EXERCISE 7.4.1. #9 KIM, SUNGJIN Problem 1. Show that the mean value estimate √ which |ω(n) − 2 log log x| log log x. P n≤x τ (n) ∼ x log x is due to the numbers n ≤ x for Theorem 1. X n≤x √ |ω(n)−2 log log x|≤C log log x x log x τ (n) ∼ √ 2 π C Z t2 e− 4 dt. −C Thus, we achieve the mean value by taking C → ∞. For example, Corollary 1. X τ (n) ∼ x log x. n≤x |ω(n)−2 log log x|≤(log log x)0.6 Corollary 2. Let Px be a probability measure defined on a weighted sum P τ (n), i. e. n≤x P Px (A) := τ (n) n≤x, n∈A P τ (n) . n≤x Then we have ω(n) − 2 log log x √ Px ≤ C → Φ(C) as x → ∞ 2 log log x where Φ is the cumulative distribution function of the standard normal distribution. To prove the theorem, we first prove the following: Lemma 1. X n≤x √ |ω(n)−2 log log x|≤C log log x 2ω(n) ∼ 6 x log x √ π2 2 π Z C t2 e− 4 dt. −C Let large K > 0 be fixed. Let c be a real number. We find the contribution of n ≤ x with p 1 p (1) 2 log log x − (c − ) log log x + 1 < ω(n) ≤ 2 log log x − c log log x + 1. K Let k be any integer in the above interval. Then by 7.4.1.3 (c), we have X 3 x 1∼ 2p ek−1+(k−1) log3 x−(k−1) log(k−1)−log2 x π 2π(k − 1) n≤x ω(n)=k √ Let k = 2 log log x − t log log x + 1 so that c − K1 < t ≤ c. Then √ √ X 2 t2 3 x 3 x log x t log2 x − t4 p p 1∼ 2 elog2 x+t log2 x log 2− 4 ∼ 2 2 e . √ π 2(log x)2 log 2 π log2 x π 2(log x)2 log 2 π log2 x n≤x ω(n)=k Considering the weight 2ω(n) , we have X 2ω(n) ∼ n≤x ω(n)=k 2 x log x 6 − t4 p e . √ π 2 2 π log2 x p The number of integers in the interval (1) is K1 log2 x + O(1). Thus, X (c+O(1/K))2 1 p x log x 6 x log x 1 − (c+O(1/K))2 6 4 4 log2 x = 2 √ e 2ω(n) ∼ 2 √ p e− . π 2 π log2 x K π 2 π K n≤x n∈(1) Let C > 0 and taking the subdivision of interval (−C, C) by the subintervals of length K1 , we obtain that X t2 t2 1 1 6 x log x −1 √ 2ω(n) ≤ U S(e− 4 , (−C, C), ). LS(e− 4 , (−C, C), ) ≤ 2 K π 2 π K n≤x √ |ω(n)−2 log2 x−1|≤C log2 x Letting K → ∞, we obtain the lemma. To prove the theorem, we use the elementary identity X τ (n) = 2ω(m) . d2 m=n Then we have X τ (n) = X X √ n≤x √ |ω(n)−2 log2 x|≤C log2 x m≤ d≤ x |ω(d2 m)−2 log 2 2ω(m) . x d2 x|≤C √ log2 x Now, we split the sum into two parts, d ≤ log2 x and and d > log2 x. The contribution of the latter is negligible since X X X x x log x 2ω(m) log x . 2 d log2 x x d>log2 x m≤ d>log2 x d2 Since ω(d2 m) = ω(m) + O(log3 x) when d ≤ log2 x, we have X X X 2ω(m) ∼ d≤log2 x m≤ |ω(d2 m)−2 log 2 x d2 x|≤C √ d≤log2 x x log x 6 √ d2 2 π π 2 C Z C −C −C t2 t2 e− 4 dt log2 x 1 ∼ x log x √ 2 π Therefore, Theorem 1 follows. Z e− 4 dt.
© Copyright 2026 Paperzz