© PLOSI o OPEN 3 ACCESS Freely available online - Predicting the Electron Requirement for Carbon Fixation in Seas and Oceans Evelyn Lawrenz1*, Greg Silsbe2, Elisa Capuzzo3, Pasi Ylöstalo4, Rodney M . Forster3, Stefan G. H. Simis4, O ndrej Prásil1, Jacco C. Krom kam p2, Anna E. Hickm an5, C. M ark M oore5, M arie-Hélèn Forget6, Richard J. G eider7, David J. Suggett7 1 Laboratory o f Photosynthesis, Institute o f M icrobiology, ASCR (Academy o f Sciences o f th e Czech Republic), Opatovickÿ rnlyn, Treboñ, Czech Republic, 2 Netherlands Institute o f Ecology, Centre fo r Estuarine and Marine Ecology (NIOO-CEME), Yerseke, The Netherlands, 3 Centre fo r Environment, Fisheries & Aquaculture Science (CEFAS), Lowestoft, Suffolk, United Kingdom, 4 Finish Environment Institute (SYKE), Helsinki, Finland, 5 Ocean and Earth Science, University o f Southam pton, National Oceanography Centre, Southampton, Hampshire, United Kingdom, 6 Takuvic Joint International Laboratory, UMI 3376, Université Laval (Canada) CNRS (France), D epartm ent de Biologie and Québec-Océan, Université Laval, Québec City, Québec, Canada, 7 School o f Biological Sciences, University o f Essex, Colchester, Essex, United Kingdom Abstract Marine ph ytoplankton account for about 50% o f all global net prim ary pro du ctivity (NPP). Active fluorom etry, m ainly Fast Repetition Rate fluo rom e try (FRRf), has been advocated as means o f providing high resolution estimates o f NPP. Plowever, not measuring C 02-fixation directly, FRRf instead provides ph otosynthetic qu an tu m efficiency estimates from which electron transfer rates (ETR) and ultim ately C 02-fixation rates can be derived. Consequently, conversions o f ETRs to C 02fixation requires know ledge o f the electron requirem ent fo r carbon fixation (i>Siû ETR/C02 uptake rate) and its dependence on environm ental gradients. Such know ledge is critical for large scale im plem entation o f active fluorescence to better characterise C 0 2-uptake. Flere we examine the variability o f experim entally determ ined values in relation to key environm ental variables w ith the aim o f developing new w orking algorithm s fo r the calculation o f @eC from environm ental variables. C oincident FRRf and 14C-uptake and environm ental data from 14 studies covering 12 marine regions were analysed via a meta-analytical, non-parametric, m ultivariate approach. C om bining all studies, @eC varied between 1.15 and 54.2 mol e - (mol C)-1 w ith a mean o f 10.9±6.91 mol e- mol C)- 1 . A ltho ug h variability o f was related to environm ental gradients at global scales, region-specific analyses provided far Im proved predictive capability. Plowever, use o f regional 0>e_c algorithm s requires objective means o f defining regions o f Interest, w hich remains challenging. Considering Individual studies and specific small-scale regions, tem perature, nutrient and light availability were correlated w ith 0>eC albeit to varying degrees and depending on the study/region and the com position o f the extant ph ytoplankton com m unity. At the level o f large blogeographlc regions and distinct w ater masses, 0>eC was related to nu trien t availability, chlorophyll, as well as tem perature a n d/or salinity In m ost regions, w hile light availability was also Im portant In Baltic Sea and shelf waters. The novel 0>e_c algorithm s provide a m ajor step forward fo r widespread fluorom etry-based NPP estimates and h ig h lig h t the need for furthe r studying the natural variability o f to verify and develop algorithm s w ith Im proved accuracy. C itation : Lawrenz E, Silsbe G, Capuzzo E, Ylöstalo P, Forster RM, et al. (2013) Predicting the Electron Requirement fo r Carbon Fixation in Seas and Oceans. PLoS ONE 8(3): e58137. doi:10.1371/journal.pone.0058137 Editor: Lucas J. Stal, Royal Netherlands Institute o f Sea Research (NIOZ), The Netherlands Received October 13, 2012; A ccepted January 30, 2013; Published March 13, 2013 C opyrigh t: © 2013 Lawrenz et al. This is an open-access article distributed under th e terms o f the Creative Commons A ttrib u tio n License, w hich permits unrestricted use, distribution, and reproduction in any medium, provided th e original a uthor and source are credited. Funding: This w ork and some o f th e cruises have been made possible via fu nding through th e EU FP7 project PROTOOL FP7 (grant num ber 226880). The funders had no role in study design, data collection and analysis, decision to publish, or preparation o f th e manuscript. C om peting Interests: The authors have declared th a t no com peting interests exist. * E-mail: [email protected] uptake rate after subtracting o u t any C 0 Introduction 2 lost to o x id a tio n o f organic carbon over a d ie l cycle [ 1 ], A ccu ra te ly evaluating the im p a ct o f local e n viro n m e n ta l and O f all global NPP, m a rin e ecosystems account fo r ca. 50% [2], global clim ate change u pon tro p h ic dynam ics a nd biogeochem ical an a m o u n t equivalent to ca. 51 • 1 n u trie n t cyclin g is fu n d a m e n ta lly tied to [2,3]; alm ost a ll o f this p ro d u c tiv ity is fro m how w e ll p rim a ry p ro d u c tiv ity , defined here as carbon ( C 0 2) fixa tio n , is charac terised. F o llo w in g the in c o rp o ra tio n o f in o rg a n ic rad io-labelled 0 15 g o f fixe d carbon p e r year p h y top la n kto n . H ow ever, m arin e ecosystem-scale p ro d u c tiv ity estimates co n tain a C 0 2 in to algal cells has becom e a standard m ethod for q u a n tify in g p rim a ry p ro d u c tiv ity . H ow ever, to this day, there still h ig h degree o f un ce rta in ty, since th e y are u ltim a te ly derived by e xtra p o la tio n fro m discrete measurements o f N P P o r G PP [4,5] w ith lim ite d spatial and te m p o ra l resolution. R em ote sensing exists considerable u n ce rta in ty as to w h e th er 1 4 C 0 2 uptake measures gross p rim a ry p ro d u c tiv ity (GPP) o r net p rim a ry p ro d u c tiv ity (NPP). F o llo w in g the tra d itio n a l view , G PP refers to (ocean colour) p ro d u c tiv ity a lg o rith m s are the m ost w id e ly used to o l fo r m aking these extrapolations in o rd e r to b e tter characterise carbon fix a tio n w ith o u t a cco u ntin g fo r any carbon losses due to H ow ever, these p ro d u c tiv ity algorithm s are e x p lic itly dependent resp ira tio n a n d /o r excretion, w h ile N P P represents the carbon o n relative ly few discrete, surface “ tr u th ” 14C p rim a ry p ro d u c tiv ity PLOS ONE I www.plosone.org the nature and extent o f v a ria b ility in N P P in m arin e ecosystems. 1 March 2013 | Volume 8 | Issue 3 | e58137 Electron Requirement for Carbon Fixation T a b le 1. Studies included in the meta-analysis. S tud y/C ruise ID G eog raph ical area AMT6 Atlantic AMT 11 Atlantic AMT15 Tropical Atlantic D246 D ate <rpsnspec npsn ETR/14C N References 14 May-12 Jun 98 0.002 In situ1/PE; 40 [24,25] 15 Sep-09 Oct 00 0.003/0.002 In situ1/PE; 66 [24,25] 17 Sep-29 Oct 04 0.003 In sltuVPE" [26] Celtic Sea 17-28 May 00 0.002 In situVPE5, SIS [27,28] JR98 Celtic & Irish Sea 31 Jul-11 Aug 03 measured On deck1/PE; Time series Gulf o f Finland 11 A pr-15 Nov 00 0.002 In situVin situ' Time series Massachusetts Bay 27 Feb-29 Nov 00 1.75 Time series Ariake Bay, Japan 26 Jun-04 Oct 06 1.75 SYNTAX Baltic Sea 21 - 30 Jul 2010 CEND0811 North Sea 08-12 May 11 D366 UK-OA UK & European shelf 06 Jun-12 Jul 11 Time series Bedford Basin, Canada 23 Feb-18 Apr 07 + measured On deck2/PE5 20 BIOSOPE2 Pacific Ocean 12 Sep-21 Nov 04 1.5 0.003 On deck3/PE5 25 d SUPREM011 Gulf o f Finland 11-15 Apr 11 + 0.002 On deck2’7/PE5 42 e 28 [29] In situ1/PE; 37 On deck2/FAST 24 [30] 0.002 [31] 0.003 On deck2/FAST c Data were collected during cruises undertaken as part o f the Atlantic Meridional Transect (AMT) Program, Individual cruises to the Celtic Sea, Baltic Sea, North Sea, other UK and European shelf waters and the Pacific, as well as part o f tim e series studies In the Gulf o f Finland, Massachusetts Bay (USA), Ariake Bay (Japan) and Bedford Basin (Canada). M ethodological differences existed In the way data were corrected for spectral discrepancies between the fluorom eter and 14C-lncubator light source (ftpstopec), in the estimates o f the number o f photosystem II (nPS!!), and In the approach used to compare electron transport rates (ETR) and 14C fixation. + spectral corrections applied according to Moore et al. [11 ]. In some samples, a spectral correction factor o f 1.75 was used w hile a spectral correction was n.a. denotes not applicable because primary productivity was measured on samples Incubated In the cuvette holder o f a FASTact Fluorometer. ripsH was assumed to be constant (0.0033 or 0.0020 mol RCII (mol chia) ') or calculated either according to it) nPSu = 500 (FyFm)/0.65 or (f) Oxborough et al.[7]. ETRs were either measured in situ or on discrete samples using a 1FASTtrecka, or 2FASTact FRR fluorom eter, a 3FIRe benchtop fluorom eter or a 4FRRFDlvin9 Flash. Superscript 5 denotes photosynthesis Irradiance curves measured on samples Incubated for 1-4 hours using a photosynthetron [32] or equivalent Incubator, 6 denotes 2 hour in situ b ottle Incubations, w hile 7 Indicates rapid lig h t curves carried o u t In on-deck laboratories under tem perature controlled conditions. SIS stands for 24 hour on deck 'simulated in situ' Incubations, and N Is the num ber o f observations fo r each study, a) Silsbe and Ylöstalo unpublished, b) Lawrenz, Capuzzo, Forster, Suggett unpublished, c) Suggett and Forget unpublished, d) Prásll, Gorbunov, Babin, Huot unpublished, e) Ylöstalo et al. unpublished. dol:10.1371 /journal.pone.0058137.t001 measurements. M a n y researchers have, therefore, tu rn e d to high resolution bio-optical-based approaches in o rd e r to m eet this p ro vid e accurate estimates o f the rate o f gross 0 2 evo lu tio n fro m P S II [16,17] and, hence, GPP. E h ifo rtun a te ly, m an y applications (e.g. clim ate m odels, fisheries assessments) req u ire th a t p rim a ry challenge. Pulse A m p litu d e M o d u la te d (P A M ; [ 6 ]) and Fast R e p e titio n Rate (FR R ; [7,8]) flu o ro m e try p ro vid e the p o te n tia l to d ra m a t p ro d u c tiv ity be expressed n o t as E T R o f 0 ic a lly increase the n u m b e r o f estimates o f N P P in m arin e ecosystems [ 8 ] , As w ith o th er b io -o p tica l sensors, active flu o ro m C 0 2, th a t is, NPP. As such, a p p lic a b ility o f broad-scale active fluorescence-based measurements o f E T R are p o te n tia lly lim ite d i f E T R s cannot be easily converted to G PP a nd eventually NPP. 2 e vo lu tio n b u t ra th e r in the p hotosynthetic cu rre n cy (sensu Suggett et al. [18]) o f fixed e try can be utilised in situ and thus, measurements o f p ro d u c tiv ity Such conversion requires knowledge o f the E T R to C 0 can be lin k e d d ire c tly to measurements o f p h ysica l/ch e m ica l variables at the tim e o f sam pling [9 -1 1 ]. In a d d itio n , data can be collected at h ig h te m p o ra l (seconds) and spatial resolution a n d /o r 2 fix a tio n ra tio , i.e. the electron req u ire m e n t fo r carbon fix a tio n (0 >fjc) w ith units m o l e (m ol C) . W ith E T R and short-term (hours) C O " fix a tio n incubations representing G PP ra th e r th a n N P P [19,20], over large scales [12]. I f direct, in situ measurements o f N P P using active fluorescence co u ld be achieved, the advantages o f this 0 r c also captures gross ra th e r th a n a net efficiency. approach w o u ld represent a step change in ope ra tio n a l capacity, Since the in tro d u c tio n o f active fluorescence to m a rin e research, a n u m b e r o f studies have attem pted to com pare measurements o f in terms o f accuracy and resolution, com pared to ‘co n ve ntio n a l’ 1 4 C-based approaches, w h ich are lim ite d b y the need to incubate E T R w ith (quasi-)simultaneous measurements o f C 0 2 uptake, the relative ly large w a te r samples, often fo r lo n g durations [13], w ith la tte r representing GPP, N P P o r som ething in between depending attendant p o te n tia l problem s due to ‘bo ttle effects’ [14,15]. Thus, on in cu b a tio n tim es (1 h o u r to a fu ll diel cycle) [1 0 ,21 -2 3 ] (Table 1, references