SOIL TEMPERATURE MONITORING AT LAKE MUNGO Implications f o r racemisation d a t i n g W.R. Ambrose With t h e time r a n g e of r a d i o c a r b o n d a t i n g b e i n g e f f e c t i v e l y l i m i t e d t o t h e l a s t 30,000 y e a r s t h e p r e s e n c e of o l d e r a r c h a e o l o g i c a l s i t e s i n our r e g i o n h a s prompted a n i n t e r e s t i n o t h e r l o n g e r r a n g e d a t i n g t e c h n i q u e s , i n c l u d i n g non-radiometric systems. Both r a d i o m e t r i c and c h e m i c a l d a t i n g t e c h n i q u e s r e l y on d e t e r m i n i n g t h e time f u n c t i o n s of system c h a n g e s where t h e i n i t i a l s t a t e i s e s t i m a t e d from an e x p e r i m e n t a l l y d e t e r m i n e d end s t a t e (Oeschger 1982:7). The c o r o l l a r y t o t h i s t h e o r e t i c a l b a s i s f o r a l l d a t i n g systems i s t h a t a c a l c u l a t e d a g e c a n o n l y b e a s a c c u r a t e a s t h e experiment a l l y determined time f u n c t i o n s of t h e system. The r e l a t i v e d i f f i c u l t i e s of d e t e r m i n i n g t h e t i m e f u n c t i o n s f o r d i f f e r e n t d a t i n g s y s t e m s make t h e d a t e s d e r i v e d from them of unequal m e r i t . A l l s y s t e m s s h a r e t h e a d d i t i o n a l problem of chemical c o n t a m i n a t i o n i n samples from f i e l d w e a t h e r i n g o r sample p r e p a r a t i o n which can i n t r o d u c e e r r o r s beyond t h o s e i n h e r e n t i n t h e c a l c u l a t i o n of time f u n c t i o n s (Chappell 1982). T h i s i s t y p i f i e d by t h e problems of r a d i o c a r b o n d a t i n g on bone, which a r e w e l l known t o a r c h a e o l o g i s t s (McPhail 1982: 3 3 6 ) Beyond t h e e r r o r s c o n t r i b u t e d by many s o u r c e s t o r a d i o m e t r i c d a t i n g , t h e chemical d a t i n g systems such a s amino a c i d r a c e m i s a t i o n , f l u o r i n e d i f f u s i o n and o b s i d i a n h y d r a t i o n , s u f f e r t h e g r e a t e r c o m p l i c a t i o n o f b e i n g dependent f o r t h e i r b a s i c r a t e c o n s t a n t s on e n v i r o n m e n t a l f a c t o r s . I n o t h e r words, a s w e l l a s i n f l u e n c i n g t h e p r o c e s s e s o f c o n t a m i n a t i o n f o r a l l a r c h a e o l o g i c a l d a t i n g systems, such f a c t o r s a s s o i l c h e m i s t r y and t e m p e r a t u r e a l s o d e t e r m i n e t h e r a t e c o n s t a n t s f o r chemical d a t i n g s y s t e m s . It i s l i t t l e wonder t h a t t h e r e l i a b l e i n t e r n a l n u c l e a r c l o c k s of t h e r a d i o m e t r i c d a t i n g systems g e n e r a l l y produce more r e l i a b l e and a c c e p t a b l e a g e e s t i m a t e s t h a n t h e e n v i r o n m e n t a l l y s u s c e p t i b l e r e a c t i o n s of t h e c h e m i c a l d a t i n g s y s t e m s . D e s p i t e t h e d i f f i c u l t i e s , however, t h e r e a r e r e a s o n s f o r p u r s u i n g chemical d a t i n g methods; a r c h a e o l o g i s t s a r e w e l l aware of t h e v a r i a b l e r e l i a b i l i t y of any d a t i n g system, t h e r a d i o m e t r i c o n e s i n c l u d e d , s o t h a t c o r r o b o r a t i v e d a t i n g by a d i f f e r e n t method i s o f t e n s o u g h t . A s w e l l , r e c o v e r i n g a sample s u i t a b l e f o r r a d i o m e t r i c a s s a y i s n o t a l w a y s p o s s i b l e , o r t h e e x p e c t e d a g e may f a l l o u t s i d e t h e most e f f e c t i v e t i m e r a n g e of t h e r a d i o m e t r i c system. There i s a l s o t h e a t t r a c t i o n of d a t i n g t h e a r t e f a c t d i r e c t l y , by chemical means, a g a i n s t i t s i n d i r e c t d a t i n g from o t h e r m a t e r i a l c o n t a i n e d a t t h e site. T h i s l a t t e r c o n s i d e r a t i o n h a s produced a g r e a t d e a l . o f e f f o r t i n d a t i n g o b s i d i a n a r t e f a c t s from C a l i f o r n i a n s o u r c e s , w i t h some s u c c e s s ( J a c k s o n 1984: 1 7 3 ) . Bone, b e i n g more u n i v e r s a l i n i t s o c c u r r e n c e , h a s b e e n t h e o b j e c t of many a t t e m p t s a t chemical d a t i n g , r a n g i n g from simple n i t r o g e n d e p l e t i o n t o f l u o r i n e accumulation (Cook 1960); work on f l u o r i n e p r o f i l e s h a s c o n t i n u e d t o t h e p r e s e n t u s i n g advanced n u c l e a r t e c h n i q u e s (Coote and Holdaway 1982). Probably t h e most c o n t e n t i o u s of t h e r e c e n t c h e m i c a l d a t i n g schemes i s based on t h e r a c e m i s a t i o n of amino a c i d s i n bone, s h e l l and wood (Bada e t a l . 