PRACTICE PROBLEMS PARK, BAE JUN Quadratic equations Math114 Section302 & 308 (1) Let f (x) = x2 + 6x + 11. Determin the following(if none, write “none00 ). (a) Complete the square. f (x) = (x + 3)2 − 9 + 11 = (x + 3)2 + 2 (b) Vertex (−3, 2) (c) Find the Maximum and Minimum. Maximum : None Minimum : 2 at x = −3 1 2 PARK, BAE JUN (d) x-intercept and y-intercept For x-intercept, f (x) = 0 ⇒ x2 + 6x + 11 = 0 Since b2 − 4ac = 36 − 44 = −8 < 0, there is no real solution of the equation. ∴ there is no x-intercept. For y-intercept, Find f (0). ⇒ f (0) = 11 ∴ y-intercept is (0, 11) Intervals over which f is (e) increasing and (f) decreasing. Increasing on (−3, ∞) Decreasing on (−∞, −3) (g)Sketch the graph of f (x). Label all intercepts and the vertex. SECTION 302 & 308 3 (2) Let f (x) = −2x2 + 12x − 16. Determin the following(if none, write “none00 ). (a) Complete the square. f (x) = −2(x2 − 6x + 9) + 18 − 16 = −2(x − 3)2 + 2 (b) Vertex (3, 2) (c) Find the Maximum and Minimum. Maximum : 2 at x = 3 Minimum : None (d) x-intercept and y-intercept f (x) = 0 ⇒ −2x2 +12x−16 = 0 ⇒ x2 −6x+8 = 0 ⇒ (x−2)(x−4) = 0 ⇒ x = 2, 4 ∴ x-intercept : (2, 0), (4, 0) f (0) = −16 ∴ y-intercept : (0, −16) 4 PARK, BAE JUN Intervals over which f is (e) increasing and (f) decreasing. Increasing on (−∞, 3) Decreasing on (3, ∞) (g)Sketch the graph of f (x). Label all intercepts and the vertex. SECTION 302 & 308 (3) Let f (x) = −2x2 − 12x − 11. Determin the following(if none, write “none00 ). (a) Complete the square. f (x) = −2(x2 + 6x + 9) + 18 − 11 = −2(x + 3)2 + 7 (b) Vertex (−3, 7) (c) Find the Maximum and Minimum. Maximum : 7 at x = −3 Minimum : None (d) x-intersecept and y-intercept 2 2 f (x) = 0 ⇒ −2x √ √ − 12x − 11 = 0 ⇒√2x + 12x + 11√= 0 −12 ± 144 − 88 −12 ± 56 −12 ± 2 14 14 ⇒x= = = ⇒ x = −3 ± 4 4 √ 4 2 √ 14 14 ∴ x-intercept : (−3 + , 0), (−3 − , 0) 2 2 f (0) = −11 ∴ y-intercept : (0, −11) 5 6 PARK, BAE JUN Intervals over which f is (e) increasing and (f) decreasing. Increasing on (−∞, −3) Decreasing on (−3, ∞) (g)Sketch the graph of f (x). Label all intercepts and the vertex. SECTION 302 & 308 (4) Let f (x) = x2 − 2x − 8. Determin the following(if none, write “none00 ). (a) Complete the square. f (x) = (x2 − 2x + 1) − 1 − 8 = (x − 1)2 − 9 (b) Vertex (1, −9) (c) Find the Maximum and Minimum. Maximum : None Minumum : −9 at x = 1 (d) x-intercept and y-intercept f (x) = 0 ⇒ x2 − 2x − 8 = 0 ⇒ (x − 4)(x + 2) = 0 ⇒ x = 4, −2 ∴ x-intercept : (4, 0), (−2, 0) f (0) = −8 ∴ y-intercept : (0, −8) 7 8 PARK, BAE JUN Intervals over which f is (e) increasing and (f) decreasing. Increasing on (1, ∞) Decreasing on (−∞, 1) (g)Sketch the graph of f (x). Label all intercepts and the vertex. SECTION 302 & 308 9 (5) Let f (x) = −3x2 + 5x − 1. Determin the following(if none, write “none00 ). (a) Complete the square. f (x) = −3(x2 − 35 x + 25 ) 36 + 25 12 − 1 = −3(x − 56 )2 + 13 12 (b) Vertex ( 56 , 13 ) 12 (c) Find the Maximum and Minimum. Maximum : 13 12 at x = 5 6 Minimum : None (d) x-intercept and y-intercept f (x) = 0 ⇒√ −3x2 + 5x − 1 =√0 ⇒ 3x2 − 5x + 1 = 0 5 ± 25 − 12 5 ± 13 = ⇒x= 6 6 √ √ 5 + 13 5 − 13 ∴ x-intercept : ( , 0), ( , 0) 6 6 f (0) = −1 ∴ y-intercept : (0, −1) 10 PARK, BAE JUN Intervals over which f is (e) increasing and (f) decreasing. 5 Increasing on (−∞, ) 6 5 Decreasing on ( , ∞) 6 (g)Sketch the graph of f (x). Label all intercepts and the vertex. SECTION 302 & 308 11 (6) Let f (x) = 3x2 +4x−5 and g(x) = x2 −4x−1. Find the minimum value of f (x)−g(x). f (x) − g(x) = 2x2 + 8x − 4 = 2(x2 + 4x + 4) − 8 − 4 = 2(x + 2)2 − 12 ⇒ vertex is (−2, −12) ∴ f (x) − g(x) has minimum −12 at x = −2.
© Copyright 2026 Paperzz