Sine and Cosine Series - (12.3) 1. Sine and Cosine Series Expansions: Let fx be an even function on "p, p . fx can be expanded to an even periodic function with period 2p : f 1 x fx for x in "p, p with period T 2p. Then the Fourier series of f 1 x . f 1 x a 0 ! a n cos n=x p where 2 n1 a 0 2p p ; 0 fx dx, a n 2p p ; 0 fx cos n=x p dx is called the cosine series expansion of fx or fx is said to be expanded in a cosine series. Similarly, let fx be an odd function on "p, p . fx can be expanded to an odd periodic function with period 2p : f 2 x fx for x in "p, p with period T 2p. Then the Fourier series of f 2 x . ! b n sin n=x p f 2 x where b n 2p n1 p ; 0 fx sin n=x p dx is called the sine series expansion of fx or fx is said to be expanded in a sine series. Example Let fx x, " 1 x 1. Find the cosine or sine series expansion of fx . Since fx is an odd function, it has a sine series expansion. 1 n= " 2 "1 n 2 "1 n1 b n 2 ; x sinn=x dx "2 n= cos n= n= n2=2 0 . f exp x ! b n sinn=x n1 . ! n1 n1 2 n= "1 sinn=x 2 sin=x " 1 sin2=x 1 sin3=x " 1 sin4=x . . . = 4 2 3 1 0.8 0.6 0.4 0.2 -3 -2 -1 0 -0.2 1 x 2 3 -0.4 -0.6 -0.8 -1 fx x, " 1 t x t 1 1 Example Let fx cosx , " = t x t = . Find the cosine or sine series expansion of fx . 2 2 Since cos x is even on " = t x t = , it has a cosine series expansion. 2 2 4 ; =/2 cosx dx 4 a0 = = 0 4 an = =/2 ;0 4 cos n= 4 "1 n1 1 cosx cos2nx dx " = = "1 4n 2 4n 2 " 1 . f exp 2 ! 4 "1 n1 1 cos2nx = = 2 4n "1 n1 4 = 1 1 cos2x " 1 cos4x 1 cos6x " 1 cos8x . . . 3 2 15 35 63 1 0.8 0.6 0.4 0.2 -4 -2 0 2 x 4 In MatLab: x1-pi/2:.01:pi/2; y1cos(x1); x2-3*pi/2:.01:3*pi/2; y24/pi*(1/2cos(2*x2)/3-cos(4*x2)/15); y3y24/pi*(cos(6*x2)/63); clf plot(x1,y1) hold plot(x2,y2,’-.’,x2,y3,’–’) hold off 2 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -5 -4 -3 -2 -1 0 1 2 3 4 5 2. Sine and Cosine for Half-range Expansions: Let gx be defined for 0 x p, where p 0. Define f 1 x f 2 x gx if 0 x p g"x if " p x 0 gx if 0 x p "g"x if " p x 0 , with period 2p , with period 2p. Note that: a. f 1 x is an even periodic function and f 2 x is an odd periodic function. b. f 1 x has an cosine series expansion and f 2 x has an sine series expansion. Fourier series of f 1 x and f 2 x are of the forms: . 2 f 1 x a 0 ! a n cos n= p x , where a 0 p 2 n1 . f 2 x ! b n sin n1 n= x , p p ; 0 fx dx, where b n 2p a n 2p p ; 0 fx sin p ; 0 fx cos n= x dx; p n= x dx. p f 1 x is represented by a cosine series and f 2 x is represented by a sine series. Both f 1 x and f 2 x are called half-range expansions of gx . Example For each of the following function, Find its even and odd expansions and sketch the graph of each expansion in three periods. 