1974; Davies and T r e l o a r 1977; M a s t e r s and Bada 1978; P i l l a n s 1982). Bone r a c e m i s a t i o n d a t i n g h a s been s u b j e c t t o some s c e p t i c i s m and even h o s t i l i t y due t o t h e c o n t r o v e r s y s u r r o u n d i n g t h e 40,000+ BP d a t e s c a l c u l a t e d by Bada and Helfman (1975:167) f o r t h e p r e s e n c e of humans i n North America. The d a t e s h a v e been q u e s t i o n e d on t h e b a s i s of a d o u b t f u l c a l i b r a t i o n of time f u n c t i o n s , which were reconfirmed by Masters and Bada (1978:128), b u t more d i r e c t l y r e j e c t e d b e c a u s e t h e y markedly c o n f l i c t w i t h t h e r a d i o m e t r i c a g e s c a l c u l a t e d from uranium s e r i e s d a t i n g (Bischoff and Rosenbauer 1982). R a c e m i s a t i o n d a t i n g of bone h a s been r e p o r t e d from Tasmania (Murray e t a l . 1 9 8 0 ) , and h a s been recommended a s p o t e n t i a l l y u s e f u l f o r o t h e r s i t e s such a s K e i l o r (Davies and T r e l o a r 1977:89), D e v i l s L a i r , Koonalda Cave, Wyrie Swamp and t h e Papua New Guinea s i t e a t Nombe ( P i l l a n s 1982:233). Acceptance o r r e j e c t i o n of a r a c e m i s a t i o n d a t e h i n g e s on a c o n s i d e r a t i o n o f t h e complex c h e m i c a l r e a c t i o n r a t e s of change i n one o r more of t h e 19 amino a c i d s , a s w e l l a s a n e s t i m a t e of s i t e t e m p e r a t u r e , n o t o n l y f o r t h e t i m e o f a s a m p l e ' s c o l l e c t i o n , b u t e x t r a p o l a t e d back i n time o v e r any minor o r major c l i m a t i c changes. The i n t e g r a t i o n of long-term s i t e temperature r e q u i r e s some measurement of t h e s i t e ' s r e c e n t m i c r o c l i m a t e and a demonstrat i o n of i t s r e l a t i o n s h i p t o t h e g e n e r a l r e g i o n a l t e m p e r a t u r e h i s t o r y ( S c h r o e d e r and Bada 1973). The v e r y h i g h s e n s i t i v i t y of t h e r a c e m i s a t i o n r e a c t i o n r a t e t o temperat u r e c a n c a u s e a major i n a c c u r a c y i n an a g e d e t e r m i n a t i o n u n l e s s an a c c u r a t e t e m p e r a t u r e h i s t o r y of t h e d a t e d m a t e r i a l i s known. A s a n example Davies and T r e l o a r (1977:81) c a l c u l a t e t h a t a 1000-year-old bone a t 25OC produces t e n t i m e s a s much a s p a r t i c a c i d r a c e m i s a t i o n a s a 2000-year-old bone a t 12.5OC. The d i f f i c u l t y of e x t r a p o l a t i n g t e m p e r a t u r e c o n d i t i o n s back thousands o f y e a r s from p r e s e n t - d a y m e t e o r o l o g i c a l r e c o r d s , h a s prompted a d i f f e r e n t a p p r o a c h by most a u t h o r s i n d e t e r m i n i n g t h e r a c e m i s a t i o n r a t e c o n s t a n t s . The u s u a l p r o c e d u r e i s t o d e t e r m i n e t h e a g e of a s i t e o r sample by r a d i o c a r b o n d a t i n g ; t h e d a t e d s a m p l e ' s d e g r e e of r a c e m i s a t i o n i s t h e n used t o c a l c u l a t e a r a c e m i s a t i o n r a t e c o n s t a n t f o r o t h e r unknown age samples a t t h e s i t e . It c a n b e s e e n t h a t a major assumption i s t h a t o t h e r bones i n o t h e r p a r t s of t h e s i t e have had t h e same t e m p e r a t u r e h i s t o r y . T h i s assumption f a l l s i f much o l d e r o r younger specimens from t h e same s i t e have had d i f f e r e n t t e m p e r a t u r e h i s t o r i e s . The assumption a l s o f a l l s i f t h e same a g e specimens have had d i f f e r e n t t e m p e r a t u r e c o n d i t i o n s a t t h e s i t e , which could come a b o u t from d i f f e r e n t c o n d i t i o n s of exposure o r b u r i a l . The problem of e x t r a p o l a t i o n from a d a t e d t o a n undated specimen r e t u r n s t o a q u e s t i o n of determining a temperature c a l i b r a t i o n . O b s i d i a n h y d r a t i o n d a t i n g i s s i m i l a r l y s e n s i t i v e t o environmental temp e r a t u r e , and a s w i t h r a c e m i s a t i o n d a t i n g , t h e time f u n c t i o n s of t h e r e a c t i o n h a v e b e e n d e t e r m i n e d i n two ways; t h e f i r s t based on e x p e r i m e n t a l h y d r a t e d o b s i d i a n a t e l e v a t e d t e m p e r a t u r e s (Friedman and Long 1976; Michels e t a l . 