therein). In itia lly , these exercises aim ed to the w idespread im p le m e n ta tio n o f active fluorom eters on broadscale te m p o ra l o r spatial sam pling platform s, such as ships o f evaluate w h e th er E T R s p ro vid e d a robust q u a n tifica tio n o f G PP o p p o rtu n ity and m oorings w o u ld represent a m a jo r advance in [3 2 -3 5 ]. M o re recent studies have sought to understand the extent and nature o f va ria tio n between the E T R and G PP a n d /o r N PP evaluating the v a ria b ility o f p rim a ry p ro d u c tiv ity in seas and oceans. [10,11,18,36], N um erous b io ch e m ica l processes o ther th a n C 0 2 fix a tio n can act to consume electrons, A T P a n d /o r reductant; fo r A c tiv e fluorescence can be used to estimate the rate at w h ich electrons flo w fro m w a te r th ro u g h photosystem I I to N A D P H (the exam ple, oxygenase a c tiv ity o f rib ulose-l,5-bisphosphate M e h le r Ascorbate Peroxidase (M A P ) a c tiv ity [32] and n u trie n t assim ilation [35,37]. A ll these processes are expected to e x h ib it b o th taxon-specific a nd e n viro n m e n ta l dependencies w ith corre p ro d u c tio n o f energy (ATP) and reductant (N A D P H ) used to fix C 0 2. T hus, measurements o f E T R b y active fluorescence, at best, PLOS ONE I www.plosone.org the carboxylase/oxygenase (Rubisco) v ia p h o to re sp ira tio n [32], ch lo ro re sp ira tio n via a p lastid te rm in a l oxidase (P T O X ) [33,34], so-called lin e a r photosynthetic electron transfer rate, E T R ), and o th e r electron acceptors. E T R is m ost closely related to the rate o f gross 0 2 evolution, and p o te n tia lly less d ire ctly to the subsequent 2 March 2013 | Volume 8 | Issue 3 | e58137 Electron Requirement for Carbon Fixation w ith the la tte r be in g used as a p ro x y fo r p h yto p la n kto n biomass. sponding v a ria b ility o f 4>ec [11,18]; indeed, a recent co m p ila tio n o f published F R R -based <Fe>c data sets suggested the existence o f W e fu lly acknowledge th a t oth er e n viro n m e n ta l variables, such as the silicate o r iro n are often also key in d e te rm in in g p h y to p la n k to n some general ta xo no m ic patterns in the v a ria b ility o f <Fec [38]. H ow ever, as yet, no single (global) systematic evaluation attem pted to consider h o w e n viro n m e n ta l gradients regulate co m m u n ity co m p o sitio n and physiological responses and, hence, influence <Fe>c- H ow ever, these data were either n o t collected as p a rt o f the studies in clu d e d here o r n o t available. M eth o d o lo g ica l C learly, active flu o ro m e try co u ld become a m u ch m ore p o w e rfu l to o l fo r e stim ating GPP (or even NPP) in carbon u pon ro u tin e ly m easured variables can be established. Therefore, we constructed a database o f FR R -based measures o f <Fec and variables in clu d e d differences in F R R protocols and 14C in cuba tio n techniques (see below). Locations o f samples were character ized b y la titu d e a nd lon g itu de , w h ile seasonal differences were characterized b y co n ve rtin g sam pling dates to J u lia n day. A ll the associated e n viro n m e n ta l variables k n o w n to regulate p rim a ry e n viro n m e n ta l data were e ith e r k in d ly p ro vid e d b y the authors o f p ro d u c tiv ity , (e.g. tem perature, n utrients and lig h t) fro m b o th the published w o rk, the B ritish O ceanographic D a ta C entre (B O D C , w w w .bodc.ac.uk) o r were taken fro m the o rig in a l cu rre n cy i f generic relationships describing the dependency o f <Fe>c previously published and unpublished data sets a nd used a m etaanalytical approach to determ ine the p re d ic ta b ility o f <Fec fro m e n viro n m e n ta l variables. Specifically, we addressed the fo llo w in g p u b lica tio ns and d ig itize d (Plot D ig itiz e r 2.5.0, Free Software Foundation) fro m relevant figures. three questions: (1) T o w h a t extent does <Fe>c va ry w ith in and Values o f K d (in units o f m *) were derived fro m ve rtica l between oceanic areas and w a te r masses? (2) C an a ‘g lo b a l’ <Fec ever be a pplied o r should region-specific values always be used instead? (3) H o w is the v a ria b ility o f <Fe>c related to th a t o f F in la n d [29], the U K -O c e a n A c id ific a tio n cruise (D366) and the e n viro n m e n ta l factors o r com binations th e re o f (lig h t attenuation, P acific Ocean (B IO S O P E 2) dataset. irra d ia n ce profiles fo r the A M T cruises, B e d fo rd Basin, the C eltic Sea (JR98), B a ltic Sea (S Y N T A X 2 0 1 0 ), A ria ke Bay, the G u lf o f nutrients, tem perature, salinity, etc.)? O u r analysis dem onstrated th a t v a ria b ility in <Fec was strongly correlated w ith the a va ila b ility F o r the re m a in in g studies, M O D IS 4 km satellite products o f euphoric zone depth (zeu), here defined as 1% o f surface P A R , pro d u ce d b y the G io v a n n i o n lin e data system (N A S A G o d d a rd E a rth Science D a ta and In fo rm a tio n Services Center) averaged o f lig h t and nutrients, as w e ll as tem perature a n d /o r salinity, albeit to v a ry in g degrees a nd depending on h o w data are organized in to region-specific subsets. Predictive algorithm s based on these relationships are presented. T re a tm e n t o f data at the regional scale p ro v id e d m uch im p ro ve d pre d ictive ca p a b ility o f these over 8 days were used to calculate K d b y solving E 1% = E 0 x e - ZeuKd algorithm s relative to large scale o r global algorithm s. A lth o u g h m an y o f the algorithm s still need fu rth e r ve rifica tio n a nd revision, (1) this approach demonstrates strong relationships between <Fe c and e n viro n m e n ta l gradients in m an y areas o f the ocean. fo r K d w ith E 0 set to 100%. M u ltip ly in g K d b y the actual sam pling depth then gives C (dimensionless), w ith C < 4.6 corresponding to irra d ia n ce levels > 1 % [39]. F o r data collected p rio r to 2002 M aterials and Methods (Massachusetts Bay), SeaW IFS 9 k m zeu products were used fo r ca lcu la tin g K d a nd subsequently Data com pilation FRRF measurements A com prehensive assessment o f the v a ria b ility in <Fec fro m F R R fluorescence transients were e ith e r measured in situ o r on discrete samples o n -b o a rd using F A S T tracka I o r F A S T tracka I I published lite ra tu re and previously unpublished data was p e r form ed. W e b o f Science and J S T O R search engines were used to retrieve published data on coin cid e n t F R R fluorescence-based fluorom eters w ith F A S T act systems (Chelsea T echnologies G rou p , L td ., W est M olesey, U K ), F IR e benchtop instrum ents (Satlantic, LP, H a lifa x , Canada) o r a F R R Dlvmg Flash flu o ro m e te r (K im o to E T R s and carbon fix a tio n rates fro m m arin e habitats, yie ld in g 17 studies. H ow ever, o n ly 7 o f these studies rep o rte d key e n viro n m ental variables in a d d itio n to c o r both E T R s and C 0 2-fixa tio n E le ctric C o., L T d ., Osaka, Japan) (see T a b le 1). F R R fluorom eters rates (resem bling e ith e r N P P o r G PP depending on the in cu b a tio n were ro u tin e ly p ro g ra m m e d to generate a standard p ro to c o l w ith lengths a nd g ro w th conditions), fro m w h ich <FeC co u ld be calculated. Previously unpublished data corresponding to p a rallel E T R and C 0 2 fix a tio n measurements fro m an a d d itio n a l 7 fie ld 5 0 -1 0 0 single tu rn o ve r (ST) saturation flashlets o f 1.1 -3 .3 ps d u ra tio n a t 1 -3 .6 ps intervals [18,40]. Each in d u c tio n curve was separated b y ~ 1 0 ms. T o increase signal to noise, betw een 5 and 160 sequential in d u c tio n curves were averaged p e r acquisition. cam paigns in 20 0 4-2 0 1 1 , some o f w h ich were undertaken as p a rt o f P R O T O O L (h ttp ://w w w .p ro to o l-p ro je c t.e u /), were also in T h e biophysical m odel o f K o lb e r et al. [41] was fitte d to all fluorescence transients to derive the in itia l fluorescence (F¿¡ and m a xim a l fluorescence (Fm) yields measured in the dark, the cluded (Table 1). T og e th e r, these data sets in clu d e d ten research cruises and fo u r tim e series studies covering a range o f d iffe re n t geographical areas (Fig. 1), in c lu d in g the tem perate, tro p ica l and m in im a l (Fo’), steady state (F’) and m a xim a l (Fm’) fluorescence subtropical A tla n tic O cean ( A M T 6 , A M T 11, A M T 15), Massa chusetts Bay (USA), B e d fo rd Basin (Canada), A ria ke Bay (Japan), yie ld measured u n d er a m b ie n t irradiance, as w e ll as the fu n ction a l absorption cross section o f photosystem I I (PSII) in the d a rk (ffpsu) the C e ltic and Iris h Sea (D246, JR 9 8 ), the N o rth Sea (C E N D 0 8 11/P R O T O O L , G u lf o f F in la n d (in clu ding S U P R E M O 11/P R O T O O L ) , the B a ltic Sea ( S Y N T A X 2 0 1 0 /P R O T O O L ) , U K and European shelf waters ( D 3 6 6 /P R O T O O L ) and lig h t (opsii ) (in units o f A 2 q u a n ta - 1 ). F or m ost studies, the p hotosynthetic electron transfer rate th ro u g h P S II (units o f m o l e(mg chia)- h - ) [42,43] was calculated as: and the Pacific O cean (B IO S O P E ). E T R = E x G psn A com prehensive data m a trix w ith 333 d iffe re n t samples and th e ir corresponding physico-chem ical and m eth odological v a ri F ' x n P S ii X - T 7 X <S>R C X 2.43 x IO “ 5 (2) ables was created. Physico-chem ical variables in clu d e d salinity, w here E is lig h t intensity, npsn the ra tio o f fu n ctio n a l P S II reaction tem perature, n u trie n t concentrations ( N 0 3- and P 0 43 - ), the diffuse v e rtica l a tte nu a tio n coefficient (Kd) o f p h o to syn th e tica lly centres to ch lo ro p h y ll (in units o f m o l R C II (m ol chia)"1), @pc aa assumed constant o f 1 electron yielded fro m each reaction centre I I (R C II) charge separation and 2.43 • IO " 5 is the fa cto r th a t active ra d ia tio n (PAR), o p tica l depth (Q and ch lo ro p h y ll a (chia), PLOS ONE I www.plosone.org 3 March 2013 | Volume 8 | Issue 3 | e58137 Electron Requirement for Carbon Fixation ♦ Bedford Basin O AM T 6 I @ A M T 11 * • AM T 15 ^ 60°N I I 30°N □ Pacific B10S0PE 2 o Ariake Bay ♦ Massachusetts Bay 0 G ulf o f Finland A I A I A V . V Baltic Sea SYNTAX2010 UK-OA D366 North Sea CEND0811 Celtic Sea D246 Celtic Sea JR98 9 0 °W 9 0 °E Figure 1. D ata sets used in th e m eta-analysis. G u lf o f F in la n d in c lu d e s b o th th e S U PREM O 2011 a n d th e R aateoja e t al. [29] s tu d y (See T a b le 1 fo r d e ta ils). d o i:1 0 .1 3 7 1 /jo u rn a l.p o n e .0 0 5 8 1 3 7 .g 0 0 1 made fo llo w in g b rie f d a rk exposure. C onsequently, u n d er circumstances w here ra p id reversal o f certain com ponents o f N P Q occurs d u rin g the d a rk m easurements, F q /F - f m ay be overestim ated p o te n tia lly causing overestimates o f E T R evaluated using Eqn. (2) b y up to 30% in p h yto p la n kto n cultures [ 8 ]. A p a rt fro m the b la n k co rre ctio n o f the absolute fluorescence yields (see above and [45]), the accuracy o f the E T R also depends on h o w variable some assumed ‘constants’ are and h o w w ell certain corrections are applied; specifically, (1) nPsn [46], (2) the spectral co rre ctio n o f o PSn, and (3) differences between ET R -based and C 0 2-based values o f lig h t harvesting efficiency (a) and m a x im u m photosynthesis rates (Pmax). F irstly, nPsn is k n o w n to v a ry between taxa and e n viro n m e n ta l conditions b y up to a fa cto r o f 5 [ 8 ] b u t is ra re ly m easured in the context o f FRR-based p ro d u c tiv ity studies. In fact, o f the studies used here o n ly M o o re et al. [11] and Suggett & Forget (unpubl.) used d irect measurements accounts fo r the conversion o f Á 2 q u a n tu m " 1 to m 2 (m ol R C II) ’ 1, m o l chi« to m g chi«, seconds to hours and p m o l quanta to m o l quanta [13,29]. M easurem ents o f <Jpsn account fo r transient n o n p h o to ch e m ica l quenching in the antenna bed as a result o f exposure to transient lig h t [44], and thus, values o f o PSI/ were ty p ic a lly taken fro m the F R R f d a rk cham ber to increase signal to noise. T h e P S II efficiency factor, te rm e d F q’/ F / (was