1 gx 2x, 0 x 1. f 1 x 2x if 0 x 1 "2x if " 1 x 0 and f 2 x 2x, for "1 x 1. The period: 2 (p 1) 3 -3 -2 2 2 1 1 0 -1 1 x 2 3 -3 0 -1 -2 -2 1 if " = x " = 2 = = if " x 2 2 = if x= 2 x= = 2 ="x x 2 3 "y gx , " "y f 2 x if 0 x = 2 . = if x= 2 = 2 ="x f 1 x -1 -1 - y gx , " "y f 1 x 2 gx -2 if " = x " = 2 if " = x 0 2 if 0 x = 2 = if x= 2 "x " = "= 2 = 2 ="x and f 2 x Period T 2= and p =. 2 1.5 1 1 0.5 -8 -6 -4 -2 2 4 x 6 -6 8 -4 -2 0 2 x 4 6 -0.5 -1 -1 -1.5 -2 "y gx , " "y f 1 x "y gx , " "y f 2 x Example Let gx 2x, 0 x 1. Find the even half-range expansion of gx . According to Example (1) above, f 1 x 2x if 0 x 1 "2x if " 1 x 0 1 1 0 0 , with period 2 p 1 . a 0 2 ; fx dx 2 ; 2xdx 2 4 1 1 0 0 a n 2 ; fx cosn=x dx 2 ; 2x cosn=x dx 0 "8 =2n2 4 cos =n " 1 =2n2 if n 2m if n 2m 1 f 1 x 1 " 82 = . ! m0 1 cos2m 1 =x 2m 1 2 F 1 x 1 " 82 cos=x = F 2 x 1 " 82 ¡cos=x 1 cos3=x ¢ 9 = F 3 x 1 " 82 ¡cos=x 1 cos3=x 1 cos5=x ¢ 25 9 = 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 -3 -2 -1 0 1 x 2 3 yf 1 x , F 1 x , F 2 x , F 3 x if 0 x = 2 . Find the odd half-range expansion of gx . Example Let gx = if x= 2 "x " = if " = x " = 2 = = if " " x0 2 2 with period 2= p = According to Example (2) above, f 2 x = if 0 x = 2 2 = ="x if x= 2 = 2 ="x 5 2 bn = = ; 0 fx sinnx dx =/2 ;0 = sinnx dx ; = = " x sinnx dx 2 =/2 1 1 = sin 2 =n 2 n n2 2 = 2 sin 12 =n , 1n =n 2 2 = recall sin 12 =n 0 if n 2m sin 12 =n "1 m"1 if n 2m " 1 1 2m when n 2m 1 ¡1 2"1 m"1 ¢ when n 2m " 1 2m " 1 =2m " 1 . f 2 x ! m1 2"1 m"1 1 1 2m " 1 =2m " 1 2 sinx 1 sin2x F 1 x 1 = 2 1 2 F 2 x F 1 x 1 " sin3x 3 3= F 3 x F 2 x 1 1 2 sin5x 5 5= sin2m " 1 x 1 sin2mx 2m 1 sin4x 4 1 sin6x 6 1.5 1 0.5 -8 -6 -4 -2 0 -0.5 2 4x 6 8 -1 -1.5 y f 2 x , F 1 x , F 2 x , F 3 x Example Find a particular solution to the differential equation: d2y m 2 ky ft dt 1 , k 4, ft =t, for 0 t 1 with T 2. where m 16 f exp t =t, " 1 t 1 with period T 2. Find the Fourier series for f exp . Since f exp is an odd function, its Fourier series is a sine series. 6 bn 1 1 1 ; "1 =t sinn=t dt " 2n==ncos2 n= . f exp t ! n1 2n "1 n1 2 "1 n1 sinn=t n The general solution for 2 2 1 d y 4y 0 « d y 64y 0, 5 2 64 0, 5 oi8 2 16 dt dt 2 y C 1 cos8t C 2 sin8t A particular solution for the nonhomogeneous differential equation: 2 1 d y 4y B n sinn=t 16 dt 2 is y n A n sinn=t . Solve A n by the method of undetermined coefficients: y Un n=A n cosn=t , y UUn "n= 2 A n sinn=t " 1 n= 2 A n sinn=t 4A n sinn=t B n sinn=t 16 An 16B n , 64 " n= 2 yn 32"1 n1 16B n sinn=t 64 " n= 2 n 64 " n= 2 sinn=t A particular solution for the differential equation: 2 1 d y 4y f exp t 16 dt 2 is y par . . n1 n1 ! yn ! 32"1 n1 n 64 " n= 2 sinn=t The general solution of the differential equation: . y C 1 cos8t C 2 sin8t ! n1 32"1 n1 n 64 " n= 2 sinn=t 7
© Copyright 2026 Paperzz