1983) and a t normal a i r t e m p e r a t u r e s (Ambrose 1976) and t h e second by e x t r a p o l a t i o n from known r a d i o c a r b o n d a t e d specimens. Whether f o r p r i m a r y d a t i n g u s i n g t h e i n t r i n s i c r e a c t i o n r a t e c o n s t a n t s , o r f o r s e c o n d a r y d a t i n g u s i n g e x t r a p o l a t i o n s from known age s t a n d a r d s , t h e - -- t e m p e r a t u r e regime a t any d a t a b l e s i t e i s o f p r i m a r y i m p o r t a n c e i n c h e m i c a l d a t i n g methods. Few a u t h o r s have a t t e n d e d t o t h e n e c e s s i t y o f m e a s u r i n g t h e t e m p e r a t u r e c h a r a c t e r i s t i c s of sites where c h e m i c a l d a t i n g i s a t t e m p t e d . Some of t h e problems and c o n t r o v e r s y s u r r o u n d i n g p u b l i s h e d bone r a c e m i s a t i o n o r o b s i d i a n h y d r a t i o n d a t e s c o u l d b e e n l i g h t e n e d by c a r e f u l measurements of s i t e t e m p e r a t u r e s . The o n l y s y s t e m a t i c long-term work i n t h i s a r e a i s t h a t of Friedman and Long ( l 9 7 6 ) , Norton and Friedman (1981) and Trembour and Friedman (1984) who have measured ground t e m p e r a t u r e s t o 2 m d e p t h s u s i n g t h e Pallmann t e c h n i q u e (Lee 1969). T h i s method r e l i e s on t h e t e m p e r a t u r e dependence of t h e i n v e r s i o n of o p t i c a l p o l a r i t y of a s o l u t i o n of s u c r o s e i n converting t o i n v e r t sugar contained i n small g l a s s v i a l s over t i m e . The t e c h n i q u e i s complicated by a pH dependence of t h e r e a c t i o n and r e q u i r e s v e r y c l o s e a t t e n t i o n t o c a l i b r a t i o n and measurement of t h e s u c r o s e s o l u t i o n s , which when p r e p a r e d i n v i a l s have t o be h e l d in c o l d s t o r a g e u n t i l t h e y a r e used i n t h e f i e l d . I n A u s t r a l i a , r a c e m i s a t i o n d a t i n g by Murray e t a l . (1980) a t B e g i n n e r s Luck Cave i n Tasmania h a s been c a l i b r a t e d by r e f e r r i n g t o t h e l a t e P l e i s t o cene r a d i o c a r b o n d a t e d bones a t t h e Bass S t r a i t Cave Bay Cave s i t e on H u n t e r I s l a n d (Bowdler 1984). Cave Bay Cave, n e a r s e a l e v e l d u r i n g t h e Holocene, would on a v e r a g e b e warmer than Beginners Luck Cave which i s a t 400 m e l e v a t i o n , 80 km i n l a n d and 2" f u r t h e r s o u t h . The a u t h o r s (Murray e t a l . 1980:150) g i v e a p r e l i m i n a r y e s t i m a t e of t e m p e r a t u r e d i f f e r e n c e w i t h t h e Beginners Luck s i t e b e i n g 4OC c o o l e r t h a n t h e Cave Bay Cave s i t e . Our r e c e n t r e s u l t s r e p o r t e d below from e x p e r i m e n t a l work a t Lake Mungo s h o u l d a s s i s t i n making more a c c u r a t e t e m p e r a t u r e measurements i n c a s e s such a s Beginners Luck Cave where r a c e m i s a t i o n d a t i n g i s t o b e a p p l i e d . P i l l a n s (1982:233) i n reviewing t h e p r o s p e c t s f o r r a c e m i s a t i o n d a t i n g of a r c h a e o l o g i c a l sites i n A u s t r a l i a , c o n c l u d e s t h a t s u i t a b l e s i t e s w i l l b e v e r y l i m i t e d w i t h t h e most promising b e i n g c a v e s and permanently w a t e r l o g g e d s i t e s . I n p a r t i c u l a r h e i s v e r y d o u b t f u l t h a t open s i t e s such a s t h o s e i n t h e W i l l a n d r a Lakes system w i l l b e amenable t o r a c e m i s a t i o n d a t i n g b e c a u s e of u n c e r t a i n t i e s a b o u t t h e i r t e m p e r a t u r e h i s t o r y . I t h a s been u s e f u l t h e r e f o r e t o measure t h e s o r t of t e m p e r a t u r e e x t r e m e s t h a t a r e t o b e found i n t h i s ' w o r s t c a s e ' s i t u a t i o n . T h i s now a l l o w s some e s t i m a t e of t h e e f f i c a c y of r a c e m i s a t i o n d a t i n g f o r more t h e r m a l l y c o n s t a n t s i t e s e l s e w h e r e by a p p l y i n g limits t o e r r o r s t h a t may b e due t o t e m p e r a t u r e m i s c a l c u l a t i o n s . LAKE MUNGO TEMPERATURE RECORDING I n order t o t e s t a 'worst case' a r e a f o r its p r e s e n t temperature range an a r r a y of t e m p e r a t u r e m o n i t o r s was e s t a b l i s h e d a t s i x l o c a t i o n s i n t h e Lake Mungo-Walls of China a r e a . T h i s paper d e s c r i b e s t h e r e s u l t s of two y e a r s m o n i t o r i n g and r e l a t e s t h i s t o a medium-term m e t e o r o l o g i c a l t e m p e r a t u r e r e c o r d f o r t h e a r e a . The Lake Mungo a r e a i s a l s o