calculated as (Em’- F ) / ( E m’- F 0) either fro m fluorescence emissions measured sequentially on d a rk acclim ated samples and then u n d e r actinic lig h t, o r estimated as the difference in the apparent p h o to ch e m ica l efficiency between the F R R lig h t and P S II dark cham ber quasi-sim ultaneously, as in Suggett et al. [25]. In this case, no b la n k co rre ctio n to the fluorescence yields is req u ire d because any c o n trib u tio n o f b ackground fluorescence (to F \ F q o r F m) effectively cancels between lig h t and d a rk ch a m b e rs/ o f npsn- T h e m a jo rity o f the o th e r studies assumed values o f 0.002 and 0.003 m o l R C II (m ol chia) 1 fo r populations do m in a te d by eukaryotes and prokaryotes, respectively [47], o r calculated nPsn using a new ly developed a lg o rith m , w h ic h w ill also have associated caveats [7]. In evaluating the use o f this assumed constant nPsn in some o f o u r data sets, we com pared @ec derived w ith constant rtpsu to <7C/, based on measured nPs n {see discussion). W e re tu rn to the issue o f spectral corrections in the section “ m a tch in g E T R s w ith C -uptake” . A lth o u g h the F R R f approach provides a general estimate o f a conditions [25,44], F o r tw o studies [25,28], the electron tran sp o rt rate was evaluated using the equivalent equation: E T R = E x o p s ii x t ip s ii x F ' —^-7 i m x F -E - x % x 2.43 x 10 5 (3) i y w here values o f F v/ F m and (Jpsn are measured in the d a rk o r assumed d a rk values based on measurements fro m deeper in the w a te r colum n, th a t is, fro m depths w here E < E K and w here n o n and Pmax, the lig h t saturation p o in t (EK) fo r the E T R m ay be lo w e r th a n th a t fro m 14C uptake because of, fo r exam ple, electron consum ing processes [4 8 -5 0 ]. T h e la tte r can cause the tu rn o v e r tim e fo r Q A to decouple fro m th a t o f the w hole chain P S II tu rn o ve r, so th a t the E K fo r the E T R m ay n o t be w h o lly in d icative o f w here lig h t is lim itin g o r saturating fo r C 0 2 uptake. p h o to ch e m ica l q uenching can be assumed to be negligible [25]. In the la tte r case, the influence o f b o th p h o to ch e m ica l and n o n p h o to ch e m ica l quenching are a ll accounted fo r b y changes in F q / F m\ T h is slightly alternative approach was em ployed to enable E T R s to be estim ated in the absence o f a ’d a rk ch a m b e r’ , and consequently, corresponding lig h t and d a rk acclim ated samples fro m all m easurem ent depths, w h ic h w o u ld be req u ire d in o rd e r to 14C 02 fixation rates apply Eq. 2. B o th , Eqns. la n d 2, appear to re tu rn consistent C 0 2 fix a tio n was m easured by e ith e r in situ incubations [29], sim ulated in situ incubations [27,28,30,31] o r photosynthesis versus irra d ia n ce (PE) relationships [11,25,26] in a ‘p h o to syn th e tro n ’ estimates fo r quenching [ 8 ], and hence, E T R . I t should fu rth e r be noted th a t d e riv a tio n o f F q’/ F / requires a m easurem ent to be PLOS ONE I www.plosone.org 4 March 2013 I Volume 8 I Issue 3 I e58137 Electron Requirement for Carbon Fixation instantaneous lig h t was standardised b y n o rm a liz in g E relative to the saturating lig h t intensity, E k , as d eterm ined fro m 1 4 C-specific PE curves, i.e. E :E K (dimensionless). In this way, E can be a ccording to Lewis and S m ith [51] o r an eq u iva le nt th e re o f (see T a b le 1 fo r details). C 0 2 fix a tio n in A ria ke Bay (Japan) was measured using the stable isotope 1 3 C -labelled N a H 1 3 C 0 3 [31]. In c u b a tio n lengths va ried between the d iffe re n t studies, w ith the considered relative to the lig h t h isto ry to w h ich cells are acclim ated h a n d lin g [8,18]. M o re o ve r, the m ethods used to determ ine C 0 2 fix a tio n d iffered considerably between studies (Table 1). Some o f [52] p ro v id in g in fo rm a tio n as to w h e th er the values o f <&ec correspond to lig h t lim ite d photosynthesis (E:EK < 1 ) o r lig h t saturated photosynthesis (E:EK > 1 ). N ote, however, th a t E comes fro m in situ P A R measurements, w h ile E k was usually based on measurements m ade in the la b o ra to ry. In this case, the spectral q u a lity o f E and E k m ay d iffe r and values o f E / E k ratios fro m d iffe re n t studies m ust be treated w ith caution. A ll C 0 2 fix a tio n rates (in m g C L 1 h *) were norm alised to the corresponding ch i a c o n ce ntra tio n to yie ld C 0 2 uptake rates as m ol the m ost recent studies in the B a ltic Sea (S Y N T A X 2 0 1 0 ) and C0 2 N o rth Sea (C E N D 0 8 1 1 ) fo llo w e d recom m endations o f Suggett et al. [ 8 ] and measured 14C uptake b y p la cin g the radioactive sample d ire c tly in the cuvette h o ld e r o f the F A S T a c t flu o ro m e ter. T h is C0 2 vast m a jo rity in c u b a tin g fo r a few ( 1 M ) hours and thus ca p tu rin g p ro d u c tiv ity somewhere between G PP and N P P [19,20]. Matching ETRs w ith C-uptake Id e ally, measurements o f p hotosynthetic carbon fix a tio n and E T R should be m ade sim ultaneously on the exact same sample to reduce errors arising fro m differences in sample trea tm e nt and (mg chia) 1 h *; thus values o f the <&e c (in m o l electrons m ol ’ ) were d e term ined as <$eC = E T R /C 0 2 u p ta k e r a te (4) simultaneous in c u b a tio n technique avoided discrepancies in the in te n sity and spectral q u a lity o f the a ctin ic lig h t sources. In this way, E T R a nd G PP were m easured fo r 1 h on the same sample at in situ tem peratures and a t a lig h t in te n sity corresponding to either G ive n the large a rra y o f data sets a nd the various differences in approach fo r d e te rm in in g b o th 14C uptake and F R R fluorescence E T R s [8,18], we recognise th a t a m a jo r assum ption in h e re n t to o u r analysis is th a t e n viro n m e n ta l influences o u tw eigh m eth o d o lo g ica l influences on <£eC, b o th, w ith in and between studies. h a lf o r tw ice the value o f E k (as d e term ined fro m F R R f ra p id lig h t curves); these lig h t intensities relative to E K were chosen to yie ld a measure o f <&ec corresponding to an irra d ia n ce fo r lig h t-lim ite d and lig h t saturated photosynthesis. Fortu n ate ly, a ll studies em ployed sim ila r F R R f protocols (above). Even so, in fo rm a tio n on core variables associated w ith the E T R determ inations were in itia lly in clu d e d in o u r database and F o r m ost studies, 1 4 C-specific PE experim ents were p e rfo rm e d on discrete w a te r samples w h ilst F R R data (and hence E T R s) were d e term ined fro m in situ casts o r on deck (Table 1). In cu b a tio n exam ined alongside the e n viro n m e n ta l variables to ve rify any role lengths va ried between the d iffe re n t studies, w ith the vast m a jo rity in c u b a tin g fo r a few (1-4) hours and thus ca p tu rin g p ro d u c tiv ity rates somewhere between G PP and N P P [19,20]. F o r this same o f m ethod u pon a p parent v a ria b ility in Û>e c (see “ statistical ap p ro a ch ” section). N o te th a t the ‘m eth o d o lo g ica l’ data across reason, a d h erin g to strict d e finitions o f N P P and G PP th ro u g h o u t co rre ctio n o f Gpsn a pplied o r n o t applied); therefore, the available in fo rm a tio n was converted in to a Boolean code w ith num bers one studies the m an u scrip t is n o t always possible. W e have therefore specified N P P o r G PP w here possible b u t otherwise use the term s C 0 2 fix a tio n o r p rim a ry p ro d u c tiv ity . In situ F R R data were com pared is categorical ra th e r th a n continuous, (e.g. spectral and zero representing use a nd non-use o f a p a rtic u la r m ethod, respectively. In total, 3 m eth odological variables were u ltim a te ly to the PE data fro m the same depth as the discrete w a te r sample. F o r on-deck based E T R measurements d u rin g S U P R E M O ll, in clu d e d in the in itia l data set: nPSi i assumed o r measured, spectral co rre ctio n o f (Jpsii assumed o r measured, and E :E K > 1 o r a ctin ic lig h t was p ro vid e d b y an external p ro g ra m m a b le lig h t source. T h e lig h t in te n sity m easured d u rin g the F R R data acquisition (used to calculate the E T R ) was then a pplied to the 1 4 C -PE e q uation to y ie ld a measure o f the instantaneous 14C E :E k < 1 . A t this p o in t it should also be noted th a t a p a rt fro m e n viro n m e n ta l factors, differences in p h yto p la n kto n c o m m u n ity uptake fo r m a tch in g w ith the E T R . F o r some studies, sim ulated in situ 14C data were collected (corrected using 1 4 C -P E to yie ld ‘gross’ com position m ay also influence & t c- U n fo rtu n a te ly, ta xonom ic data was n o t consistently available fo r the m a jo rity o f studies. H ow ever, we assume th a t p h yto p la n kto n co m m u n ity com position 14C uptake [27,28] (Table 1). H ere, we adopted a sim ilar approach b u t fu rth e r norm alised d a ily 14C uptake rates to h o u rly w ill p a rtia lly refle ct e n viro n m e n ta l characteristics a nd some influence o f c o m m u n ity co m p o sitio n on & ec w ill lik e ly be rates based on knowledge o f the lig h t regim e. im p lic itly accounted fo r e n viro n m e n ta l variables. D ire c t com parison o f the E T R s and C uptake requires th a t the spectral q u a lity o f the a ctin ic lig h t o f the F R R f and 14C in c u b a to r is e ith e r equivalent o r corrected for. T h e spectral values in our analyses p u re ly based on Statistical approach o f gpsn (measured w ith a blue L E D ) also needed to be scaled to the lig h t q u a lity o f the a ctin ic source used fo r the 14C incubations [40]. In m ost cases, in situ F R R values o f ffpsu and the 14C a ctin ic lig h t source were b o th spectrally corrected to m atch the spectral q u a lity M a n y o f the fo llo w in g analyses were ca rrie d o u t on b o th the entire dataset o r on in d iv id u a l subsets thereof, w h ich , fo r exam ple, represent d iffe re n t oceanic regions. A lth o u g h the m a jo rity o f o u r samples were collected in the A tla n tic O cean and adjacent shelf corresponding to the sample depth [40]. In cases w here b o th F R R - and 1 4 C - PE curves were m easured on discrete samples, data were spectrally corrected fo llo w in g M o o re et al. [11]. F o r the waters w h ile o th er regions (e.g. Pacific, In d ia n O cean, and M e d ite rra n e a n Sea) are u n d e rre p re se n te d /n o t represented at all, we still use the te rm ’glo b a l’ fo r analyses ca rrie d o u t on the dataset studies th a t d id n o t e m ploy a spectral co rre ctio n (Table 1) we as a whole. Spearm an R a n k O rd e r C o rre la tio n analysis on the in d iv id u a l assumed a constant fa cto r o f dpSn/ \ J b [11,31] and GPsn/ 1.5 (Prásil et al. unpubl.) based on a p p ro xim a te values fro m the o ther studies fo r the w a te r types in question. data sets (i.e. samples grouped b y study) were used to id e n tify key variables th a t m ay be associated w ith <J>e c. C orrelations, evaluated T a k in g in to account the lig h t h isto ry o f samples fro m d iffe re n t in SPSS 15.0 (SPSS In c., C hicago, IL , U S A ) were considered studies was the greatest challenge in c o m p ilin g the database due to considerable inconsistencies in the a v a ila b ility and q u a lity o f lig h t data. T hus, irradiances were expressed as o p tica l depths, and significant w h e n j&<0.05. These correlations were ca rrie d o u t i) on the in d iv id u a l data sets (i.e. samples grouped b y study), ii) on the global dataset, iii) on studies pooled a ccording to regions (e.g. PLOS ONE I www.plosone.org 5 March 2013 | Volume 8 | Issue 3 | e58137 Electron Requirement for Carbon Fixation N o rth Sea, B a ltic Sea, A tla n tic O cean etc.) and iv) a cco rd in g to shelf/oceanic waters, thus p ro v id in g an overview o f w h ich Thus, once a no n -sig n ifica n t test result was o b tained (fi>0.005), samples below th a t s im ila rity level were no longer p a rtitio n e d in to variables m ay be im p o rta n t. A ll data were then com bined in to one large database to ca rry o u t a ll o ther statistical analyses using clusters and co u ld be regarded as homogeneous [53]. 