MATH 1316 Chapter 5 Identities MEMORIZE!! Reciprocal Identities 1 cot 𝜃 = tan 𝜃 1 sec 𝜃 = cos 𝜃 1 csc 𝜃 = sin 𝜃 Quotient Identities sin 𝜃 tan 𝜃 = cos 𝜃 cot 𝜃 = cos 𝜃 sin 𝜃 Pythagorean Identities 𝐬𝐢𝐧𝟐 𝜽 + 𝐜𝐨𝐬𝟐 𝜽 = 𝟏 𝐭𝐚𝐧𝟐 𝜽 + 𝟏 = 𝐬𝐞𝐜 𝟐 𝜽 𝟏 + 𝐜𝐨𝐭 𝟐 𝜽 = 𝐜𝐬𝐜 𝟐 𝜽 Alternative Forms of the Pythagorean Identities 𝐬𝐢𝐧𝟐 𝜽 = 1 − cos2 𝜃 𝐭𝐚𝐧𝟐 𝜽 = sec 2 𝜃 − 1 𝐜𝐨𝐭 𝟐 𝜽 = csc 2 𝜃 − 1 𝐜𝐨𝐬𝟐 𝜽 = 1 − sin2 𝜃 𝐬𝐞𝐜 𝟐 𝜽 = tan2 𝜃 + 1 𝐜𝐬𝐜 𝟐 𝜽 = 1 + cot 2 𝜃 Negative Angle Identities cos(−𝜃) = cos 𝜃 sin(−𝜃) = − sin 𝜃 tan(−𝜃) = − tan 𝜃 sec(−𝜃) = sec 𝜃 csc(−𝜃) = − csc 𝜃 cot(−𝜃) = − cot 𝜃 Cofunction Identities cos(90° − 𝜃) = sin 𝜃 sin(90° − 𝜃) = cos 𝜃 sec(90° − 𝜃) = csc 𝜃 csc(90° − 𝜃) = sec 𝜃 tan(90° − 𝜃) = cot 𝜃 cot(90° − 𝜃) = tan 𝜃 Sum and Difference Identities NOTE: Angles A and B can be measured in degrees or radians. tan 𝐴 + tan 𝐵 cos(𝐴 + 𝐵) = cos 𝐴 cos 𝐵 − sin 𝐴 sin 𝐵 tan(𝐴 + 𝐵) = 1−tan 𝐴 tan 𝐵 cos(𝐴 − 𝐵) = cos 𝐴 cos 𝐵 + sin 𝐴 sin 𝐵 tan 𝐴 − tan 𝐵 sin(𝐴 + 𝐵) = sin 𝐴 cos 𝐵 + cos 𝐴 sin 𝐵 tan(𝐴 − 𝐵) = 1+tan 𝐴 tan 𝐵 sin(𝐴 − 𝐵) = sin 𝐴 cos 𝐵 − cos 𝐴 sin 𝐵 Double Angle Identities cos 2𝐴 = cos 2 𝐴 − sin2 𝐴 sin 2𝐴 = 2 sin 𝐴 cos 𝐴 cos 2𝐴 = 1 − 2 sin2 𝐴 2 tan 𝐴 cos 2𝐴 = 2 cos 2 𝐴 − 1 tan 2𝐴 = 1 − tan2 𝐴 Half Angle Identities *NOTE: Either + or – is used depending upon the quadrant for the angle cos tan 𝐴 2 𝐴 2 1+cos 𝐴 2 = ±√ 1−cos 𝐴 = ±√ 1+cos 𝐴 sin tan 𝐴 2 = 𝐴 2 = ±√ sin 𝐴 1 + cos 𝐴 𝐴 2 1−cos 𝐴 2 tan 𝐴 2 = 1 − cos 𝐴 sin 𝐴
© Copyright 2026 Paperzz