a t t r a c t i v e b e c a u s e o f t h e a n t i q u i t y of i t s c u l t u r a l m a t e r i a l s and t h e p r e s e n c e o f f a u n a 1 remains which could b e used f o r d a t i n g t h e o c c u p a t i o n beyond t h e 30,000 y e a r s a l r e a d y r e p o r t e d by Bowler e t a l . (1970). The p o s s i b i l i t y o f o c c u p a t i o n e x t e n d i n g beyond t h e normal working range of r a d i o c a r b o n d a t i n g h a s a l r e a d y been a n i n c e n t i v e f o r t h e a p p l i c a t i o n of a l t e r n a t i v e d a t i n g methods. For i n s t a n c e , thermoluminescence d a t i n g h a s been used t o d a t e f i r e p l a c e s t o 38,000 BP (Shawcross and Kaye 1980:121). Temperature m o n i t o r i n g a t Mungo h a s a l s o b e e n u s e f u l i n p r o v i d i n g d a t a on l o c a l m i c r o c l i m a t i c c o n d i t i o n s which a l l o w c o m p a r i s o n s w i t h contemporary standard meteorological records, a s a f i r s t s t e p i n e x t r a p o l a t i n g over longer term p e r i o d s of c l i m a t i c change. - T h e method u s e d f o r m e a s u r i n g s u b s u r f a c e temperature a t Mungo i s based on t h e temperature dependence of t h e water vapour d i f f u s i o n r a t e i n t o a p l a s t i c c e l l '(Ambrose 1976, 1982; Norton and Friedman 1981; Trembour and Friedman 1984). Temperature d i f f e r e n c e s caused by s o i l colour, a s p e c t , drainage and s o i l t y p e was expected a t Mungo, s o six s i t u a t i o n s were chosen encompassing a broad range of c o n d i t i o n s , a s follows (Fig.1): Station I . Dry l a k e f l o o r anenometer s i t e . A v e r t i c a l p r o f i l e t o 1.5 m depth with measuring c e l l s a t i n t e r v a l s of 5, 10, 20, 30, 50, 70, 90, 110, 130 and 150 cm. Figure 1. Map of t h e southern portion of the Lake Mungo-Walls of China l u n e t t e . The f i g u r e s show the l o c a t i o n of f i v e ground s t a t i o n s ( 1 t o 5) and t h e Mungo Homestead meteorological box (6) where t h e thermal c e l l s were used Station 2. Southern end of Lake Mungo on t h e c o n s o l i d a t e d Walls of China l u n e t t e c l o s e t o t h e s i t e excavated by Shawcross (Shawcross and Kaye 1980) through Mungo phase d e p o s i t s with c e l l s t o a depth of 1.5 m a t i n t e r v a l s of 5, 10, 20, 30, 50, 70, 90, 110, 130 and 150 cm. Station 3. Lakeside slope of t h e l u n e t t e 3 km n o r t h e a s t of S t a t i o n 2. On a r i d g e between eroded g u l l i e s and t h e s i t e of a f i s h h e a r t h i n Zanci phase d e p o s i t s . Temperature c e l l s t o 1 m depth a t i n t e r v a l s of 5, 10, 20, 40, 60, 80 and 110 cm. Station 4 . F o s s i l beach with s h e l l beds a t t h e edge of t h e former l a k e 1.7 km southeast of t h e anenometer S t a t i o n 1. I n powdery dry d e p o s i t s , temperature c e l l s t o 1 m depth a t i n t e r v a l s of 5, 10, 20, 50 and 100 cn?. Station 5 . Exposure of red Golgol phase d e p o s i t a t t h e b a s e of t h e l u n e t t e 3 km south of t h e Walls of China v i s i t o r s ' parking a r e a . In damp clayey sand with temperature c e l l s t o 1 m depth a t i n t e r v a l s of 5, 10, 20, 30, 50 and 100 cm. Station 6 . Meteorological box, Mungo Homestead. A t each ground measuring s t a t i o n a 75 mm diameter hand-augered h o l e was sunk t o t h e required depth. The c e l l s were i n s e r t e d i n a r i g i d 40 mm d i a meter PVC tube and f i x e d a t t h e p r e s e t i n t e r v a l s w i t h a w i r e c r o s s p i e c e , and with t h e i n t e r v e n i n g space between c e l l s f i l l e d with s p o i l from t h e augered hole. The tube wall had 10 mm p e r f o r a t i o n s a t 100 mm i n t e r v a l s o f f s e t on f o u r s i d e s throughout i t s length t o a l l o w f o r f r e e a c c e s s of m o i s t u r e between t h e surrounding ground and t h e c e l l s . The PVC t u b e w i t h i t s column of c e l l s was i n s e r t e d i n t o t h e augered h o l e and s p o i l was compacted i n t h e space around i t t o keep i t i n t i m a t e l y i n c o n t a c t w i t h t h e surrounding s e d i m e n t ~ . The top end of t h e tube was covered with 10-15 mm of s o i l s o t h a t it was not v i s i b l e a t t h e ground s u r f a c e . This procedure was repeated a t 6-monthly i n t e r v a l s a t a l l measuring s t a t i o n s , when a new s e r i e s of c e l l s was exchanged f o r t h e exposed s e t s . The f o u r periods (25.4.82-25.10.82, 25.10.82-25.4.83, 25.4.83-25.10.83, 25.10.83-25.4.84) gave a summer and winter exposure over 