Math 201 Lecture 30: Fourier Cosine and Sine Series Mar. 23, 2012 • Many examples here are taken from the textbook. The first number in () refers to the problem number in the UA Custom edition, the second number in () refers to the problem number in the 8th edition. 0. Fourier Series and Pointwise Convergence • Fourier Series Expansion: Given f (x) defined for −L < x < L, its Fourier series reads ∞ h i nπx a0 X nπx ancos f (x) ∼ + + bn sin , L 2 L with an = • 1 L Z L f (x) cos −L nπx dx; L bn = 1 L Z L f (x) sin −L nπx dx. L (2) Pointwise Convergence: First extend f periodically (that is into a periodic function with period 2 L). Then If f is continuous at x0, then ◦ ∞ a0 X + 2 n=1 n an cos o n π x0 n π x0 + bn sin = f (x0) L L (3) If f has a jump (from fleft to fright) at x0, then ◦ ∞ a0 X + 2 n=1 • (1) n=1 n an cos o 1 n π x0 n π x0 = [fleft + fright]. + bn sin 2 L L (4) Some pitfalls in computing Fourier series. Example 1. Find the Fourier series representation of the function f (x) = cos2x, (5) − π < x < π. The following is a wrong solution. Wrong Solution from 201 Exams of Earlier Years. L = π f (x) ∼ a0 = 1 π Z π cos2x dx = −π 2 π Z a0 + 2 ∞ X nπx L = n x. [an cos (n x) + bn sin (n x)]. (6) n=1 π cos2 x dx = 0 2 π Z π 0 1 + cos (2 x) 2 dx = 1 π Z π dx + 0 1. 1 π Z π cos (2 x) dx = 0 (7) an = = = = = = Z π 1 cos2 x cos (n x) dx π −π Z 2 π 1 + cos (2 x) cos (n x) dx π Z0 2 Z 1 π 1 π cos (n x) dx + cos (2 x) cos (n x) dx π 0 Zπ π 0 1 1 1 sin (n x)N π0 + [cos (2 − n) x + cos (2 + n) x] dx π2 0 nπ Z Z π π 1 1 cos (2 − n) x dx + cos (2 + n) x dx 2π 0 2π 0 1 1 sin (2 − n) xN π0 + sin (2 + n) xN π0 =0. 2 π (2 − n) 2 π (2 + n) 1 (8) Math 201 Lecture 30: Fourier Cosine and Sine Series 2 bn = 0 for all n because cos2x is an even function. So 1 cos2x ∼ . 2 (9) Remark 2. 1. Using pointwise convergence to show that the answer is definitely wrong. (Periodic extension of cos2x is continuous everywhere so its Fourier series should converge to cos2x for all x, so 1/2 is definitely wrong) 2. Spot the mistake in the calculation. (Division by 2 − n – The calculation for an is wrong for an = 2.) 1 1 3. Is there anyway to obtain this particular Fourier expansion superfast? (cos2 = 2 + 2 cos (2 x) is P a already of the form 20 + ∞ n=1 [an cos (n x) + bn sin (n x)] so it has to be the Fourier expansion). 1. Fourier, Fourier Cosine, Fourier Sine • Recall ◦ Fourier series: − Related to the eigenvalue problem X ′′ − K X = 0; − X(−L) = X(L); X ′(−L) = X ′(L); Base functions: nπx nπx , sin , n = 1, 2, 3, cos L L Expansion formulas: ∞ h i X a nπx nπx ancos f (x) ∼ 0 + + bn sin , 2 L L n=1 with Z Z 1 L nπx nπx 1 L dx; bn = dx. f (x) cos f (x) sin an = L −L L L L −L 1, − ◦ (11) (12) (13) Fourier Cosine series: − Related to the eigenvalue problem X ′′ − K X = 0; − Base functions: 1, − Expansion formulas: 2 an = L Fourier Sine series: (15) (16) Z L f (x) cos 0 nπx dx. L (17) Related to the eigenvalue problem Base functions: sin − n = 1, 2, 3, ∞ a0 X nπx , + ancos 2 L X ′′ − K X = 0; − (14) n=1 with − X ′(0) = X ′(L) = 0. nπx cos , L f (x) ∼ ◦ (10) Expansion formulas: nπx , L f (x) ∼ ∞ X n=1 X(0) = X(L) = 0. n = 1, 2, 3, nπx ; bnsin L (18) (19) (20) Mar. 23, 2012 with 2 bn = L Z L f (x) sin 0 3 nπx dx. L (21) Clearly there should be some connections. • In this lecture we will: 1. Clarify this connection; 2. Discuss pointwise convergence of Fourier Cosine and Sine series. 2. Basic Information • Fourier Cosine and Fourier Sine as special cases of Fourier. ◦ Odd and even extensions. Consider a function f (x) defined on 0 < x < L. Let’s define its “odd extension” and “even extension” as f (x) 0<x<L f (x) 0 < x < L fo(x) = ; fe(x) = . (22) −f (−x) −L < x < 0 f (−x) −L < x < 0 Note that fo and fe are functions defined on −L < x < L. ◦ Fourier series of fo and fe. Let’s compute the Fourier series for fo and fe. − Fourier series for fo: fo(x) ∼ ∞ h i nπx nπx a0 X + ancos + bn sin , L L 2 (23) n=1 with an Z nπx 1 L fo(x) cos = dx L L −L Z L Z 1 0 nπx nπx 1 dx + dx fo(x) cos fo(x) cos = L −L L L L 0 Z Z 1 0 1 L nπx nπx dx − dx. = f (x) cos f (−x) cos L −L L 0 L L (24) Now to evaluate the 2nd integral, we do a change of variable: t = −x dx = −dt which leads to Z Z nπx 1 0 n π (−t) 1 0 f (−x) cos f (t) cos dx = (−dt) L L −L L L L Z 0 nπt 1 dt f (t) cos = − L L L Z L 1 nπt = dt. f (t) cos L 0 L Thus Z Z 1 L 1 L nπx nπt dx − dt = 0. an = f (x) cos f (t) cos L 0 L 0 L L Similarly we can compute Z 1 L nπx bn = fo(x) sin dx L −L L Z L Z 1 0 nπx nπx 1 dx − dx f (x) sin f (−x) sin = L −L L L L 0 Z L nπx 2 f (x) sin = dx. L L 0 (25) (26) (27) (28) Math 201 Lecture 30: Fourier Cosine and Sine Series 4 Summarizing, we see that the Fourier series for fo is Z ∞ X 2 L nπx nπx bnsin with bn = dx. f (x) sin L 0 L L (29) n=1 This is exactly the Fourier Sine series for f . Theorem 3. Let f (x) be defined on 0 < x < L. Let fo(x) be its odd extension to −L < x < L. Then the Fourier sine series for f (x) is the same as the Fourier series for fo(x) (in the sense that they look exactly the same). − Fourier series for fe: fe(x) ∼ ∞ h i a0 X nπx nπx + ancos + bn sin , 2 L L (30) n=1 We have an = = = = Z nπx 1 L fe(x) cos dx L L −L Z L Z 1 0 nπx nπx 1 dx + dx fe(x) cos fe(x) cos L −L L L L 0 Z Z 1 0 nπx nπx 1 L dx + dx f (x) cos f (−x) cos L −L L L L 0 Z L nπx 2 f (x) cos dx. L L 0 (31) and similar calculation gives It follows that 1 bn = L Z L fe(x) sin −L nπx dx = 0. L (32) Theorem 4. Let f (x) be defined on 0 < x < L. Let fe(x) be its even extension to −L < x < L. Then the Fourier cosine series for f (x) is the same as the Fourier series for fo(x) (in the sense that they look exactly the same). • Pointwise convergence for Fourier Cosine and Fourier Sine. ◦ Fourier Cosine series. Given f (x) defined for 0 < x < L, to obtain the function that is the pointwise sum of the Fourier Cosine series of f , 1. Do an even extension of f to fe; 2. Obtain the sum of the