6 A ll data were then re-grouped a ccording to the results o f the cluster analysis and S IM P R O F test. T h e P R IM E R -B E S T m atch [53], unless noted p e rm u ta tio n test was then used to id e n tify variables a nd variable n o n -p a ram e tric m u ltiva ria te techniques in P R IM E R -E version (P R IM E R -E , L td . Ivyb rid g e , D evon, U K ) otherwise. com binations th a t best “ e xp la in ” the v a ria b ility in c [53]. T h a t In te r-c o rre la te d a nd right-skew ed physico-chem ical variables (e.g. salinity, tem perature, chirr, N 0 3 —, and P 0 4 3 ) were is, the a lg o rith m ra n d o m ly perm utes a resemblance m a trix generated fro m & ec (based on all possible pair-w ise sample id e n tifie d using D ra ftsm a n plots and then square-root transform ed to stabilise the variance and ensure th a t Euclidean distance could be used as an a p p ro p ria te s im ila rity measure (see below). T o account fo r differences in scales and units between d iffe re n t com binations) relative to a resemblance m a trix generated fro m subsets o f the e n viro n m e n ta l data m a trix searching fo r h ig h ran k correlations between the tw o and generating a co rre la tio n coefficient (p). Repeated (99) p erm utations o f ra n d o m ly ordered e n viro n m e n ta l data fo llo w to test the significance o f the results at a variables, the la tte r were n o rm a lize d b y subtracting the m ean fro m each e n try o f a single variable and d iv id in g it b y the va riab le ’ s standard deviation. level o f j&CO.Ol [53], N o n -m e tric M u ltid im e n s io n a l Scaling (nM D S ) was used as a O n e o f the m a in goals o f this meta-analysis was to generate algorithm s to p re d ic t c fro m e n viro n m e n ta l variables fo r means to m ap e n viro n m e n ta l characteristics o f samples in a lo w dim ensional space based on a tria n g u la r resemblance m a trix th a t specific regions. T he re fore , m athem atical relationships between the e n viro n m e n ta l data and & e>c were pro d u ce d fo r each cluster was created b y ca lcu la tin g E u clidean distances between every th a t contained possible p a ir o f samples. H ence, E u clidean distances between samples represented the dissim ilarities in the suite o f th e ir physico chem ical properties. P rin cip a l C o m p o n e n t Analysis (PCA) was regression (M L R ). O n ly those variables and variable com binations c a cco rd in g to the th a t were significandy correlated w ith at least 5 data points using m u ltip le lin e a r P R IM E R -B E S T -te s t were entered in to the M L R in SPPS. then used to id e n tify variables a ccounting fo r the differences between samples. V ariables in itia lly in clu d e d in the P C A were salinity, ch i a, N 0 3 , P 0 4 3 , tem perature, K¿, and C, as w e ll as a B o o le a n -m a trix o f m ethodological differences w ith regard to nPsn, Spatial and tem poral variability in < P e C ap sii and E :E K (as described above, T a b le 1). In clu sio n o f the m eth odological and lo ca tio n variables (latitude, M e a n values fo r & ec in all b u t fo u r studies were < 1 0 m o l e (m ol C) *, resulting in a global m ean ( ± standard deviation) o f lo n g itu de (absolute values) and J u lia n day) usually increased dissim ilarities, i.e. Euclidean distances, between samples o f d iffe re n t studies com pared to analyses fro m w h ich m ethodological theoretical ra tio o f 5 m o l e (m ol C) 1 (see discussion) were observed in the G u lf o f F in la n d 2000 and in p a rt o f the A M T 15 Results 10.9± 6.91 m o l e- (m ol C )- 1 . Values o f 0 eC less th a n the and lo ca tio n variables h ad been excluded. Because the ‘m eth o d ological choices’, in p a rticu la r, ca n n ot be effectively in co rp o ra ted in to p re d ictive algorithm s fo r <&e c, the results we show in the m ain data. V a r ia b ility o f í>e>c w ith in a nd between in d iv id u a l studies was te xt here are based on PCAs w ith o u t m ethodological and lo ca tio n variables. Nevertheless, the results o f the P C A in c lu d in g these m eth odological and lo ca tio n variables have been in clu d e d in A p p e n d ix S I (Fig. S I). O n ly those variables w ith the highest largest in considerable, w ith a to ta l range o f 1.15-54.2 m o l e- (m ol C ) - 1 fo r a ll studies co m b in e d (Fig. 2). W ith in -s tu d y va ria tio n o f & e>c was the Pacific O cean (7.9-54.2 m o l e (m ol C) *), Massachusetts Bay (8.5-50.1 m o l e- (m ol C )- 1 ), a nd the A M T 15 data (1.1-28.2 m o l e (m ol C) *); in contrast, least w ith in - study variance was ty p ica lly observed fo r tim e series’ at a single eigenvectors were in clu d e d in any fu rth e r analysis to assess the v a ria b ility in & t cB o th n M D S and P C A generate lo w dim ensional ordinations. lo ca tio n (Ariake Bay: 5 .1 -5 .7 m o l e (m ol C) , B e d fo rd Basin: 3 .6 -1 0 .3 m o l e (m ol C) *, and the G u lf o f F in la n d 2000: 2.0— 9.4 m o l e- (m ol C )- 1 ). As there were no d istin ct differences in the H e re we o n ly show the n M D S plots, w h ic h m atched the P C A plots well, because n M D S better preserves the distances between samples w h e n m ap p in g them onto a 2D o r 3D space [53]. In n u m b e r a nd types o f ffpsiispec and nPSn corrections between the tim e series studies and the o th er cruises, it w o u ld appear th a t v a ria b ility o f <&ec is generally greater spatially th a n te m p o ra lly a d d itio n n M D S provides a measure, the stress value, o f h o w w ell w ith in the in clu d e d locations. T h e tim e series studies in clu d e d here the lo w dim ensional ord in a tio n s represent the distances between samples. I n all cases the stress value o f the n M D S was considerably lo w e r in the 3D o rd in a tio n relative to the 2D o rd in a tio n . T hus, the were 3D-im ages are presented here w here the in d iv id u a l planes (x-y, x- short d u ra tio n (1.5-7 months), how ever, Spearm an R a n k O d e r C o rre la tio n s co u ld be fo u n d between <&e c an d every e n viro n m e n ta l variable in clu d e d in the study, albeit to va ry in g degrees and depending on h o w data were grouped. O n z, y-z) are separate panels. Because e n viro n m e n ta l factors showed considerable spatial and te m p o ra l v a ria tio n , w h ich , in tu rn , influence physiological a global scale, i.e. co m b in in g the entire data set, <&e c exh ib ite d responses o f p h yto p la n kto n and subsequendy í>e>c to va ryin g significant positive correlations w ith J u lia n day (i.e. tim e/season) degrees, hie ra rch ica l agglom erative cluster analysis and a sim ila r ity p ro file (S IM P R O F ) test were used to fin d and define groups o f samples w ith sim ila r physico-chem ical properties [53]. S IM P R O F and salinity, w h ile significant negative correlations existed w ith la titu d e, lo ngitude, c h k concentrations K d and Ç (Table 2). These correlations explained at least 12% o f the variance in a ll cases. T o tests w ere used as a stopping rule o f the cluster analysis, so th a t successive p a rtitio n s along the branches o f the den dro g ra m are consider i f the global data p o o l m ay obscure regional-scale trends, correlations were also ca rrie d o u t (i) on the in d iv id u a l studies and o n ly p e rm itte d i f the n u ll hypothesis o f ‘no structure between samples’ was rejected. T o reduce the n u m b e r o f clusters to a (ii) b y p o o lin g studies representative o f p a rtic u la r regions, such as, the B a ltic Sea (in clu ding the G u lf o f Finland), the A d a n tic Ocean manageable size a nd to ensure th a t a sufficient n u m b e r o f samples large enough fo r a lg o rith m developm ent were in clu d e d in each (all A M T cruises com bined) and b y co m b in in g data fro m shelf and oceanic waters, respectively. cluster, the j6 -value fo r the S IM P E R O F test was reduced to 0.005. PLOS ONE I www.plosone.org o f relative ly te m p o ra l v a ria b ility m ay fu rth e r increase i f lo n g -te rm studies (m u ltip le years) are included. 6 March 2013 | Volume 8 | Issue 3 | e58137 Electron Requirement for Carbon Fixation corresponded to a surface w a te r lens in the H N L C and H u m b o ld t u p w e llin g region o f the Pacific Ocean. F o r the o th e r A tla n tic studies, A M T 6 and 11, i f ^ also declined w ith increasing N 0 3 a n d /o r P 0 43 - , b u t as the depth o f the surface m ixe d layer a n d /o r O Ö n itra clin e va ried between stations, the relatio n sh ip between depth and i f c was n o t linear. 40 E N egative correlations between i f c and 'Ç fo r A M T 1 5 , the C eltic o E Sea (JR98), the Pacific O cean a nd the G u lf o f F in la n d in dicated th a t i f ,c often increased towards depths o f greater lig h t a v a ila b ility in surface waters o r w ith d e clin in g K¿ values fro m coastal to S were also fo u n d b u t o n ly in B a ltic Sea a nd shelf waters. offshore regions. N egative correlations o f & ec w ith depth, A /a n d Ç Regional differences in environmental conditions The in itia l correlative exercise fo r each separate study dem onstrated th a t the relationships between i f c a n d e n viro n m e n t are dependent u p o n ho w data w ith in and between data sets are grouped; therefore ‘choice’ o f g ro u p in g w ill in e vita b ly influence the outcom e o f e m p irica l algorithm s generated to p re d ic t $>e c fro m physico-chem ical variables. A m a jo r objective o f this study (S) was to id e n tify e n viro n m e n ta l predictors o f i f therefore P C A in co m b in a tio n w ith cluster analysis was subsequently used to Figure 2. V a ria b ility in the electron req uirem ent o f carbon fixation ( 0 eci d erived fro m corresponding FRRf-ETR and 14Cprim ary p ro du ctivity m easurem ents. Boxes re p re s e n t th e m e d ia n , id e n tify the p rin c ip a l differences in 1 ) e n viro n m e n ta l c o n d itio n between sites regardless o f the study to w h ich they belonged and 2 ) to fo rm clusters o f sites w ith sim ilar e n viro n m e n ta l conditions, 0.25 a n d 0.75 q u a rtile , w h is k e rs are th e 1.5 in te rq u a rtile ra n g e . O u tlie rs are in d ic a te d b y o p e n circles. T h e d a sh e d g re y lin e is th e th e o re tic a l re fe re n c e ra tio o f 4 m o l e ~ [m o l C U 1. A M T = A tla n tic M e rid io n a l w h ich co u ld then be analysed fu rth e r w ith respect to th e ir T ra n sects, CS = C e ltic Sea, NS = N o rth Sea, GoF = G u lf o f F in la n d 2 000 (tim e s e rie s ), U K -O A = UK O ce a n A c id ific a tio n c ru is e , M A = M a ssa ch u se tts Bay (tim e series). SYN TAX2010 is a B a ltic Sea cruise, association w ith i f c.The first three p rin c ip a l com ponents o f the G o F 2 0 1 1 is th e SUPREM O 2011 s tu d y a n d th e P acific O cean s tu d y is th e BIOSOPE- c ru ise to th e S o u th e a s t P acific (see T a b le 1, F ig u re 1 fo r d e ta ils). Tem p e ra tu re, chia and K j had the highest coefficients fo r the lin e a r co m b in a tio n o f variables co m p risin g P C I, i.e. they were d o i:1 0 .1 3 7 1 /jo u r n a l.p o n e .0 0 5 8 1 3 7 .g 0 0 2 associated w ith the separation o f samples along P C I (Table 3). P C A co m bined accounted fo r 8 6 % o f the cu m u la tive v a ria tio n in e n viro n m e n ta l variables (P C I 47% , PC2 24% and PC3 15%). S alinity, N 0 3_ a nd P 0 43 - diffe re n tia te d samples along PC2, w h ile a single variable, Ç, had the highest Eigenvectors o f PC3. C luster analysis in co m b in a tio n w ith a S IM P R O F test A t the level o f the in d iv id u a l study, d iffe re n t en viro n m e n ta l variables showed v a ryin g degrees o f co rre la tio n depending on the generated 15 sig n ifica n tly d iffe re n t clusters (ƒ><().005) labelled region. M u ltip le notable trends were evident between <PfC, sam pling depth, L j, 'Ç and n u trie n t a va ila b ility, in clu d in g : 1 ) changes o f <Pf C w ith depth, w h ich were observed d u rin g A M T 1 5 , alp h abetically fro m a-o (/><().005) across a range o f Euclidean distances (representing dissim ilarities between samples) fro m 0 — in the C e ltic Sea, the N o