Properties and a constitutive model for frozen and unfrozen soil Ronald Brinkgreve, Delft University of Technology / Plaxis Authors: Manuel Aukenthaler, Ronald Brinkgreve, Adrien Haxaire Content • • • • • • • • • • Introduction Characteristics of frozen soils Starting from particle size distribution… Soil-Freezing Characteristic Curve Hydraulic conductivity Validations Constitutive model for frozen / unfrozen soil Model parameters Applications Conclusions Lezingenavond TUDelft, 22 November 2016 Copyright Plaxis bv 2016 2/24 1 Introduction Frozen/unfrozen soils: • Cold regions • Climate change • Artificial ground freezing Lezingenavond TUDelft, 22 November 2016 3/24 Introduction Research on modelling of frozen/unfrozen soils i.c.w. NTNU • Constitutive model (NTNU) • Parameters and Validation (Plaxis / TUDelft) Lezingenavond TUDelft, 22 November 2016 Copyright Plaxis bv 2016 4/24 2 Characteristics of frozen soils Transition pore water > pore ice (and vice versa): • Gradual process (in t and T) • Transition zone: Frozen fringe • Unfrozen water content θuw(T) (Soil Freezing Characteristic Curve, SFCC) • Pressure melting θuw(p) • Change of hydraulic conductivity k(T,p) • Change of stiffness and strength • Expansion / compression Lezingenavond TUDelft, 22 November 2016 5/24 Characteristics of frozen soils Problem: • Temperature-related parameters are uncommon for geotechnical engineers Solution: • Derive them from common soil data (Particle Size Distribution) Lezingenavond TUDelft, 22 November 2016 Copyright Plaxis bv 2016 6/24 3 Starting from particle size distribution… Selection of soil type > PSD > SSA Lezingenavond TUDelft, 22 November 2016 7/24 Soil-Freezing Characteristic Curve SSA > Unfrozen water content θuw: (after Anderson & Tice, 1972) ρw = bulk density of water ρb = bulk density of unfrozen soil T Tf = temperature = freezing temperature of water Lezingenavond TUDelft, 22 November 2016 Copyright Plaxis bv 2016 8/24 4 Soil-Freezing Characteristic Curve Pressure-dependence of the freezing temperature: (Clausius-Clapeyron equation) Cryogenic suction sc: pice = pw = ρice = L = pore ice pressure pore water pressure bulk density of ice latent heat (1) Lezingenavond TUDelft, 22 November 2016 9/24 Soil-Freezing Characteristic Curve Melting pressure for ice pmelt: (after Wagner et al., 2011) (T = Tf) (vapour-liquid-solid triple point) (2) Lezingenavond TUDelft, 22 November 2016 Copyright Plaxis bv 2016 10/24 5 Soil-Freezing Characteristic Curve Pressure melting: (pressure in MPa) • For a given pw and T: sc, pice and Tf can be calculated by solving eq. (1) and (2) iteratively Lezingenavond TUDelft, 22 November 2016 11/24 Soil-Freezing Characteristic Curve Final result: SFCC for different soils at different pressures Increasing pressure Fine grained Coarse grained Lezingenavond TUDelft, 22 November 2016 Copyright Plaxis bv 2016 12/24 6 Hydraulic conductivity PSD > ksat > k(θuw): (after Tarnawski & Wagner, 1996) Permeability of partially frozen soil: mi = mass fractions of clay, silt, sand di = particle size limits θuw = unfrozen water content θsat = saturated water content Lezingenavond TUDelft, 22 November 2016 13/24 Validations (soil mass fractions after Smith & Tice, 1983) SFCC based on SSA Lezingenavond TUDelft, 22 November 2016 Copyright Plaxis bv 2016 14/24 7 Validations Pressure-dependence: (after Zhang et al., 1998) Lanzhou Loess: mcl = 0.12 msi = 0.80 msa = 0.08 e0 = 0.7 Lezingenavond TUDelft, 22 November 2016 15/24 Validations Hydraulic conductivity: Lezingenavond TUDelft, 22 November 2016 Copyright Plaxis bv 2016 (after Burt & Williams, 1976) 16/24 8 Constitutive model for frozen/unfrozen soil Solid state (grains + ice) stress σ*: Similarities with BBM In unfrozen state: MCC σ Suw pw εm εs = net stress = unfrozen water saturation = pore water pressure = solid phase strain component = cryogenic suction strain component Lezingenavond TUDelft, 22 November 2016 17/24 Constitutive model for frozen/unfrozen soil Elastic strains: sc = cryogenic suction ice saturation Frozen soil properties: Temperature-dependent (but stress-independent) Young’s modulus of frozen soil νf = frozen Poisson’s ratio Lezingenavond TUDelft, 22 November 2016 Copyright Plaxis bv 2016 18/24 9 Loading-collapse Constitutive model for frozen/unfrozen soil Plastic strains: Segragation M Lezingenavond TUDelft, 22 November 2016 19/24 Model parameters Elastic parameters Strength Primary loading - isotropic stress - freezing Lezingenavond TUDelft, 22 November 2016 Copyright Plaxis bv 2016 20/24 10 Model parameters Parameter determination: • From oedometer test (frozen/unfrozen): (py0*)in, pc*, β, κ0, λ0, r • From simple shear test: G0, M • From axial compression test: Ef,ref, Ef,inc, νf, kt • From frost heave test: (sc,seg)in, κs, λs Lezingenavond TUDelft, 22 November 2016 21/24 Applications – Frost heave Chilled pipeline Temperature distribution a. 40 days b. Long time 253 K Frost heave after long time Lezingenavond TUDelft, 22 November 2016 Copyright Plaxis bv 2016 22/24 11 Applications – Thaw settlement Footing on frozen soil ∆T = 2 K 500 kPa Ice saturation a. Initial b. After warming a. Initial Settlement b. After warming Lezingenavond TUDelft, 22 November 2016 23/24 Conclusions • • • • • • Practical approach for θuw(T,p) and k(T,p) of frozen soils Validated against data from literature PSD seems to enable a good estimate of properties of frozen soils Constitutive model for frozen / unfrozen soil Typical phenomena of frozen soil Successful applications: • Frost heave • Thaw settlement Lezingenavond TUDelft, 22 November 2016 Copyright Plaxis bv 2016 24/24 12
© Copyright 2026 Paperzz