &! " $ @ 3/ ' G= J " <E1 C ' &! : ! " 0 " ' % GE A % F= 2 ) C : <= 2 " % + % . * ! E1 ' "/ # " " " L " ! " : ! " !""1 = ! " 2 " ' < ' : ' = : ' & " ) / ' E = <'G : 'GE= : 'G = 'F<E 'F;C : 'G<= : 'GF= <' E <' F :;'<G= :;'< = ' C 1 ' ' ; 'CG : ';<;= " J <'C 'C $ " 1 ' : ' F= '<; '<C : 'G = : 'G = <GF ! G ' F # " $ " " ! " ! " " ' <; ' GC : ' C= : ' <= 1 ' 1 ' GG : ' ! " 2 " = ) : ' EC= : ' FC= 1 ' GG 1 ' : ' : ' = ' G : ' <G= & " / = 1 ';; : ' C= " : ' 1 'E ' EG $ " <GF < = ' C< : ' = '<F; : ' CE= G F " # " # " ! " : = ( ( ( β β J β ) ) 'F C'GE * ) ' F '<F & ! ! " ' > ' E 1 '<F ! " " " 1 '<; ! " ' C 1 ' C< " " 1 ' GC " ) ' 1 ' C; F # " G " ! J L ! " ;'E< : = ! " : " $ ! " " & # ' E ' " 'E 'EG : '< = : '< = C'<C ;' G : ' <= : ' E= / " E 2 1 '<E : 'C<= ';< = 'EG :;'C = : 'CF= ! : :C'EF= " = ' E < " "! ' F ;;C # " ! " ! J ! " ! " " 'GG; ';<; : ' GE= : ' ; = 1 ' GE 1 ' FE : ' : ' = ' $ ! " ' G " : ' !"" ' CG : ' C= & " / 1 ' : ' ;= ' = E < 1 ' E= ' : ' G= 'E 1 ' : ' <= ' FE : ' C= ;;C ' C # " F # = " ! ( ) = Γ(α ) ( ( ) = Γ (α ) ( ) ) β β J ( ) = Γ (α ) ( " ! : '<; ;'G < )= β ! & ! ! " * ' EF ' 'F; 'FF 'C " ! " ! " "! " 'G;F ' F " ' GE 'CF + (6 / 2 7 # [ % "! ] ( )= ∫ : " −∫ ( )= ) " ! * ! ! ! # " () " ( )= = () A # 1 − 8! " 1 ! () " ! ∫ () = ∫( − =[ ] ! * ( )) −∫ () = −∫ () = ( ) % '
© Copyright 2026 Paperzz