rth Sea (N S -C E N D 0 8 1 1) and the G u lf o f 4.4; these clusters often overlapped in the n M D S o rd in a tio n o f the F in la n d /B a ltic Sea; 2) a decline in & r c w ith increasing K j d u rin g A M T 6 and in the B altic Sea, and w ith increasing ç d u rin g Euclidean distance m a trix derived fro m the enviro n m e n ta l variables, in d ic a tin g th a t there existed sim ilarities in some o f the A M T 15, in the C e ltic Sea, Pacific O cean and in the G u lf o f F in la n d /B a ltic Sea; and 3) a change in & r c w ith n u trie n t concentrations, d u rin g the A M T cruises, one o f the C eltic Sea e n viro n m e n ta l conditions between samples fro m d iffe re n t studies (Table 4, Fig. 4). cruises (JR98) a nd in the G u lf o f F in la n d /B a ltic Sea. In the B altic Sea (S Y N T A X 2 0 1 0 ) a nd B e d fo rd Basin significant correlations biogeographic regions a n d /o r seasonal (i.e. tem perature depen existed between & ec a nd tem perature and salinity, respectively. N o c o rre la tio n o f i f , c w ith co m m o n e n viro n m e n ta l variables were fo u n d in Massachusetts Bay o r d u rin g the U K - O A cruise. N ote masses (Table 4). A ll the samples collected in the B altic Sea and G u lf o f F in la n d fe ll in to b io g eographically distin ct clusters (b, c, f, g Some of the resulting clusters corresponded to obvious dent) groupings, w h ile others represent m ore o r less d istin ct w ater also, th a t depth-dependent trends in <X>r c co u ld o n ly be assessed and h) characterised b y lo w salinities (Fig. 5). T h e fo u r G u lf o f F in la n d clusters (b, c, g, h) clearly represented te m p o ra l changes in w here m u ltip le depths h ad been sampled at each station across e n viro n m e n ta l large p ro p o rtio n s o f the cruise tra n s e c t/tim e series, such as in the open ocean studies w here data were available up to a depth o f ~ 2 0 0 m (e.g. A M T cruises, Pacific O cean, C eltic SeaJR98) o r the characterised b y extrem ely lo w tem peratures d u rin g late w in te r (SETPREM O 11 cruise) coupled w ith h ig h n u trie n t a va ila b ility. G u lf o f F in la n d ( S U P R E M O ll) studies w here up to fo u r depths spring cluster c w ith still relative ly lo w te m p e ra tu re s(< 5 UC) and clusters g and h, w h ic h co n tain all the sum m er and a u tum n conditions w ith samples in cluster b being L o w tem perature and h ig h n utrients set this cluster a part fro m were sampled across the euphotic zone at each station. T hus, a lack o f relationship between i f , c and depth m ay sim ply reflect samples characterized b y w a rm tem peratures ( ~ 15 UC), lo w N 0 3 lim ite d sam pling depths o r, in shallow waters w ith ra p id ve rtica l a va ila b ility and h ig h Kd and t values. Samples fro m the B altic Sea m ix in g , a cclim a tion to an average w a te r co lu m n irradiance. A notable feature fo r the Pacific and A tla n tic transects as w e ll as p ro p e r (cluster f) were characterised b y alm ost undetectable n u trie n t concentrations. O th e r clusters w ith samples representative the C eltic Sea (JR 98, data n o t shown) was a p ro n o u n ce d increase o f d istin ct regions include the N o rth Sea cluster i and cluster k o f i f c surface waters w ith lo w N 0 3 a n d /o r P 0 4 3 a va ila b ility (Fig. 3, T a b le 2). In fact, the highest i f c values across a ll studies c o n ta in in g C eltic Sea samples a nd samples fro m the European PLOS ONE I www.plosone.org shelf edge collected d u rin g A M T 6 . L ike in the B a ltic Sea, deplete 7 March 2013 | Volume 8 | Issue 3 | e58137 Electron Requirement for Carbon Fixation T a b le 2 . Spearman Rank Order Correlation Coefficients for correlations between <PeC and environm ental variables. Lat Lon JD D ep th Tem p Sal N03 P 0 43 Chia Kd Ç All Studies -0 .2 7 2 -0 .4 5 0 0.297 - - 0.226 - - -0 .1 3 0 -0 .2 4 4 -0 .1 2 3 Shelf -0.431 -0 .5 4 6 0.214 0.149 0.376 0.229 0.186 - 0 .1 36a -0.511 -0 .1 5 5 Oceanic -0 .3 2 4 -0 .3 2 0 - 0.201 - - - -0 .2 4 3 - 0 .1 67a - - - 0.250 0.276 -0.361 -0 .4 1 7 -0 .1 75a Baltic co m b in e d f ' 0-347 0.530 -0 .3 3 7 0.271 -0 .4 3 8 0.276 0.269 0.320 -0 .5 6 2 -0 .5 6 9 AMT 6 0.322 - 0.322 - 0.520 - -0 .3 7 4 -0 .4 0 6 -0 .5 7 7 -0 .4 1 5 - AMT 11 -0 .3 4 4 -0.431 0.344 - - 0.329 - -0 .3 3 8 - - - AMT 15 - - - -0 .7 0 9 - - -0 .7 6 5 - -0.681 - -0 .7 5 6 CS-D246 . . . . . . . CS-JR98 - - - -0 .5 6 4 - - -0.391 - - - -0 .4 8 2 CS-DS46+JR98 - - 0.377 -0 .6 1 4 0.423 - - - -0 .3 7 4 - -0 .4 1 6 NS-CEND0811 - - - 0.616 - - - - - - - UK-OA D366 . . . . . . . - 0.568 - - - - - - -0 .6 5 3 Studies combined AMT combined - 0.212 . . PO-BIOSOPE -0 .4 8 2 . . SYNTAX2010 - G0 F2OOO n.a. n.a. SUPREM011 - - - -0 .6 4 5 - - -0 .4 9 4 - - - GoF +SUPREM011 0.352 0.752 -0 .7 3 7 —0.310a -0 .6 8 3 0.668 0.582 0.586 -0 .4 5 2 -0 .7 0 5 -0 .6 8 4 Bedford Basin n.a. n.a. - n.a. - 0.582 - - - - - MA Bay . _ _ _ _ _ _ - . n.a. . Values in bold or normal fo n t indicate significant correlations where p<0.01 and p<0.05, respectively. JD is Julian Day. f denotes Baltic proper and the Gulf o f Finland com bined. - non-significant correlations (p>0.06). b denotes correlations w ith 0.05>p>0.06. doi:10.1371 /journal.pone.0058137.t002 n u trie n t concentrations in cluster k sets this cluster a part fro m cluster i. w e ll as extrem ely lo w ch lo ro p h y ll a nd n u trie n t concentrations fell in to clusters m and o. W h ile cluster m contained samples fro m Samples fro m B e d fo rd Basin fe ll in to tw o clusters: cluster d in term ediate depths collected d u rin g A M T 6 and A M T 11 and c o n ta in in g samples collected fro m m id -M a rc h to m id -M a y w hen fro m the surface o f the South Pacific G yre (SPG) and H N L C c h lo ro p h y ll concentrations increased and n u trie n t concentrations region in the Pacific, cluster o was com prised o f surface samples fro m the open ocean (all A M T cruises), central N o rth Sea and and w a te r c la rity dro p p e d fro m previous levels th a t characterized samples fro m cluster e, w h ich were collected in late w in te r (February to m id -M a rc h ). Interestingly, cluster e also contained alm ost all o f the Massachusetts B ay samples, some N o rth Sea samples fro m fro n ta l regions as w e ll as A M T 6 and Pacific Ocean C eltic Sea JR 9 8 ). C learly, tem perature, salinity, ch lo ro p h yll, n u trie n t concentra tions and lig h t a v a ila b ility were the m ain e n viro n m e n ta l factors responsible fo r the d istin ct g ro u p in g o f samples in to clusters. G iven samples fro m the H u m b o ld t and Benguela u p w e llin g areas, respectively. T h is represents sim ilarities in physico-chem ical th a t cluster analysis in strongly stratified, off-shore waters resulted properties o f these d iffe re n t w a te r masses ra th e r th a n biogeo- and surface samples and due to the pron o u n ce d effects o f w ater graphical regions. D u rin g late w in te r, salinity in the ice covered B e d fo rd Basin was sim ila r to th a t in o ff shore waters, w h ile p lo tte d the m ean <£f C, grouped a ccording to samples fro m the c h lo ro p h y ll and n u trie n t concentrations as w e ll as o p tica l properties m atched those o f u p w e llin g /fro n ta l regions; hence, th e ir g ro u p in g together. T h e re m a in in g clusters (j, 1, m , n, o) also co ntained samples fro m a v a rie ty o f d iffe re n t cruises/regions. Samples collected fro m the deep c h lo ro p h y ll m a x im u m (D C M ) in o ff shore regions d u rin g the A M T cruises, the Pacific O cean cruise and the C eltic Sea (JR98) fell in to one cluster 0 , w h ich was characterized by high tem peratures as w e ll as h ig h e r n u trie n t a va ila b ility and 'Ç relative to the o ther offshore samples. C luster 1 contained samples fro m in term ediate depths in tem perate waters on the European shelf and the shelf edge, w h ich h ad relative ly lo w tem peratures. W h a t set cluster 1 a part fro m cluster n, w h ich also co ntained samples fro m the European shelf, was its overall greater o p tica l depth. in d istin ct groupings corresponding to D C M , in te rm e d ia te depth co lu m n stratifica tio n on lig h t and n u trie n t a va ila b ility, we also surface m ixe d layer (S M L) a nd D C M against depth and N 0 3 fo r each biogeographic pro vin ce sampled d u rin g the Pacific and A M T cruises (Fig. 6 ). As such, distin ct differences in & eC existed between the S M L and D C M samples fro m the Pacific and A M T 15 cruise, w here 0 r c was m u ch h ig h e r in the S M L th a n at the D C M and the increase in & r c coincided w ith a d ro p in n u trie n t a v a ila b ility o r even d epletion o f n utrients in surface waters. D u rin g the A M T 6 and A M T 11 cruises, on the o th er hand, no such pron o u n ce d differences in & eC and n u trie n t concentrations between S M L and D C M was observed fo r the sampled locations in m ost o f the biogeographic provinces. In sum m ary, there existed distin ct groupings fo r m an y o f the cruises and regions based on differences in enviro n m e n ta l gradients w ith in and between regions and w a te r masses. T h is also O p e n ocean samples w ith h ig h w a te r c la rity a nd tem peratures, as PLOS ONE I www.plosone.org March 2013 | Volume 8 | Issue 3 | e58137 Electron Requirement for Carbon Fixation 30 30 25 20 S- 100 150 NAG EM 200 40 30 H a- lo o — 150 CZ 8 - NAG SAG EM 100 150 200 EQ EQ Figure 3. Changes in th e electron re q uirem ent o f carbon fixation (<Pe,à and N 0 3 across 4 cruise transects. (A) and (E) Pacific Ocean (BIOSOPE), (B) and (F) AMT 6, (C) and (G) AMT 11, and (D) and (Fl) AMT 15. Units o f <PeC (left panels) are in mol e~ (mol C F 1), N 03~ concentrations (right-hand panels) are in pmol L_1. Dashed lines denote transitions between different biogeographical provinces, where SPG is the South Pacific Gyre, FINLC FHigh Nutrient Low Chlorophyll areas, UPW denotes upwelling regions, AB is the Angola Basin, SAG South Atlantic, NAG the North Atlantic Gyre, EM the Eastern Margin o ff Western Europe, and CZ is the Suptropical Convergence zone. Note, difference in scales on both axes and the colour contours. doi:10.1371/journal.pone.0058137.g003 confirm s th a t user specific differences in m eth o d o lo g y d id not appear to have a systematic influence. T a b le 3. Eigenvectors o f Principal C om ponent Analysis (PCA). Relationships between environmental conditions and PC3 ®e,c C lu ste ring all available data based on the in h e re n t e n v iro n 0.111 -0 .1 8 4 m en ta l characteristics dem onstrated th a t the dependence o f & e c -0 .5 0 9 0.054 0.337 0.541 -0 .0 8 7 on e n viro n m e n ta l gradients cannot be resolved at the level o f the in d iv id u a l studies. C luster analysis therefore enabled us to p o 43~ 0.399 0.491 - 0.020 Chia 0.464 0.232 0.020 Kd 0.424 0.373 -0.091 v a ria b ility o f & ec- P e rm u ta tio n tests conducted on the in d iv id u a l clusters (i.e. clusters a -q , T ab le 4) indeed showed th a t often Ç 0.001 0.023 -0 .9 7 3 m u ltip le variables co m bined were sig n ifica n tly correlated w ith & e c V a ria b le PC I PC2 Temperature -0 .4 7 6 Salinity —0.325 NOF objectively id e n tify h o w to p o o l data across the m ultidim e n sio n a l e n viro n m e n ta l variable (Table 4) to fu rth e r examine (BES T, p < 0.05 o r ƒ><().01), and th a t d iffe re n t variable co m b in a tions were d riv in g c in d iffe re n t clusters and regions (Table 5). Values in bold represent variables w ith the highest coefficients fo r each PC. Kd is the vertical attenuation coefficient o f photosynthetically available radiation and £ is optical depth. doi:10.1371 /journal.pone.0058137.t003 PLOS ONE I www.plosone.org m a trix These ‘best’ variable com binations were entered in to m u ltip le lin e a r regression to derive algorithm s fo r the p re d ic tio n o f ib .c , 9 March 2013 | Volume 8 | Issue 3 | e58137 Electron Requirement for Carbon Fixation T a b le 4 . Samples grouped according to similarities in environm ental conditions as determ ined by cluster analysis and SIMPROF. Cluster Description n a Ariake Bay + Massachusetts Bay 2 b Gulf o f Finland (SUPREM011) 22 c Gulf o f Finland 2000 (m