2 y e a r s . The t o t a l of 155 measuring p o i n t s h a s given a p i c t u r e of t h e s e a s o n a l temperature amplitude a t each s t a t i o n and provided a measure of t h e t o t a l range between t h e s t a t i o n s . The short-term thermal c h a r a c t e r i s t i c s of h n g o sediments can now be r e l a t e d t o t h e medium-term meteorological r e c o r d s . T h e d a i l y o r seasonal temperature v a r i a t i o n s , expressed a s t h e t o t a l temperature amplitude over a 1 year c y c l e can be c a l c u l a t e d a s a mean a r i t h metic v a l u e i f simple meteorological r e c o r d s are considered. However, t h e mean a r i t h m e t i c v a l u e i s not t h e a p p r o p r i a t e f i g u r e t o apply t o chemical r e a c t i o n r a t e d a t i n g systems because t h e i r r e a c t i o n r a t e s a r e e x p o n e n t i a l l y r e l a t e d t o temperature. I n order t o r e l a t e t h e f i e l d r e s u l t s t o t h e meteorological r e c o r d s , and thereby allow longer term p r o j e c t i o n s of temperature h i s t o r y f o r a s i t e , i t i s necessary t o make t h e exponential and a r i t h m e t i c v a l u e s compatible. Norton and Friedman (1981:3) have attempted t h i s adjustment by applying t h e estimated temperature range t o c a l c u l a t e a c o r r e c t i o n , i n o r d e r t o a r r i v e a t an ' e f f e c t i v e temperature' f o r amino a c i d r a c e m i s a t i o n and o b s i d i a n h y d r a t i o n dating. Unfortunately i t i s n o t p o s s i b l e t o a s s e s s t h e s u b s o i l range simply by e x t r a p o l a t i o n from t h e a i r temperature range; s o i l s u r f a c e temperatures may have a g r e a t e r amplitude of temperature v a r i a t i o n than a i r temperatures, while a t g r e a t e r depths t h e temperature amplitude may b e l e s s than t h a t of t h e a i r . Norton and Friedman (1981:3) suggest a s o l u t i o n t o t h e problem of a s s e s s i n g t h e temperature range c o r r e c t i o n by u s i n g two monitoring systems, each having different reaction rate constants, but buried at the same positions for the same period; they suggest using the thermal diffusion cell described here alongside the sucrose inversion cell for this purpose. There is an alternative way to arrive more directly at the range and the 'effective temperature' of the reaction being measured. The experimental activation energy of the diffusion cell method (Eact = 41.87 kJ/mol) is lower than the activation energy for aspartic acid racemisation (Eact = 139.6 kJ/ mol) published by Bader and Helfman (1975:165). Therefore in any condition of variable temperature the nett effect on the reaction rate of racemisation will be greater than the cell diffusion rate and both will be greater than that at the arithmetic mean temperature. The wider the temperature range the greater is the nett reaction product compared with that at the static mean temperature. This exponential temperature dependence complicates extrapolation from different depths in a site because of the attenuating effect of depth on diurnal and seasonal temperature changes. It also complicates extrapolation between sites with different thermal properties caused by moisture content, sediment type, surface and aspect. Nevertheless the temperature response of the ground surface to the cyclic annual variation of radiation can be regularly reflected in subsurface The regular perioditemperatures to a depth of around 14 m (Oke 1978:41). city of the annual rise and fall in temperature provides the mathematical basis for evaluating the arithmetic mean and range of the exponential values derived from the thermal cells. The conversion of the diffusion cell exponential temperature values to arithmetic temperature values, and the calculation of the annual temperature range, can be achieved by using the winter The derived arithmetic and summer cell sets (Chappell and Ambrose n.d.). values are shown in Tables 1 and 2. One additional complication is the temperature change lag with depth which is not considered in this paper. Mungo arithmetic mean temperature values (Celsius) (air T 18.4 + 7.7 1983/84) Depth cm STATIONS 3 PERIOD 82/3 8314 5 10 20 30 40 50 60 70 80 90 100 110 130 150 Values to Table 1. + .1°c Arithmetic mean temperature values derived from the winter and summer half year thermal cell records at five Mungo ground recording stations (April 1982 to April 1984), and the Homestead meteorological box (April 1983 to April 1984) Temperature ranges about the arithmetic mean (Celsius). Hungo 1982-84. Air temperature range 1983184 18.4 + 7.7 STATIONS 3 2 PERIOD Depth 8213 cm 8314 8213 8314 5 10 20 30 40 50 60 70 80 90 100 110 9.5 9.1 8.9 8.2 - 7.9 - - - 6.3 130 1 50 Values to Table 2. 