COLUMBIA UNIVERSITY Math V1102 Calculus II Fall2014 Midterm I 09.30.2014 Instructor: S. Ali Altuğ B Name and UNI: Question: 1 2 3 4 5 6 7 Total Points: 6 6 6 6 6 6 0 36 Score: Instructions: • There are 7 questions on this exam. • Please write your NAME and UNI on top of EVERY page. • In order to get full credit you need to answer the first 6 questions correctly. • The last question is a bonus question, and you do not have to answer it. • Unless otherwise is explicitly stated SHOW YOUR WORK in every question. • Please write neatly, and put your final answer in a box. • No calculators, cell phones, books, notebooks, notes or cheat sheets are allowed. • Some useful identities: – sin2 (θ) + cos2 (θ) = 1 – tan2 (θ) + 1 = sec2 (θ) – sin(2θ) = 2 sin(θ) cos(θ) – cos(2θ) = cos2 (θ) − sin2 (θ) = 2 cos2 (θ) − 1 = 1 − 2 sin2 (θ) 09.30.2014 Midterm I Name & UNI: 1. (6 points) Z 3x2 − 2x + 1 dx x3 − x2 + x Solution: By partial fractions, 3x2 − 2x + 1 A Bx + C = + 2 3 2 x −x +x x x −x+1 Solving for A, B, C gives A = 1, B = 2, C = −1. Hence, Z Z Z 3x2 − 2x + 1 1 2x − 1 dx = dx + dx x3 − x2 + x x x2 − x + 1 = ln |x| + ln |x2 − x| + C Where we used u = x2 − x + 1 substitution in the last integral. Page 2 09.30.2014 Midterm I Name & UNI: 2. (6 points) Z sin2 (x) cos4 (x)dx Hint: Double angle formulas. Solution: By the double angle formulas we have sin2 (x) = Z 2 Z 4 sin (x) cos (x)dx = 1−cos(2x) 2 1 − cos(2x) 2 and cos2 (x) = 1 + cos(2x) 2 Z = = = = = = 1+cos(2x) . 2 Hence, 2 dx 1 1 − cos2 (2x) (1 + cos(2x)) dx 8 Z 1 sin2 (2x)(1 + cos(2x))dx 8 Z Z 1 1 2 sin (x)dx + sin2 (2x) cos(2x)dx 8 8 Z Z 1 1 1 − cos(4x) dx + sin2 (2x) cos(2x)dx 8 2 8 Z Z Z 1 1 1 dx − cos(4x)dx + sin2 (2x) cos(2x)dx 16 16 8 x sin(4x) sin3 (2x) − + +C 16 64 48 Where we used u = sin(2x) substitution in the last integral. Page 3 09.30.2014 Midterm I Name & UNI: 3. (6 points) π 2 Z sin(6x) cos(2x)dx 0 Hint: Try integration by parts (most probably more than once). Solution: Let u = sin(6x) and dv = cos(2x)dx, then integration by parts gives, Z Z sin(6x) sin 2x) sin(6x) cos(2x)dx = − 3 cos(6x) sin(2x)dx 2 Then using integration by parts once again in the second integral with u = cos(6x) and dv = sin(2x)dx gives Z Z cos(6x) cos(2x) cos(6x) sin(2x)dx = − − 3 sin(6x) cos(2x)dx 2 Substituting this expression back into the first integration by parts then gives Z Z sin(6x) sin(2x) + cos(6x) cos(2x) + 9 sin(6x) cos(2x)dx sin(6x) cos(2x)dx = 2 R Solving for sin(6x) cos(2x)dx then gives, Z sin(6x) sin(2x) + cos(6x) cos(2x) sin(6x) cos(2x)dx = − 16 Finally substituting the boundaries we get, Z 0 π 2 π sin(6x) sin(2x) + cos(6x) cos(2x) 2 sin(6x) cos(2x)dx = − 16 0 =0 Page 4 09.30.2014 Midterm I Name & UNI: 4. (6 points) Z x7 p 1 + x4 dx Hint: Start with u = x2 substitution. Solution: Substituting u = x2 gives, Z Z p p 1 4 x 1 + x dx = u3 1 + u2 du 2 7 We then use the substitution u = tan(θ) and get Z u3 p 1 + u2 du = Z Z = tan3 (θ) sec3 (θ)dθ tan2 (θ) sec2 (θ) tan(θ) sec(θ)dθ Z (sec2 (θ) − 1) sec2 (θ) tan(θ) sec(θ)dθ Z Z = sec4 (θ) tan(θ) sec(θ)dθ − sec2 (θ) tan(θ) sec(θ)dθ = = sec5 (θ) sec3 (θ) − +C 5 3 Where we used u = sec(θ) substitution variables √ to evaluate the last integrals. We then substitute the √ back: Since u = tan(θ), sec(θ) = 1 + u2 . Then since u = x2 we get that sec(θ) = 1 + x4 . Therefore the