3.4: Zeros of Polynomial Functions Warm

3.4: Zeros of Polynomial Functions
Warm-up
1
Solve the equation 3π‘₯ 3 + 7π‘₯ 2 βˆ’ 22π‘₯ βˆ’ 8 = 0 given that βˆ’ is
3
a root.
Today we will be finding a lot of zeros. You may ask yourself:
There exists a way to quickly determine all possible rational zeros of
any function:
In other words:
1. Find all the possible rational zeros of:
a) 𝑓(π‘₯ ) = π‘₯ 3 + 3π‘₯ 2 βˆ’ 6π‘₯ βˆ’ 8
b) β„Ž(π‘₯ ) = 2π‘₯ 4 + 3π‘₯ 3 βˆ’ 11π‘₯ 2 βˆ’ 9π‘₯ + 15
c) 𝑣(π‘₯ ) = 4π‘₯ 5 βˆ’ 8π‘₯ 4 βˆ’ π‘₯ βˆ’ 2
Finding the zeros of a polynomial function
Step 1: Find all possible rational zeros with the Rational Zero
Theorem
Step 2: Check possible zeros synthetic division or with the
Factor Theorem: if 𝑓 (𝑐) = 0, then π‘₯ βˆ’ 𝑐 is a factor of 𝑓(π‘₯)
Step 3: Use synthetic division to factor the polynomial
Step 4: Continue to factor the remaining polynomial.
2. Find all zeros of the polynomial functions.
a. 𝑓(π‘₯ ) = π‘₯ 3 βˆ’ 2π‘₯ 2 βˆ’ 11π‘₯ + 12
b. 𝑓(π‘₯ ) = 2π‘₯ 3 βˆ’ 5π‘₯ 2 + π‘₯ + 2
c. 𝑓(π‘₯ ) = 2π‘₯ 3 + π‘₯ 2 βˆ’ 3π‘₯ + 1
We can also use this same approach to solve polynomial
equations.
3. Find all roots of the polynomial equation.
a. π‘₯ 3 βˆ’ 2π‘₯ 2 βˆ’ 7π‘₯ βˆ’ 4 = 0
b. 2π‘₯ 3 βˆ’ 5π‘₯ 2 βˆ’ 6π‘₯ + 4 = 0
c. π‘₯ 4 βˆ’ 2π‘₯ 2 βˆ’ 16π‘₯ βˆ’ 15 = 0
4. Find an 3π‘Ÿπ‘‘ degree polynomial with zeros of 4 π‘Žπ‘›π‘‘ 2𝑖
such that 𝑓 (βˆ’1) = βˆ’50
5. Find an 3π‘Ÿπ‘‘ degree polynomial with zeros of
βˆ’4 and 2 + 3i such that 𝑓(2) = 9.
Okay, let’s put it all together.
6. Find all complex zeros of the polynomial function.
a. 𝑓(π‘₯ ) = 2π‘₯ 4 + 3π‘₯ 3 βˆ’ 11π‘₯ 2 βˆ’ 9π‘₯ + 15
b. 𝑓(π‘₯ ) = 3π‘₯ 4 βˆ’ 11π‘₯ 3 βˆ’ 3π‘₯ 2 βˆ’ 6π‘₯ + 8
c. 𝑔(π‘₯ ) = 4π‘₯ 5 + 12π‘₯ 4 βˆ’ 41π‘₯ 3 βˆ’ 99π‘₯ 2 + 10π‘₯ + 24