8314 + .lOc Arithmetic temperature ranges a b o u t t h e mean; d e r i v e d from t h e w i n t e r and summer h a l f y e a r thermal c e l l r e c o r d a t f i v e Mungo ground r e c o r d i n g s t a t i o n s ( A p r i l 1982 t o A p r i l 1984) and t h e Homestead m e t e o r o l o g i c a l box ( A p r i l 1983 t o A p r i l 1984) The 20 y e a r temperature r e c o r d f o r t h e Mildura m e t e o r o l o g i c a l s t a t i o n , when p l o t t e d a s monthly means, shows t h e e x p e c t e d s i n u s o i d a l c u r v e of t h e form y = sin X w i t h t h e b a s e l i n e being t h e long-term mean of l6 .g0 ( F i g . 2). For t h e p e r i o d A p r i l 1982 t o A p r i l 1984 t h e Mildura monthly a i r t e m p e r a t u r e record shows divergences a l t h o u g h t h e 2 y e a r mean (17.1°) i s c l o s e t o t h e long-term mean (16.g0). MUNGO RESULTS The thermal c e l l r e c o r d a t t h e Mungo m e t e o r o l o g i c a l box f o r A p r i l 1983-April 1984 g i v e s a n annual mean a i r t e m p e r a t u r e of 18.4O w i t h a p l u s and minus range of 7 . 7 ' compared w i t h t h e Mildura m e t e o r o l o g i c a l r e c o r d f o r tile same p e r i o d of 16.8O f 5 . 0 ° . The a i r t e m p e r a t u r e d i f f e r e n c e of 1.6' i s r e l a t i v e l y s m a l l e r than t h e d i f f e r e n c e s between t h e r a n g e of measuring p o i n t s of t h e f i v e s u b s u r f a c e Mungo measuring s t a t i o n s . Damage t o t h e 1982-3 a i r temperature c e l l c o n f i n e s c o n s i d e r a t i o n of a i r t e m p e r a t u r e t o s i t e comparisons t o t h e 1983-4 p e r i o d , The s u b s u r f a c e r e s u l t s a r e f o r d e p t h s of 5 cm and more, s o i t s h o u l d be noted t h a t t h e range of temperatures and d i f f e r e n c e s w i l l b e g r e a t e s t f o r t h e top l a y e r . Even s o temperatures recorded from t h i s l a y e r a r e s i g n i f i c a n t l y lower than a t t h e s u r f a c e . The t e m p e r a t u r e s a c h i e v e d from s o l a r r a d i a t i o n a t t h e s u r f a c e c a n b e t e n s of d e g r e e s h i g h e r t h a n temperat u r e s from only 5 cm depth and may reach 70°C (Geiger 1966:158). Davis (1984) by u s i n g t h e r e l a t i v e d e g r e e of h y d r a t i o n of s i n g l e e v e n t t e p h r a s shows t h a t n e a r s u r f a c e temperature i s h i g h e r t h a n t h a t a t g r e a t e r d e p t h and h i g h e r than t h e average a i r temperature. The Mungo r e s u l t s a r e c o n s i s t e n t with these observations. 1824 - n20 - 18- - ----- S ::: 1: A - p s0 0 S i n curn, pidiced 84 -- - M y a r Mildun monthly mnps -2 year Mildun monthly rsmd - .. .. 1 y u r M u m man air ~ m p n t u r e 20 1 1 A M 1 J 1 J 1 A 1 S 1 O 1 N 1 D 1 J 1 . F Figure 2. 1 M 1 A ' M ' J low 1m2 ' J ' A ' S 1 O 1 N ' D 1 J 1 F M law 1 A Summer and winter air temperature records for the Mildura meteorological station plotted against the theoretical sine curve. Apart from a slight time lag there is a close approximation to the theoretical curve of winter and summer temperature changes for the 20 year record From Table 1, setting out the annual mean temperatures, it can be seen that there are significant differences between the 1982-3 and 1983-4 years. For example the dry lake floor anenometer Station 1 has 1.0' to 1.4' temperature differences between the two years whereas Station 5, the red Golgol sediment, has a narrower range of differences between 0.4' and 0.9'. There are consistently higher temperatures at the ground stations than the air temperatures measured at the meteorological box at the Mungo Homestead. The air temperature (1983-4 only) of 18.4' can be compared with the lowest mean ground temperature of 18.6' at Station 1 and the highest mean ground temperature of 21.3' at Station 5. The higher ground temperatures, from a minimum above air temperature of 0.2' to a maximum of 2.9' may seem small although they could effect the calculated age for a date based on a racemisation rate quite significantly Equally important in determining the reaction rate is the amplitude of the temperature variation about the mean. The sinusoidal progress of temperature over the summer and winter half years provided the basis for calculating the amplitude, or range, of temperature The results variations at Mungo, for example at Stations 1 and 2 (Fig.3). are set out in Table 2. Table 2, giving the temperature ranges