final answer is, Z 5 x7 p 1 + x4 dx = 3 (1 + x4 ) 2 (1 + x4 ) 2 − +C 10 6 Page 5 09.30.2014 Midterm I Name & UNI: 5. (6 points) Z x+ 1 √ dx x2 − 1 Hint: Try x = 21 (eu + e−u ) substitution. Solution: We will use the hint. Let x = 21 (eu + e−u ) and without loss of generality assume u > 0 (the substitution is symmetric with respect to u 7→ −u), then dx = 12 (eu − e−u ). Subbtituting these back into the integral gives, Z Z eu − e−u 1 √ q dx = x + x2 − 1 eu + e−u + 2 14 (e2u + 2 + e−2u ) − 1 Z eu − e−u q = eu + e−u + 2 14 (e2u − 2 + e−2u ) Z eu − e−u q = eu + e−u + 2 14 (eu − e−u )2 Z eu − e−u = u e + e−u + eu − e−u Z u 1 e − e−u = du 2 eu Z Z 1 1 du − e−2u du = 2 2 u e−2u = + +C 2 4 Now in order to solve for x in terms of u we note the following: Let eu = y. Then y > 1 since we chose u > 0, and the equation x = 12 (eu + e−u ) becomes 2x = y + y1 . This in particular √ √ 2 implies y 2 − 2xy + 1 = 0. Therefore y = 2x± 24x −4 = x ± x2 − 1. Since y > 1 we need to have √ y = x + x2 − 1. Therefore we get, p eu = x + x2 − 1 Substituting this back into the answer then gives √ Z 1 ln |x + x2 − 1| 1 √ √ dx = + +C 2 x + x2 − 1 4(x + x2 − 1)2 Page 6 09.30.2014 Midterm I Name & UNI: 6. Determine if the following integrals converge or diverge. (a) (3 points) Z ∞ 1 dx +1 2x2 1 (b) (3 points) 1 Z x ln(x)dx 0 Hint: For evaluating limits of the form limt→0+ x ln(x) you can use L’Hospital’s rule. Solution: (a) By definition, Z 1 ∞ 1 dx = lim 2 t→∞ 2x + 1 Z t 1 dx +1 Z1 ∞ 1 √ dx = lim t→∞ 1 (x 2)2 + 1 √ Z t 2 1 1 = lim √ √ du 2+1 t→∞ u 2 2 √ 1 t 2 = √ lim arctan(u)|√2 2 t→∞ √ √ 1 = √ lim (arctan(t 2) − arctan( 2)) t→∞ 2 √ π 2 − arctan( 2) √ = 2 2x2 Therefore the integral is convergent. (b) The integrand is continuous on (0, 1) and the only discontinuity is due to ln(x) and is at x = 0. The integral is then defined by, 1 Z 0 Z x ln(x)dx = lim+ t→0 1 x ln(x) t We calculate the latter integral by integration by parts. Let u = ln(x) and dv = xdx, then Z 1 1 Z x2 ln(x) 1 1 − xdx 2 2 t t 1 2x2 ln(x) − x2 = 4 t x ln(x) = t 1 2t2 ln(t) − t2 =− − 4 4 Substituting this back into the improper integral we get, Z 1 1 2t2 ln(t) − t2 − − 4 4 t→0+ 1 1 = − − lim+ t2 ln(t) 4 2 t→0 x ln(x)dx = lim 0 Page 7 09.30.2014 Midterm I Name & UNI: To calculate this last limit we use L’Hospital’s rule. lim t2 ln(t) = lim t→)+ t→)+ ln(t) 1/t2 = lim+ t2 ln(t) t→) = −1 lim t2 ln(t)x2 2 t→)+ =0 Hence we get, 1 Z 1/t −2/t3 x ln(x)dx = − 0 and in particular the integral converges. Page 8 1 4 09.30.2014 Midterm I Name & UNI: 7. (5 points (bonus)) Let n ≥ 0 be fixed. Calculate Z π 2 sinn (x) dx sin (x) + cosn (x) n 0 Hint: Try coming up with a substitution that flips the boundary. This will result in an integral that looks very similar to the original integral. You may then try to take a combination of the two forms of the same integral. Hint-2: The result is independent of the specific choice of n. Solution: The substitution that the hint is referring to is x = π2 − u. This transforms the integral to Z π2 sinn (x) dx I= n sin (x) + cosn (x) 0 Z π2 sinn (π/2 − u) = du sinn (π/2 − u) + cosn (π/2 − u) 0 Z π2 cosn (u) = du n cos (u) + sinn (u) 0 Therefore we get, Z π 2 2I = 0 Z = sinn (x) dx + sinn (x) + cosn (x) π 2 dx 0 = Hence I = π 2 π 4. Page 9 Z π 2 cosn (x) dx sin (x) + cosn (x) n 0
© Copyright 2026 Paperzz