id-Apr to mid-May) 5 d Bedford Basin (mid-Mar to end o f Apr) 9 e Bedford Basin (Feb to mid-Mar), MA Bay, North Sea CEND0811, AMT6 UPW and Pacific Ocean UPW 67 f Baltic proper (SYNTAX2010) 22 g Gulf o f Finland 2000 mid May, mid and late Jul, early Aug 5 h Gulf o f Finland late May to early Jul, Aug to Oct 10 i North Sea CEND0811 (Pen Field, South Pen Field, D366 (Falmouth, Southern North Sea, Flelgoland) 5 j Offshore DCM o f AMT6, 11, 15 & Pacific Ocean, Celtic Sea JR98 DCM 49 k Celtic Sea D246, AMT 6 European shelf edge surface 9 I AMT6, 11 European shelf edge intermediate depths, Celtic Sea JR98 DCM, CEFAS0811 (North Dogger), D366 (Central North Sea) 17 m AMT6 open ocean, surface & intermediate depths, AMT 11 open ocean intermediate depths, Pacific Ocean SPG surface, FINLC surface 54 n Celtic Sea JR98 (Irish Sea), North Sea (D366 Falmouth, St George Straight, Mingulay, Bay o f Biscay 12 o AMT6, 11.15 open ocean surface, D366 Central North Sea, Celtic Sea (JR98) surface 45 SPG South Pacific Gyre, FINLC High N utrient Low Chlorophyll region, DCM Deep Chlorophyll Maximum; n is the num ber o f samples per cluster. doi:10.1371/journal.pone.0058137.t004 3-D S tress: 0.06 Studies ▼ AMT 6 ▼ AMT11 ▼' V AMT15 • CS-D246 V o CS-JR98 Pacific + North Sea X UK-OA ▲ Baltic Sea ▲ GoF 2000 A GoF 2011 MA Bay ♦ • Bedford B * Ariake B. ►♦ /K» T oV < *> D B Clusters • • o • o • o o • • AA ih o • • 0 o a b c d e f g h i j k I m n 0 Figure 4. Three-dim ensional non-m etric M ultidim ensional Scaling (nM DS) o rd in atio n o f th e environ m en tal conditions o f all field campaigns. Panels (A), (B) and (C) are the x-y, x-z and y-z plane o f the nMDS 3D ordination, respectively. (D) is the x-y plane where the symbols denote the various clusters as determined by cluster analysis in combination w ith similarity profile (SIMPER) tests. Clusters were significantly different from another (SIMPROF, p<0.005). For an overview of sample groupings according to these clusters see details in text and Table 4. doi: 10.1371/journal.pone.0058137.g004 PLOS ONE I www.plosone.org 10 March 2013 | Volume 8 | Issue 3 | e58137 Electron Requirement for Carbon Fixation Temperature Salinity HI r -<I abcdefghi jklmno a b c d e f g h i j kImno ~r-, < V r h r lm .^1 abcdefghi jklmno Figure 5. V a riab ility in the electron requirem ent fo r carbon fixa tio n ( 0 e,c) and environ m en tal conditions w ith in d iffe re n t clusters of samples. Clusters were generated by cluster analysis combined with a SIMPROF test. For samples contained in each cluster see also Table 4. Values are means and error bars are standard deviations (with n of 2-67, see Table 4) of <Pe C (mol e~ mol CT1), temperature ( C), salinity, chlorophyll a (Chi a, mg nrT3), nitrate and phosphate (pmol L_1), the vertical attenuation coefficient of photosynthetically available radiation (Kd, nrT1), optical depth £, (dimensionless) and sampling depth (z, in meters). doi:10.1371/journal, pone.0058137.g005 w h ich , in m an y cases, resulted in significant relationships w ith <&e¡c significant M L R existed between <Pe c and e n viro n m e n ta l variables (M L R , p < 0.05) (Table 5). S ig n ifica n t relationships (R2 < 0 .0 5 ) in any o f these regions (clusters e—i, k, 1). between <&e¡c and e n viro n m e n ta l variables existed in the G u lf o f T o develop region-specific algorithm s, we also grouped the F in la n d (cluster b), B edford Basin (cluster d), European shelf clusters according to m ea n in g fu l w ater masses and biogeographic waters (cluster n) and offshore samples fro m in te rm e d ia te depths (cluster m), surface waters (cluster n) and the deep ch lo ro p h yll regions resulting in 11 significant algorithm s covering the G u lf o f m a x im u m (D C M ) (cluster j). S urprisingly, P O 4 0 , ra th e r than F inland), European shelf waters (in clu ding the N ortheast A tla n tic), NO3 N o rth w e st A tla n tic shelf waters, the e q u ato ria l A tla n tic and the F in la n d , the B a ltic Sea as a w hole (i.e. in c lu d in g the G u lf o f a va ila b ility, was often p a rt o f the va riable com binations showing the strongest association w ith 0 e c, usually in a d d itio n to South A tla n tic O cean. A lth o u g h some o f these region-specific tem perature a n d /o r salinity. T h e strong relationships between relationships exh ib ite d a lo w I t . they were h ig h ly significant. T h e and P O 4 0 and lack th e re o f w ith N O 3 m a y be due to N O 3 relationships between <t>^c and e n viro n m e n ta l variables were concentrations being close to o r below the detection lim it in open strongest in the G u lf o f F in la n d and the Pacific O cean (i? "< 0 .0 5 ), ocean waters and, d u rin g the sum m er m onths, often also in shelf fo llo w e d b y the N o rth w e st A tla n tic shelf samples (i.e. M assachu waters, w h ic h comprom ises the detection o f relationships w ith setts Bay + B e d fo rd Basin). Relationships fo r the A tla n tic were <Zh,c. an im p o rta n t m uch d e term in a nt o f & e c in these waters, b u t w ith PC) 1 ’ being the (/><0.01). O nce again, P O 4 0 T hus, NO3 a v a ila b ility m ay still be less pron o u n ce d (R2 < 0 .2 2 ), albeit h ig h ly ra th e r th a n N O 3 significant a v a ila b ility o n ly m a c ro n u trie n t le ft in o u r analysis, o n ly the la tte r was p u lle d appeared to p la y a greater role in these M L R s . O n a global scale, out. D espite the d istin ct clustering o f samples fro m the fro n ta l and M L R yielded an R 2 o f 0.038, b u t w ith b o th N O 3 u p w e llin g regions, the B a ltic Sea and E uropean shelf edge, no c o n trib u tin g to the v a ria b ility in <//,/,. PLOS ONE I www.plosone.org 11 and P O 1 ’ March 2013 | Volume 8 | Issue 3 | e58137 Electron Requirement for Carbon Fixation 60 • SM LSPG O DCM SPG A SM LH NLC zl DCM HNLC ♦ SML UPW O DCM UPW 50 . ^ 40 ' . 30 Í I 20 10 0 50 30 B 100 150 SML AB DCM AB SML Eq DCM Eq 25 200 10 0 15 20 25 SML NAG DCM NAG SML EM DCM EM 20 15 + 10 5 0 20 40 60 80 100 120 7 14 21 28 30 • SM LSTCZ O ▼ V ■ o DCM STCZ 25 A SM LSAG ¿I DCM SAG ♦ SML Eq 20 DCM Eq SM LNAG DCM NAG SM LEM 15 10 5 _ l__________ I__________ I__________ I__________ I__________ I_ 0 20 30 40 60 80 D 100 120 140 8 ■ SM LSTCZ Ö DCM STCZ • SM LSAG o DCM SAG ♦ SML Eq o DCM Eq 25 20 15 10 5 i 0 50 100 Depth [m] 150 200 2 3 NO ' [pmol L' 0 4 5 6. I aan electron req uirem ent fo r carbon fixation (<Pe,à across d iffe re n t biogeographical provinces fo r fou r cruises. AeC left panels) and N 03~ (right panels) are shown for the Pacific Ocean (A and E), AMT 6 (B and F), AMT 11 (C and G) and AMT 15 (D and H), standard deviations w ith n = 3 to 14. SML denotes surface mixed layer, DCM the deep chlorophyll maximum, SPG is the South Pacific gh Nutrient Low Chlorophyll areas, UPW upwelling regions, SA South Africa, AB Angola Basin, Eq equator, NAG North Atlantic Gyre, EM n in the North East Atlantic, and STCS the Subtropical Convergence Zone. Note change in x- and y-axis scale. iurnal.pone.0058137.g006 vww.plosone.org 12 March 2013 I Volume 8 I Issue 3 I e58137 Electron Requirement for Carbon Fixation T a b le 5 . M ultivariate correlations and regressions between environm ental variables and <&eiC for different clusters and regions. BEST Cluster P a - MLR Variables P M od el R2 P - - - b GoF 0.238 >0.05 T, S, Kc, Ç —3.82T+2.80S+3.01Kd- 1 .12Ç 0.735 < 0.01 c GoF 0.538 >0.05 S n.s. 0.701 >0.05 d Bedford Basin 0.303 >0.05 T —1.31 T+11.78 0.710 <0.05 e Fronts and UPW 0.234 < 0.01 S n.s. 0.085 >0.05 f Baltic proper 0.135 >0.05 T n.s. 0.103 >0.05 9 Go F 0.430 >0.05 N, P, Kd n.s. 0.676 >0.05 h GoF 0.195 >0.05 S, PO43- n.s. 0.369 >0.05 i North Sea 0.539 >0.05 s, P0 43- , n.s. 0.965 >0.05 j DCM offshore 0.402 < 0.01 T, S —8.05T+8.89S —3.23 0.251 < 0.01 k Celtic Sea, EUR shelf edge -0 .0 5 >0.05 N O T , Chia n.s. 0.150 >0.05 I EUR shelf edge 0.254 >0.05 % n.s. 0.012 >0.05 m Inter m. depths offshore 0.201 <0.05 S, N, P, Chia —50.85S+4.25NO3_+0.675PO43_ -11.81 Chla+322.8 0.315 < 0.01 n EUR shelf, North Sea 0.468 >0.05 T 6.40T -1 3 .4 6 0.434 <0.05 o Surface offshore 0.190 >0.05 S, N o T , Chia —4.09S —5.83N03_+12.09Chla+32.59 0.269 < 0.01 GoF (b c g h) 0.447 < 0.01 T, S, N O fi, Kd -0.741 T+14.8S+0.206N03" -2 .6 9 K d -2 6 .1 4 0.561 < 0.01 Baltic + GoF (b c g h e) 0.236 < 0.01 S, N O T , Chia, Kd, Ç 1.30S -5 .2 1 N 0 3" -0 .6 1 Chia -2 .5 3 K d+0.77Ç+5.75 0.266 < 0.01 Shelf (i k I n) 0.245 < 0.01 T, N O T , P043b Chia, Ç 3.39T+1.44N03" -2.20PO 43_ -1.42C hla -0.57Ç-0.25 0.273 <0.05 Offshore SML (m o) 0.173 <0.05 N 0 3- , P O y T Chia —5.97NO3~+9.62PO43_+0.33Chla +11.35 0.083 < 0.01 Offshore SML+DCM (j m o) 0.296 < 0.01 T —5.45T+37.51 0.090 < 0.01 EUR Shelf/NE Atlantic 0.142 <0.05 T, P043T Chia 0.04T -1 1 .5 3 P 0 43_ - 1 .09Chla+10.99 0.207 < 0.01 NW Atlantic Shelf 0.329 < 0.01 T, S, N O T , P043~ —0.57T+0.25S+1.36N03_ -5 .6 6 P043 - +22.58 0.322 < 0.01 Equatorial Atlantic 0.205 <0.05 S 0.47S -0 .7 2 3 0.090 <0.05 South Atlantic 0.395 < 0.01 N O T , P043b Chia 0.32NO3" - 1 3.07P043_+0.78Chla+6.20 0.213 <0.05 Pacific SPG +HNLC 0.233 >0.05 S, P O y T Chia —25.27S -94.29PO43_+29.29Chla+920 0.589 < 0.01 Pacific SPG + HNLC + UPW 0.183 >0.05 S, P O y T Chia 17.53S+33.11P043 -+14.6 Chla+1397 0.554 < 0.01 Global 0.114 < 0.01 T, N O T , P043~ 0.31 T -0 .4 9 N 0 3"+6.34P043_+4.05 0.038 < 0.01 ç Biogeographic regions Results o f the BEST test are the variable com binations resulting in the highest correlation coefficient (p) between th e resemblance matrices o f th e environm ental data and 0 eC. Abbreviations: GoF G ulf o f Finland, UPW U pwelling region, SML surface mixed layer, DCM deep chlorophyll maximum, EUR European SPG South Pacific Gyre, HNLC High nutrient low chlorophyll area,. Cluster a was excluded from th e BEST test and MLR due to its small sample size (n = 2). doi:10.1371 /journal.pone.0058137.t005 te rm 14co2uptake rates, so th a t m ost <Pec values available to this day w o u ld p ro vid e a conversion fro m E T R to G PP o r to Discussion Reconciling electron transfer and carbon fixation som ething between N P P a nd GPP. ETnder m ost conditions, N PP W h ile e m p irica l evidence demonstrates th a t fluorescence-based measures o f the P S II ph o to ch e m ica l efficiency, and hence E T R s, are lin e a rly related to net o r gross carbon fix a tio n rates under m an y conditions [16,47,54], there are still considerable u n ce rta in differs fro m G PP b y a fa cto r o f 2 to 2.5 [55,19,20], fo r w h ic h the ties about w h a t drives & e C as w e ll as differences between N P P and GPP. G ro w th rate dependent d iffe re n tia l a llo ca tio n o f fixed fu rth e r investigation and is the focus o f ong oing w o rk. carbon and v a ry in g lifetim es o f in te rm e d ia te products m ay cause large discrepancies between N P P and GPP, w h ich short te rm 1 4 C 0 2 uptake measurements m ay n o t capture [19,20], W h ile it is fo r electron sinks associated w ith n u trie n t red u ctio n , the slope o f generally accepted th a t sh o rt-te rm cu rre n t $>r c values cannot account. Conversion o f E T R to N PP and assessments o f the p o te n tia l e rro r in & ec a nd subsequently N P P due to e m p lo yin g short te rm 14C incubations w ill require ETnder ‘o p tim a l’ g ro w th (where N P P ~ GPP), and a ccounting the lin e a r relatio n sh ip between E T R a nd N P P should y ie ld values fo r <Pe c o f 4—6 m o l e- (m ol C ) _ 1 [1 6 -1 8 ], T o date, m ost F R R f- 14C in cu b a tio n techniques based studies use an electron req u ire m e n t fo r carbon fix a tio n o f ap p ro xim a te GPP, H alsey et al. [19,20] dem onstrated th a t this is o n ly the case in fast g row ing, n u trie n t-re p le te p h yto p la n kto n . In n u trie n t lim ite d cells, on the o th er hand, sh o rt-te rm 5 m ol e 14C req u ire d p e r 0 incubations equate N P P o r p rim a ry p ro d u c tiv ity rates somewhere 1 to convert E T R s to carbon fix a tio n rates, 2 m olecule pro d u ce d and (ii) th a t 1-1 .5 m o l o f 0 2 is produced fo r each m o l C 0 2 fixed, i.e. the photosynthetic q u o tie n t takes values o f 1 -1.5 m o l 0 2 (m ol C 0 2) 1 [56], Indeed, between N P P and GPP. F ailure to accurately q u a n tify GPP w ill in e v ita b ly affect M o st data