of the measuring points, like the mean values of Table 1, shows the effects of different years, different locations and different depths below ground surface. The values assume some importance for reaction rates which are exponentially dependent on temperature, such as acid racemisation in bone collagen or obsidian hydration. For . example a range of 210" about a mean of 20° would i n c r e a s e t h e e f f e c t i v e racemisation r e a c t i o n temperature by around 3.5'. I f the sample ages a r e based on t h e lower mean v a l u e of 20° then f o r racemisation d a t i n g t h e c a l c u l a t e d age w i l l b e around 80% higher than t h e t r u e value. Inspection of Table 2 shows t h a t even a t 1.5 m depth, S t a t i o n 2 has an annual v a r i a t i o n of around 6O t o 7 O which would be enough t o give a 30% t o 40% overestimate of racemisation d a t e . By any standard t h e e r r o r introduced by an i n c o r r e c t assessment of a sample's temperature regime over time can s e r i o u s l y impair a f i n a l age c a l c u l a t i o n f o r chemical d a t i n g systems. The approximation t h a t a 1°C temperature e r r o r w i l l produce a 20;2 racemisation age e r r o r needs t o be k e p t i n mind when considering ages derived from t h i s system. Station 1 1983184 Station 2 1983184 1 . . . . . . . . . . . A M J Figure 3. J A S O N D J F M /: 1 A Summer and w i n t e r temperature means and ranges c a l c u l a t e d a s a s i n e curve f o r t h e 5 cm ( a ) , 50 cm ( b ) and 150 cm (c) l e v e l s a t S t a t i o n 1 (anenometer s i t e ) , S t a t i o n 2 (Shawcross excavation s i t e ) and t h e Mungo meteorological box a i r temperature (A) f o r A p r i l 1983 t o A p r i l 1984. There i s a n o t a b l e d i f f e r e n c e i n t h e thermal response of these two s t a t i o n s a t t h e 50 and 150 cm l e v e l s . Temperature v a l u e s a r e l i s t e d i n Tables 1 and 2 CONCLUSION By c l o s e l y monitoring t h e ground temperature a t Mungo a present-day b a s e l i n e s e t of d a t a is a v a i l a b l e f o r e x t r a p o l a t i o n t o o l d e r periods. The r e l a t i o n s h i p of t h e Mungo a i r temperature t o ground temperature and t o medium-term meteorological records a t Mildura allows more p r e c i s e calculat i o n s of chemical r e a c t i o n r a t e s f o r d a t i n g purposes. The temperature r e c o r d r e p o r t e d h e r e should b e within fO.l°C of t r u e temperature a t Mungo. T h i s would b e e q u i v a l e n t t o an e r r o r of around 2.5% f o r a racemisation d a t e and s i n c e t h i s i s l e s s than o t h e r p o t e n t i a l measurement e r r o r s i n t h e dating system i t should be p o s s i b l e t o make some f u r t h e r progress i n i t s use f o r a r c h a e o l o g i c a l d a t i n g purposes. ACKNOWLEDGEMENTS I would l i k e t o thank t h e New South Wales P a r k s and W i l d l i f e S e r v i c e f o r p r o v i d i n g a c c e s s t o s i t e s a t Mungo, and i n p a r t i c u l a r t o P e t e r Clarke f o r h i s p r a c t i c a l a s s i s t a n c e and e n d u r i n g h o s p i t a l i t y . REFERENCES Ambrose, W. 1976 I n t r i n s i c h y d r a t i o n r a t e d a t e of o b s i d i a n . I n R.E. Taylor New J e r s e y : ( e d . ) Advances i n obsidian glass s t u d i e s , pp.81-105. Noyes Ambrose, W. 1980 M o n i t o r i n g long-term t e m p e r a t u r e and humidity. ICCM B u l l e t i n 6:36-42 Ambrose, W. and P. Duerden ( e d s ) 1982 Archaernetry: an Australasian perspective. Canberra: A u s t r a l i a n N a t i o n a l U n i v e r s i t y , Research School of P a c i f i c S t u d i e s , Department of P r e h i s t o r y Bada, J . L . , R.A. S c h r o e d e r and G.F. C a r t e r 1974 New e v i d e n c e f o r t h e a n t i q u i t y of man i n North America deduced from a s p a r t i c a c i d Science 184:791-793 racemization. Bada, J.L. and P.M. Helfman 1975 Amino a c i d r a c e m i z a t i o n d a t i n g of f o s s i l bones. world Archaeology 7:160-173 B i s c h o f f , J.L. and R . J . Rosenbauer 1982 Mar Man and Sunnyvale s k e l e t o n s . Uranium s e r i e s a g e s of t h e Del Science 217:756 Canberra: A u s t r a l i a n Bowdler, S. 1984 Hunter H i l l , Hunter Island. N a t i o n a l U n i v e r s i t y , Research School of P a c i f i c S t u d i e s , Department of P r e h i s t o r y , Terra Australis 8 Bowler, J . M . , R. J o n e s , H . A l l e n and A.G. Thorne 1970 P l e i s t o c e n e human r e m a i n s from A u s t r a l i a : a l i v i n g s i t e and human c r e m a t i o n from Lake Mungo, w e s t e r n New South Wales. World Archaeology 2: 39-59 C h a p p e l l , J . 