CSci/Math2112 Assignment 7 Due July 10, 2015 Prove the following statements using induction. (10) 1. (BoP 10 #6) For every natural number n, it follows that n X (8i − 5) = 4n2 − n. i=1 Solution: Proof. Proof (by induction) n X Base case: If n = 1, then (8i − 5) = 8 · 1 − 5 = 3 = 4 · 1 − 1 = 4n2 − n. i=1 Induction step: Assume that k X (8i − 5) = 4k 2 − k for some k ∈ N. Then i=1 k+1 X (8i − 5) = i=1 ! k X (8i − 5) + 8(k + 1) − 5 i=1 = 4k 2 − k + 8k + 3 = 4k 2 + 7k + 3 = 4(k + 1)2 − (k + 1). Thus by induction n X (8i − 5) = 4n2 − n for all natural numbers n. i=1 (10) 2. (BoP 10 #10) For any integer n ≥ 0, it follows that 3 | 52n − 1 . Solution: Proof. Proof (by induction) Base case: If n = 0, then 52n − 1 = 1 − 1 = 0 which is divisible by 3. Induction step: Assume 3 | 52k − 1 for some integer k ≥ 0. Then there exists an integer a such that 52k − 1 = 3a. We have 52(k+1) − 1 = 25 · 52k − 1 = 25 52k − 1 + 24 = 25(3a) + 24 = 3(25a + 8). Since 25a + 8 ∈ Z, this shows that 3 | 52(k+1) − 1 . Thus by induction we have 3 | 52n − 1 for all nonnegative integers n. (10) 2 3. (BoP 10 #20) We know that (1 + 2 + 3 + . . . + n) = 13 + 23 + 33 + . . . + n3 for every n ∈ N. (You may n(n + 1) assume that 1 + 2 + . . . + n = for all n ∈ N.) 2 Solution: Proof. Proof (by induction) 2 Base case: If n = 1, then (1 + 2 + 3 + . . . + n) = 12 = 1 = 13 = 13 + 23 + 33 + . . . + n3 . 2 Induction step: Assume that for some k ∈ N we know that (1 + 2 + 3 + . . . + k) = 13 +23 +33 +. . .+k 3 . Then 2 2 (1 + 2 + 3 + . . . + k + (k + 1)) = (1 + 2 + 3 + . . . + k) + 2 (1 + 2 + 3 + . . . + k) (k + 1) + (k + 1)2 k(k + 1) (k + 1) + (k + 1)2 2 = 13 + 23 + 33 + . . . + k 3 + k(k + 1)2 + (k + 1)2 = 13 + 23 + 33 + . . . + k 3 + 2 = 13 + 23 + 33 + . . . + k 3 + (k + 1)(k + 1)2 = 13 + 23 + 33 + . . . + k 3 + (k + 1)3 . 2 Thus by induction we know that (1 + 2 + 3 + . . . + n) = 13 + 23 + 33 + . . . + n3 for every n ∈ N (10) 4. The sequence a0 , a1 , a2 , . . . is defined recursively by a0 = 0 and an = 2an−1 + n − 1 for n ∈ N. Then an = 2n − n − 1 for all non-negative integers n. Solution: Proof. Proof (by induction) Base case: If n = 0, then a0 = 0 and 20 − 0 − 1 = 1 − 1 = 0. Thus an = 2n − n − 1 for n = 0. Induction step: Assume that ak−1 = 2k−1 − (k − 1) − 1 for some k ≥ 1. Then ak = 2ak−1 + k − 1 = 2 2k−1 − (k − 1) − 1 + k − 1 = 2k − 2k + k − 1 = 2k − k − 1. Thus by induction we have an = 2n − n − 1 for all non-negative integers n.
© Copyright 2026 Paperzz