published in the past and also some studies here co n firm e d $>ec equal (or close to) 4—6 m o l e- those used in o u r meta-analysis com pared E T R to relative ly short PLOS ONE I www.plosone.org (m ol C) assuming (i) th a t at least 4 e_ transported th ro u g h P S II are 13 March 2013 | Volume 8 | Issue 3 | e58137 Electron Requirement for Carbon Fixation (m ol C) *). H ow ever, the vast m a jo rity o f estimates fo r <t>ec are considerably higher, sometimes reaching extremes o f > 5 0 m o l e based a lg o rith m [7] (C E N D 0 8 1 1 , U K - O A D 366). These co m parisons showed th a t a constant h r h j m ay lead to an underestim ate (m ol C) o f <Pe>c b y 2 8 -4 7 % (Fig. S2, T a b le S I in A p p e n d ix S I), w h ich co u ld thus, at least in p a rt, exp la in the lo w in the G u lf o f 1 (e.g. B IO S O P E Pacific O cean Cruise) o r a lte rn a tive ly &e,c o f < 5 m o l e (m ol C) 1 G u lf o f F in la n d 2000 and A M T 15. T hus, fo r m an y cases, a p p lica tio n o f an assumed value o f 4 -6 m ol F in la n d data. T h e npsn values estimated fo r the N o rth e- (m ol C ) - 1 to F R R data w o u ld yie ld erroneous estimates o f Cuptake (w ith in the lim ita tio n s o f the 1 4 C -uptake itse lf fo r q u a n tify in g C -uptake). V alues o f 0 e c > 5 m o l e- (m ol C ) - 1 Sea spanned a range o f 0.0018 to 0.0056 m o l R C (m ol chia) \ w h ich is com parable w ith the range observed fo r eukaryotic and p ro ka ryo tic p h yto p la n kto n [46,47,58], b u t higher, b y ca. a factor o f 2, th a n npsn d ire ctly m easured b y M o o re et al. [11] in European shelf waters a t a sim ilar tim e o f year. C le a rly fu rth e r d irect have been observed previously and p o te n tia lly reflect processes th a t act to decouple E T R s fro m C -fix a tio n , such as p h o to re sp ira tio n [32], ch lo ro respiration v ia a plastid te rm in a l oxidase (P T O X ) [33,34] and m easurements o f npsn and va lid a tio n o f algorithm s proposed fo r e stim ating the value o f this va riab le [7] are re q u ire d before a m ore M e h le r reaction [32]. W e re tu rn to this issue in the fo llo w in g robust assessment o f the sections. In contrast, values o f 0 „ c < 5 m o l e (m ol C) 1 are m ore d iffic u lt to reconcile w ith biophysical and physiological processes, p o te n tia lly in d ic a tin g the m agnitude o f re m a in in g m ethodological associated w ith npsn cun be achieved. Such measurements are the focus o f ong oing w ork. e rro r in calculated w h ic h is such as in co rre ct assumptions O th e r sources o f discrepancies between electron transfer and carbon fix a tio n m ay stem fro m differences am ong protocols fo r co ncerning the value o r v a ria b ility o f nPSn (see below), inadequate spectral c o rre ctio n o r re m a in in g non-system atic errors in b o th E T R -lig h t response curves (rapid lig h t curves vs. steady state lig h t curves) [61], deviations in the timescales o f in situ E T R and carbon fix a tio n and fluorescence estimates. T h e re were tw o studies w ith a h ig h p ro p o rtio n o f <&ec values < 5 m o l e (m ol C) *: the la b o ra to ry 1 4 C-photoynthesis measurements [43,61], discrepancies in the E k values d e rived fro m E T R and C 0 2 uptake [5 2 -5 4 ], o r discrepancies in d e rivin g the effects o f w a te r co lu m n structure and subsequent changes in A M T 15 cruise (H ickm a n et al. unpublished) and the G u lf o f F in la n d 2000 study. U n lik e d u rin g the A M T 15 cruise w here < 5 m o l e- (m ol C )- lig h t a va ila b ility on the ‘shape’ o f E T R lig h t response curves [ 8 ]. F o r the data in clu d e d in the present study and the associated differences in m ethodology w ith regard to E T R calculations (ffpsn, o ccurred o n ly in samples fro m the D C M , we co u ld n o t id e n tify any consistency in the occurrence o f such npsn) and 14C in cu b a tio n techniques, we estimated that, in w orst lo w values th a t co u ld be related to sample h a n d lin g and processing in the G u lf o f F in la n d 2000 data. T hus, the h ig h p ro p o rtio n o f lo w <&ec values in the G u lf o f F in la n d m ig h t p o in t to systematic errors in the E T R calculations, i.e. in the com ponent values fo r ffpsn, npsn a n d /o r E, values th a t are often assumed (or n o t w ell case scenarios, m ay be over- o r underestim ated b y as m uch as 53% (data n o t shown). A detailed assessment o f these m eth o d o lo g ica l differences between techniques and studies is b eyond the scope o f this study, a nd we refer the reader to a previous com prehensive reviews o f these issues [8,38]. H o w e ve r, we note measured). W h ils t values o f ffpsn m easured b y F R R f have been shown to m atch independent b io -o p tica l measurements w e ll [46], th a t v a ria b ility in estimated values o f (t>ec was lo w e r th a n th a t observed across a ll studies (Fig. 2) fo r the tw o new studies in clu d e d we have to assume th a t the b io -o p tica l in stru m e n ta tio n used to here, w h ic h were p e rfo rm e d u n d er the m ost co n tro lle d conditions q u a n tify b o th E and ffpsn have been a p p ro p ria te ly calibrated. In the G u lf o f F in la n d [29], values o f ffpsn ty p ica lly range fro m ca. 150-300 A 2 q u a n tu m - 1 , w h ich is on the lo w e r end o f the range o f (S Y N T A X 2 0 1 0 and N o rth Sea C E N D 0 81 1 ), i.e. were E T R and C 0 2 fix a tio n were sim ultaneously measured on the same sample. T hus, the extent to w h ich the extrem e values a n d /o r v a ria b ility in values expected fo r assemblages d o m in a te d b y diatom s, d in o fla gellates, cryptophytes a nd cyanobacteria (data n o t shown), b u t still w ith in the range co m m o n ly observed fo r such species [38]. Absolute underestim ations o f ffpsn as a result o f erroneous w h ich is observed in some o ther studies, represents re m a in in g errors in e ith e r carbon fix a tio n o r E T R estimates rem ains unclear. in s tru m e n t calibrations are therefore u n like ly a significandy c o n trib u tin g factor. H ow ever, in cases w h e n cyanobacteria Environmental regulation o f < P e C D a ta presented in this study focused alm ost exclusively on the apparent effect o f rea d ily measurable e n viro n m e n ta l variables on In fo rm a tio n on p h yto p la n kto n co m m u n ity com position dom inate, E T R s m ay be underestim ated due to the saturating lig h t blue L E D pulse be in g in e fficie n t at d riv in g reaction centre closure, resulting in lo w values. F urth e rm o re , assum ption o f a co u ld n o t be ro u tin e ly in clu d e d and we assumed th a t any change in ta xo no m y was in h e re n tly accounted fo r in the enviro n m e n ta l constant npsn w ill in tro d u ce errors due to ta xo n o m ic v a ria b ility in physiological traits [46]. M o re o ve r, p h yto p la n kto n cells tend to descriptors. Indeed, e n viro n m e n t often leads to d istin ct structural differences o f the pho to syn th e tic apparatus and acclim a tion responses am ongst p h yto p la n kto n fro m d iffe re n t biogeographic change the size o f th e ir p hotosynthetic units in response to lig h t and n u trie n t a v a ila b ility [5 7 -5 9 ] and ve rtica l m ix in g [60]. Hence npsn can v a ry am ong species b y m ore th a n a fa cto r o f fo u r, fro m 0.0010 to 0.0042 m o l R C (m ol C hia ) - 1 [46]. R aateoja et al. [29] regions [3 4 ,6 2 -6 7 ] and, towards unique, often consistent fluores cence "signatures" o f P S II [1 0 ,11 ,3 8 ,6 8-7 0 ]. F uture assessments o f the in te r- a nd intraspecific v a ria b ility in & ec w ill, o f course, be assumed a constant npsn o í 0.002 m o l R C (m ol C h ia )- 1 , w h ic h is representative o f the eukaryote p h yto p la n kto n co m m u n ity ob served in th e ir study (m ostly diatom s, dinoflagellates necessary to fu lly resolve the mechanisms responsible fo r changes and in 0 e c and the derived algorithm s (Table 5), w h ich are p u re ly based on statistical m odels and should therefore n o t be in te rp re ted fro m a m echanistic perspective. F ro m the relative ly few available cryptophytes; b u t n o t ty p ica lly w h e n cyanobacteria dom inate. Consequently, increasing assumed values o f nPSn in the study o f Rateeoja et al. [29] to account fo r the presence o f cyanobacteria [8,46] w o u ld increase E T R s and hence p o te n tia lly $>eC to values studies on p h yto p la n kto n cultures g ro w n u n d er various conditions to date, (fre e usually does n o t exceed values o f ~ 2 5 m o l e (mol C) 1 as opposed to estimates o f up to 54 m o l e m o l C 1 fro m > 5 m o l e- (m ol C )- 1 . W e assessed the p o ten tia l e rro r in $>e C due to the use o f a constant nPSn in some o f the data sets presented in this study by co m p a rin g <£eC based on a constant nPS_n w ith n a tu ra l com m unities (reviewed in c values calculated fro m E T R w here npsn was eith e r measured v ia oxygen flash yields (Bedford Basin data) o r calculated using a fluorescence PLOS ONE I www.plosone.org Suggett et al. [ 8 ]). L o w e r m a xim a l values fo r p h yto p la n kto n cultures co u ld indicate a less extrem e range o f g ro w th environm ents tested in the la b o ra to ry as com pared to n a tu ra l conditions, such as, the h ig h -lig h t, low n u trie n t conditions o f the surface open ocean th a t are d iffic u lt to 14 March 2013 | Volume 8 | Issue 3 | e58137 Electron Requirement for Carbon Fixation M a n y samples fro m Massachusetts B ay and o ther open ocean reproduce in the la b o ra to ry. F urth e rm o re , la b o ra to ry studies often exam ine cells th a t are in ‘steady state’ g ro w th whereas na tura l com m unities m ay persist u n d er (rapidly) changing en viro n m e n ta l areas fell in to one cluster w ith the B e d fo rd Basin data (Table 4, Fig. 5). T h e B e d fo rd Basin spring cluster (d) was characterized by h ig h ch lo ro p h y ll concentrations, whereas samples in the late conditions. I n the la tte r case, non-steady state conditions could lead to a strong and transient u n co u p lin g o f electron transfer and w in te r carbon fix a tio n [10,71,72], w h ich w o u ld suggest th a t the p rim a ry source o f v a ria tio n in & ec is the e n viro n m e n t ra th e r than ta xo n o m ic v a ria b ility . T h e effect o f g ro w th rate on o u r a b ility to measure G PP b y short-term 14C incubations u n d er n a tu ra l cluster (e) had lo w ch lo ro p h y ll concentrations and tem peratures m ore sim ilar to those in fro n ta l and u p w e llin g regions o f the N o rth Sea, and the A tla n tic and Pacific Oceans. T h e w ide range o f e n viro n m e n ta l gradients observed in these clusters m ay be the reason w h y M L R d id n o t re tu rn any significant relationships between c and e n viro n m e n ta l variables. conditions m ay fu rth e r co n trib u te to the w id e r range o f <l>e>c values fro m fie ld observations relative to culture-based 0 , r [19,20], F urth e rm o re , such relationships m ay n o t necessarily be lin e a r [81] and o th e r models w ill have to be tested in the future. M o s t o f the C onsiderable v a ria b ility o f <l>e>c existed n o t o n ly spatially b u t also te m p o ra lly. G iven the large range o f <&ec fo r the entire data biogeographic o th er studies, provinces (sensu also extended L o n g h u rst across m u ltip le [82]) or d istin ct environm ents w a te r masses ( S M L /D C M ) , and a lth o ug h there seemed to be consistent overlaps between n u trie n t deplete regions and areas o f h ig h & ec (Fig. 3), the absolute n u trie n t concentration set, it is notable th a t m ean & ec in all b u t one o f the tim e series studies (Massachusetts Bay) never exceeded 10 m o l e (m ol C) ’ . T h e greater variance in the Massachusetts Bay tim e series study could, on the one hand, have been related to its longer d u ra tio n (9 m onth) relative to the o th er tim e series (1.5 -6 m onth) and, on the o th e r hand, to its topography; w h ile the G u lf o f F inlan d , B edford Basin and A ria k e Bay, are a ll surrounded b y la n d fo rm in g at least was often n o t correlated w ith & e c (Table 2). Im p o rta n t examples are the open ocean regions, h ig h lig h tin