CHAPTER 6: Ideal Diatomic Gas [q q q q ] Q ~ rot vib tr el N for N indistinguishable molecules N! ⎡ 2π ( m1 + m2 ) kT ⎤ qtr = ⎢ ⎥ V 2 h ⎣ ⎦ We will exam this more closely later 3/2 Actually, we also need to consider nuclear spin and its ramifications for the rotational partition function. Assuming a heteronuclear diatomic qrot = 1 + 3e −2θ r /T + 5e −6θ r /T + ... high T replace sum by ∫ → qrot 8π 2 IkT = = θr h2 2 ⎤ T ⎡ 1 θr 1 ⎛ θr ⎞ qrot (T ) = ⎢1 + + + ...⎥ θ r ⎢⎣ 3 T 15 ⎜⎝ T ⎟⎠ ⎥⎦ Erot = NkT + ... T The extra terms result from doing a better sum → integral transformation CV ,rot = Nk + ... T q = homonuclear diatomic rot 2θ r keeping only the leading term symm # (# indistinguishable orientations) The total wave function is either antisymmetric (fermions) or symmetric (bosons) wrt interchange of the nuclei Ψtot = Ψtr Ψrot Ψvib Ψel Ψnuc consider H2: nuclear spins = 1/2 (fermions) nuclear spin functions aβ − β a S αβ + β a αα ββ T para ortho nuclear spin rot S (‐) J even (+) T (+) J odd (‐) nuclei of spin I statistical weight 3 2I + 1 spin states per nucleus qrot ,nucl ≠ qrot qnucl if θ r << T 1 1 ∞ T −θ r J ( J +1) / T 2 J 1 e dJ ≈ ≈ ≈ + = ( ) ∑ ∑ ∑ ∫ 0 2 2 2θ r J even J odd J qrot ,nucl ( 2 I + 1) ~ 2θ r 2 = qrot (T )qnucl T 2θ r ( 2 I + 1) need θ r / T < 0.2 to be valid 2 1 + In the above and following discussion, we assume a Σ g electronic state Half‐integral spin I ( 2 I + 1) ( I + 1)(2 I + 1) antisymm nuclear spin function – even J symm nuclear spin function – odd J ( I +1)( 2I +1) +I ( 2I +1) =( 2I +1) Integral spin I ( 2 I + 1) ( I + 1)(2 I + 1) antisymm nuclear spin function – odd J symm nuclear spin function – even J Integral spin qrot ,nucl = ( I + 1)( 2 I + 1) ∑ ( 2 J + 1)e −θr J ( J +1) / T J even + I ( 2 I + 1) ∑ ( 2 J + 1) e θ r J ( J +1) / T J odd prefactors switched for nuclei of ½ integral spin 2 H2 θ r = 85.3 ( K ) qrot ,mol = ∑ ( 2 J + 1) e largest θr value −θ r J ( J +1) / T J even para H2 is 100% para at T = 0 → 25% para at high T + 3∑ ( 2 J + 1) e −θ r J ( J +1) / T J odd ortho If at equilibrium Measurements of Cv vs. T: disagreement between theory and experiment problem O ↔ P interconversion slow so high temperature distribution locked in as sample is cooled for most homonuclear diatomics don’t have to worry about this other than the factor of 2 symmetry #) Due to rotational levels being much closer together qe = ωe1e De / kT + ωe 2 e −ε 2 / kT + ... De using free atoms as the zero of energy – generally need only retain the 1st term 8π 2 IkT − β hv /2 ⎛ 2π mkT ⎞ De / kT − β hv −1 q=⎜ V e 1 e ω e − ( ) e1 ⎟ 2 σ h2 ⎝ h ⎠ 3/2 D E hv / kT 5 hv = + + hv / kT − e NkT 2 2kT ( e − 1) kT 2 Cv 5 ⎛ hv ⎞ e = +⎜ ⎟ Nk 2 ⎝ kT ⎠ ( e hv / kT − 1)2 hv / kT E= assumes no low‐lying electronically states 5 Nhv hv ⎞ ⎛ NkT + hv / kT − ⎜ De − ⎟ N 2 e −1 ⎝ 2 ⎠ does not contribute to heat capacity pV = NkT <E> +AnQ T ⎡⎛ 2π mkT ⎞3/ 2 Ve5 / 2 ⎤ ⎛ 8π 2 IkTe ⎞ S = An ⎢ ⎜ ⎥ + An ⎜ ⎟ ⎟ 2 2 Nk h N h σ ⎠ ⎢⎣⎝ ⎥⎦ ⎝ ⎠ hv / kT + hv / kT − An (1 − e − hv / kT ) + An ωel e −1 S= μ0 8π 2 IkT hv ⎛ 2π mkT ⎞ = − An ⎜ − A + kT n ⎟ 2 kT σ h2 2kT ⎝ h ⎠ D + An (1 − e − hv / kT ) − e − An ωel kT 3/ 2 For general polyatomic molecules we don’t have a closed form for the rot. energy levels. So it would appear that we can’t simply extend the procedure followed for diatomics.
© Copyright 2026 Paperzz