Fourier cosine series using the pointwise convergence result for the Fourier sereis for fe (Extend fe periodically. ...). ◦ Fourier Sine series. Given f (x) defined for 0 < x < L, to obtain the function that is the pointwise sum of the Fourier Sine series of f , 1. Do an odd extension of f to fo; 2. Obtain the sum of the Fourier cosine series using the pointwise convergence result for the Fourier sereis for fo (Extend fo periodically, ...). 3. Examples Example 5. Consider the function f (x) = a) Plot the function. 1−x 0<x61 . 1 1<x62 (33) Mar. 23, 2012 5 b) Plot its odd-periodic and even-periodic extensions over (−6, 6). c) Compute its Fourier Cosine and Sine expansions. d) Plot the functions to which the Fourier Cosine and Fourier Sine expansions converge to. Solution. a) 1 2 1 0 1−x Note that the function is only defined for 0 < x 6 2 so it is not defined outside. b) Odd-Periodic 0 Even-Periodic 0 c) As f (x) is defined for 0 < x 6 2, we see that L = 2. • Fourier Cosine: an = Recalling 2 L Z L 0 we have an = Z 2 nπx nπx dx = f (x) cos dx. 2 L 0 1−x 0<x61 . f (x) = 1 1<x62 Z 2 nπx nπx (1 − x) cos dx + cos dx. 2 2 1 f (x) cos Z 0 1 First compute a0: a0 = Z 1 (1 − x) dx + 0 Z 1 2 3 dx = . 2 (34) (35) (36) (37) Math 201 Lecture 30: Fourier Cosine and Sine Series 6 Next 1 Z 2 nπx nπx (1 − x) cos dx + cos dx 2 2 0 Z 1 h i 1 nπx 2 2 nπx 2 = (1 − x) d sin + sin N1 2 nπ 0 nπ 2 Z h i 1 2 nπx 1 nπ 2 nπx (1 − x) sin d(1 − x) + sin (n π) − sin N sin = 0− nπ 2 2 nπ 2 0 Z 1 nπx 2 2 nπ = 0−0+ sin dx − sin 2 nπ n π 2 0 4 nπx 1 2 nπ = − 2 2 cos N 0 − n π sin 2 n π h 2 i 4 nπ nπ 2 = − 2 2 cos sin −1 − n π 2 2 nπ nπ nπ 4 4 2 sin = 2 2 − 2 2 cos − . (38) 2 2 n π n π nπ Now since 0 n odd 0 n even nπ nπ = 1 n=4k = 1 n=4k+1 , sin (39) cos 2 2 −1 n = 4 k + 2 −1 n = 4 k + 3 we have 0 n=4k 4 2 2 2− n=4k+1 n π nπ . (40) an = 8 n=4k+2 2 2 n π 2 4 2 2+ n=4k+3 nπ n π an = Z The Fourier cosine series is f (x) ∼ with an given as above. • ∞ nπx a0 X + an cos 2 2 (41) n=1 Fourier Sine: We have Z 2 Z 2 L nπx nπx bn = dx = f (x) sin dx f (x) sin L 0 2 L Z0 1 Z 2 nπx nπx = (1 − x) sin dx + sin dx 2 2 0 1 Z 1 i h 2 2 nπx nπx 2 − = − (1 − x) d cos cos N1 nπ nπ 0 2 2 Z 1 nπx 1 2 nπx (1 − x) cos d(1 − x) N − cos = − 0 2 nπ 2 h i 0 2 nπ − cos (n π) − cos nπ 2 Z 1 2 nπx = − 0−1+ cos dx nπ 2 0 h i 2 nπ − cos (n π) − cos nπ 2 2 nπx 1 2 −1 + sin N0 = − nπ 2 nπ h i nπ 2 cos (n π) − cos − nπ 2 h i 2 4 2 nπ nπ = − 2 2 sin − cos (n π) − cos . (42) nπ n π nπ 2 2 Mar. 23, 2012 7 Now again using 0 n odd nπ cos = 1 n=4k , 2 −1 n = 4 k + 2 0 n even nπ = 1 n=4k+1 sin 2 −1 n = 4 k + 3 together with cos (n π) = (−1)n , (43) (44) we have The Fourier sine series is 2 n π 4 − 4 2 2 bn = n π n π 2 − nπ 4 4 + n π n2 π 2 f (x) ∼ ∞ X n=4k n=4k+1 . n=4k+3 bn sin n=1 nπx 2 with bn given by the above formulas. d) The functions the Fourier cosine and Fourier sine series converge to: in red: Fourier sine: 0 Fourier cosine: 0 (45) n=4k+2 (46)
© Copyright 2026 Paperzz