1982 Radiocarbon d a t i n g u n c e r t a i n t i e s and t h e i r e f f e c t s on s t u d i e s of t h e p a s t . I n Ambrose and Duerden 1982:322-335 C h a p p e l l , J . and W. Ambrose n . d . Ground t e m p e r a t u r e measurement by diffusion c e l l . [ I n prep.] cook, S.F. 1960 D a t i n g p r e h i s t o r i c bone by chemical a n a l y s i s . In R.F. H e i z e r and S.F. Cook ( e d s ) The application of quantitative methods i n archaeology, pp.223-245. Chicago: Quadrangle C o o t e , G . and S. Holdaway 1982 R a d i a l p r o f i l e s of f l u o r i n e i n archaeol o g i c a l bone and t e e t h : a r e v i e w of r e c e n t developments, In Ambrose and Duerden 1982:251-261 D a v i e s , W.D. and F.E. T r e l o a r 1977 The a p p l i c a t i o n of r a c e m i s a t i o n d a t i n g i n a r c h a e o l o g y : a c r i t i c a l review. The Artefact 2:63-94 1984 Tephra h y d r a t i o n r i n d s a s i n d i c a t o r s of a g e and e f f e c t i v e Davis, J . O . h y d r a t i o n t e m p e r a t u r e . In R.E. Hughes (ed.) Obsidian studies i n the Great Basin, pp.91-101. C o n t r i b u t i o n s t o t h e U n i v e r s i t y of C a l i f o r n i a A r c h a e o l o g i c a l Research F a c i l i t y No.45 Friedman, I . and W. Long 347-352 1976 Hydration r a t e of o b s i d i a n . Science 191: Geiger, R. 1966 The cZimQte near the g r a n d . University Press Cambridge, Mass.: Harvard 1984 O b s i d i a n h y d r a t i o n : a p p l i c a t i o n s i n t h e w e s t e r n Great Jackson, R.J. B a s i n . In R.E. Hughes ( e d . ) Obsidian studies i n the Great Basin, pp. 173-192. C o n t r i b u t i o n s t o t h e U n i v e r s i t y of C a l i f o r n i a Archaeol o g i c a l Research F a c i l i t y No.45 1969 Chemical t e m p e r a t u r e i n g r a t i o n . JoumaZ of Applied Meteorology 8 :423-430 Masters, P.M. and J.L. Bada 1978 Amino a c i d r a c e m i z a t i o n d a t i n g of bone and s h e l l . In G.F. C a r t e r ( e d . ) ArchaeoZogicaZ chemistry 11, pp. Lee, R. 117-138. Advances i n Chemistry S e r i e s 171 McPhail, S.M. 1982 R e l i a b l e r a d i o c a r b o n d a t e s from b o n e s . I n W. Ambrose and P. Duerden ( e d s ) Archaeornetry: an Austmzasian perspective, pp. 336-342, Canberra: A u s t r a l i a n N a t i o n a l U n i v e r s i t y , R e s e a r c h School of P a c i f i c S t u d i e s , Department of P r e h i s t o r y Michels, J . W . , I.S.T. Tsong and G.A. Smith hydration r a t e s i n obsidian dating. 1983 Experimentally derived Archaeometry 25:107-117 Murray, P . F . , A . Goede and J.L. Bada 1980 P l e i s t o c e n e human o c c u p a t i o n a t Beginners Luck cave, F l o r e n t i n e V a l l e y , Tasmania. ArchaeoZogy and PhysicaZ AnthropoZogy i n Oceania 15:142-152 Norton, D.R. and I. Friedman 1981 Ground t e m p e r a t u r e measurements, P a r t 1 Pallman Technique. US Geologicaz Survey ProfessionaZ Paper 1203 :1- 1 1 Oeschger, H . 1982 The c o n t r i b u t i o n of r a d i o a c t i v e and c h e m i c a l d a t i n g t o t h e u n d e r s t a n d i n g of t h e environmental system. In L.A. C u r r i e ( e d . ) Nuclear and chemical dating techniques, interpreting the environmental record, pp.5-42. Washington: American Chemical S o c i e t y Oke, T.R. 1978 Boundary layer cz<mates. London: Methuen Pillans, B. 1982 Amino a c i d r a c e m i s a t i o n d a t i n g : a r e v i e w . In W. Ambrose and P. Duerden ( e d s ) Archaeornetry: an Austmkzsian perspective, pp. 228-235. Canberra: A u s t r a l i a n N a t i o n a l U n i v e r s i t y , R e s e a r c h School of P a c i f i c S t u d i e s , Department of P r e h i s t o r y Schroeder, R.A. and J . L . Bada 1973 G l a c i a l - p o s t g l a c i a l t e m p e r a t u r e d i f f e r e n c e deduced from a s p a r t i c a c i d r a c e m i s a t i o n i n f o s s i l bones. Science 182:479-482 Shawcross, F.W. and M. Kaye 1980 A u s t r a l i a n a r c h a e o l o g y , i m p l i c a t i o n s of InterdiscipZinary Science current i n t e r d i s c i p l i n a r y research. Reviem 5 :1 12- l28 Trembour, F. and I. Friedman 1984 O b s i d i a n h y d r a t i o n d a t i n g and f i e l d s i t e t e m p e r a t u r e . In R.E. Hughes ( e d . ) Obsidian studies i n the Great Basin, pp.79-90. C o n t r i b u t i o n s of t h e U n i v e r s i t y of C a l i f o r n i a A r c h a e o l o g i c a l Research F a c i l i t y No.45 Department of P r e h i s t o r y R e s e a r c h School of P a c i f i c S t u d i e s Australian National University Canberra ACT
© Copyright 2026 Paperzz