g h o w enviro n m e n ta l fo rcin g can con fou n d establishm ent o f strong relationships between & ec and measurable e n viro n m e n ta l variables a t the basin scale: & e>c often declined w ith increasing depth and towards p a rtia lly land-enclosed basins, Massachusetts Bay is relative ly exposed and m ore strongly influenced b y exchange o f w a te r w ith the n u trid m e ; even so, <&ec was often n o t sig n ifica n tly correlated w ith m easured n u trie n t co n ce ntra tio n m ost lik e ly reflecting differences in n u trie n t a v a ila b ility between the gyres, H N L C areas and coastal u p w e llin g regions. A d d itio n a lly , n u trie n t stocks are n o t necessarily a good in d e x o f the level o f n u trie n t stress w ith in a p o p u la tio n , w h ich w ill depend ra th e r on the overall the A tla n tic Ocean. Nevertheless, seasonal changes appear to influence the v a ria b ility in c a lthough m an y areas are still under-sam pled. In the G u lf o f F inlan d , fo r example, ve rtica l m ix in g and the depth o f the surface m ixe d layer change across d iffe re n t seasons [7 3 -7 5 ] and w ith it the o p tica l and physicochem ical properties o f (re-)supply rates o f the n u trie n t relative to the demands o f the the w a te r co lu m n , th a t is, lig h t and n u trie n t a v a ila b ility o f the exta nt p h yto p la n k to n c o m m u n ity [29]. T h e clustering o f the G u lf o f F in la n d samples - in to a late w in te r (b), spring (c), sum m er (g) and s u m m e r/e a rly a u tu m n (h) m irro rs these physicochem ical e xta nt co m m u n ity. In the iro n a nd n itro g e n deplete SPG [12] and the lo w -iro n H N L C region o f the Pacific O cean [83], <&ec declined w hen N 0 3_ concentrations were above the detection lim it (usually at the deep ch lo ro p h y ll m axim u m ). A p a rt fro m the changes. H ow ever, the h ig h ly dyn a m ic nature o f this system makes the developm ent o f p re d ictive algorithm s fo r the entire B a ltic Sea (in clu ding the G u lf o f F inland) challenging. T h e best predictors o f extrem e o u tlie r o f <&e¿ > 50 m o l e (m ol C) *, highest <&ec values were observed in the u p w e llin g region and the gyre corresponding to samples fro m a lo w - N 0 3_ surface w ater lens w ith high 0 „ c fo r the w hole region were tem perature, sa lin ity and P 0 4 3 , irradiances. Beneath this surface w a te r lens, N 0 resulting in a relative ly weak (R 2 = 0.266) alb e it h ig h ly significant relationship. F or the G u lf o f F in la n d on its ow n, however, the relationships were m uch stronger (R2 = 0.561, ƒ><().01), in d ic a tin g lig h t levels dro p p e d and i>e>c declined. 3 increased w h ile Ir o n and n itro g e n lim ita tio n m ay be expected to influence the p hotosynthetic apparatus in d iffe re n t ways, w ith iro n deficiency causing a pre fe re ntia l decline in iro n rich -ce llu la r com ponents (e.g. th a t the G u lf o f F in la n d should perhaps be treated as its ow n region. PS I, P S II a nd cytochrom e b 6 f) [5 6 ,8 4 -8 6 ]. T hus, d iffe re n t form s o f n u trie n t lim ita tio n can induce differences in the fluorescence D is tin c t te m p o ra l changes in e n viro n m e n ta l gradients also existed in B e d fo rd Basin, w here in itia l correlations (Table 2) signatures o f the resident p h yto p la n kto n co m m u n ity [67,72] and subsequently in <£e C. Iro n lim ite d p h yto p la n kto n in H N L C regions, fo r instance, m y express the c h lo ro p h y ll-b in d in g p ro te in showed significant relationships o f <&e c w ith salinity, w h ic h m ay have b o th in d ire c t (via alterations o f density and w a te r co lu m n stratification) and d ire c t (osmotic) effects on c. T h e co m b in a tio n o f lo w nutrients coupled w ith sudden h ig h lig h t a va ila b ility due to IsiA , w h ich reduces the a p parent P S II p h o to synthetic efficiency and p rim a ry p ro d u c tiv ity rates n o rm a lize d to ch lo ro p h y ll [87,88]. T h e la tte r w o u ld cause <&ec to increase. N u trie n t lim ita tio n in elevated freshw ater discharge after snow m e lt and ice breakup co u ld cause an u p -re g u la tion o f electron, A T P a n d /o r red u cta n t co m b in a tio n w ith h ig h -lig h t stress in surface waters m ay hence have been responsible fo r the highest c o b tained in these regions, suggesting a h ig h degree o f u n co u p lin g between electron consum ing pathways (e.g. p h o to re sp ira tio n and M e h le r reaction). C onceivably, sim ila r changes in salinity co u ld also d ire ctly affect <&ec b y causing osm otic stress o r an increase in resp ira tio n o f the transfer and ca rb o n fixa tio n . S im ila rly, variations in nitro g e n exta nt p h yto p la n k to n co m m u n ity [76]. B e d fo rd Basin p h yto p la n k to n c o m m u n ity com position often shifts fro m diatom s and assim ilation and n itro g e n fix a tio n req u ire large am ounts o f A T P also leading to an u n c o u p lin g o f electron tran sp o rt fro m carbon dinoflagellates to chlorophytes after the snow m e lt (Suggett & Forget unpublished) [77], m a tch in g the increase o f í>e>c■ T hus, in fix a tio n [67,89,90]. B e d fo rd Basin m u ltip le e n viro n m e n ta l factors (salinity, tem pera ture, stratification) were lik e ly at play, p o te n tia lly e xe rtin g lig h t Conclusions and osm otic stress on the extant, b u t changing, p h yto p la n kto n rates o f N P P depend on o u r a b ility to accurately p re d ic t <l>e>c fo r given e n viro n m e n ta l co n d itio n . T h is present study shows, fo r the Conversions o f FR R f-based E T R estimates to carbon-specific c o m m u n ity [7 7 -8 0 ]. R esolving the u n d e rlyin g mechanisms responsible fo r seasonal changes in c in rem ains a challenge and w ill req u ire teasing a p a rt d a ylig h t h o u r effects fro m tem perature effects and oth er physicochem ical variables. PLOS ONE I www.plosone.org first tim e, the extent o f v a ria b ility o f <j, a lb e it w ith in the past m eth odological constraints o f accurate q u a n tifica tio n o f b o th E T R s and NPP. M o s t data on & ec available to this day are based 15 March 2013 | Volume 8 | Issue 3 | e58137 Electron Requirement for Carbon Fixation on sh o rt-te rm 14C incubations w h ich , depending on algal g ro w th (TIF ) rates, m ay capture G PP ra th e r th a n NPP. F u rth e r studies are needed to fu lly resolve the discrepancies between derived Figure S2 Com parison o f (in m ol e (mol C) ’) calculated with an »t/>s// = 0.0020 m ol RC (mol chia)-1 and where n Psu w as m easured w ith oxygen flash yields (Bedford Basin) or by FRR fluorom etry according to Oxborough et al. [11] (UK-OA D366 and North Sea CEND0811). B o ld lin e represents the regression equation fo r all fro m G PP o r N P P in b o th cultures a nd n a tu ra l com m unities. Nevertheless, o u r w o rk shows th a t some o f the v a ria b ility in c can be lin k e d to e n viro n m e n ta l variables th a t are ro u tin e ly measured. G ive n the observed va ria b ility , it is h ig h ly u n like ly th a t a global approach o r a lg o rith m can be pro d u ce d w h ic h captures a h ig h p ro p o rtio n o f the variance in three c- H ow ever, w ith the present studies com bined: i>e>c constant nPsn = 0.617 x { f i e,c measured nPSII)+2.165 (R2 = 0.807, n = 1 1 0 , p < 0 .0 5 ). Regression coefficients are shown in T a b le S I in A p p e n d ix S I. study we p ro vid e firm evidence th a t such algorithm s can in fact be generated fo r biogeographic regions and d istin ct w a te r masses, b rin g in g us closer th a n ever to p re d ic tin g carbon uptake fro m (TIF ) E T R s. Indep e n d e n t va lid a tio n o f these algorithm s is still required, Appendix SI Results o f PCA including m ethodological and location variables and assessm ent o f the effect o f variable nPSII on Phie,C. and, we m ay expect they w ill be refined as m ore data accum ulate. Im p o rta n d y , o u r study provides m eth o d o lo g y fo r fu tu re data co lle ctio n and in te g ra tio n to im p ro ve <&e c algorithm s. C learly, developing standardized protocols w o u ld greatly facilitate in te r (D O C X ) comparisons o f studies and reduce some o f the p o te n tia l e rro r due to m ethodological differences. Assessing the role o f p h yto p la n kto n Acknowledgments taxonom y, developm ent o f n o n -lin e a r models and testing o f the present alg o rith m s on novel, independent data represent necessary W e are extremely grateful to Sarat C. T ripathy and Prof. Jo ji Ishizaka (HyARC N agoya University), C hristopher Melrose (NOAA N ortheast Fisheries Science Center, (Mika R aateoja (Finnish E nvironm ent Institute) and T im Smyth (Plymouth M arine Laboratory) who very graciously provided additional environm ental data from their previously published work, as well as R ob T hom as a t the British O ceanographic D ata C entre for supporting the retrieval o f the A M T and JR 9 8 data and W endy Lea at the M assachusetts W ater Resources A uthority for providing the M assa chusetts Bay data. W e also acknowledge the mission scientists an d principal investigators of M O D IS and SeaW IFS who provided data via the Giovanni online data system, developed and m aintained by NASA GES D ISC. W e are also grateful for the comm ents provided by AJ Milligan and an anonym ous reviewer. fu tu re steps to im p ro ve the level o f accuracy. O n e o f the m a jo r re m a in in g challenges in u tilis in g these algorithm s is d e fin in g the (biogeographic) regions, w h ile keeping in m in d th a t th e ir boundaries m ig h t a ctu ally shift in space a nd tim e. Hence ca u tio n is still req u ire d in widespread a p p lica tio n o f the c u rre n t algorithm s. Even so, the appearance o f clear patterns and p ro o f o f p re d ictive p o w e r o f e n viro n m e n ta l variables in the present article provides strong support and m uch im p ro ve d confidence for successful conversion o f E T R s to carbon fix a tio n rates at a m uch greater spatial and te m p o ra l resolution th a n c u rre n t 14C fixa tio n approaches. Author Contributions Supporting Inform ation Advice with statistical analysis: R JG . Conceived and designed experiments: EL J K DJS GS R M F. Perform ed the experiments: EL GS PY M -H F SS EC O P A E H C M M DJS RM F. Analyzed the data: DJS. C ontributed reagents/m aterials/analysis tools: RM F. W rote paper: EL DJS. Figure SI Principal com ponent analysis including the environm ental data, location data and m ethodological inform ation (A) and w ith the m ethodological differences excluded from the analysis (B). the JK EL the References 1. 11. L in d e m a n R L (1 9 42 ) T h e tro p h ic d y n am ic aspect o f ecology. E cology 2 3 :3 9 9 — 2. F ie ld CB, B e h ren feld M J, R an d e rso n J T , Falkow ski PG (1 9 98 ) P rim a ry m e n ta l gradients in a shelf sea. L im n o l. O ce a n o g r. 5: 9 3 6 —949. p ro d u c tio n o f the biosphere: In te g ra tin g te rrestrial a n d oceanic com ponents. 12. Science 281: 2 3 7 -2 4 0 . 3. C a r r M - E , Friedrichs A M , S chm eltz M , A k a M N , A n to in e D , e t al. (2 0 06 ) A 13. Elsevier A c ad em ic Press, N e w Y o rk . pp. 2 8 7 —236. Lon g h u rs t A , S ath ye n d ra n ath S, P la tt T , C a v e rh ill C (1 9 95 ) A n estim ate o f 14. global p rim a ry p ro d u c tio n in the ocean fro m satellite ra d io m e te r data. J P la nk ton E co l 26: 5 5 - 7 6 . B eh ren feld M J , Boss E , Siegel D A , Shea D M . (2 0 05 ) C a rb o n -b a s ed ocean 15. p ro d u c tiv ity a n d p h y to p la n k to n physiology fro m space. G lo b a l Biogeochem Schreiber U , N e u b a u e r C , Schuw a U (1 9 93 ) P A M 16. flu o ro m e te r based on 17. O x b o ro u g h K , M o o r e M G , Suggett D , Law son T , C h a n H G , et al. (2 0 12 ) D ire c t 18. flu o ro m e try (F R R f) data. L im n o l O ce a n o g r M e th 10: 1 4 2 -1 5 4 . relationship betw ee n the tra n s p o rt and q u e n c h in g of E dw ards G E , B aker N R (1 9 93 ) C a n C O 2 assim ilation in m a ize leaves be Suggett D J, M a c In ty r e H L , K a n a T M , G e id e r R J (2 0 09 ) C o m p a rin g electron photosynthetic currencies fo r eukaryo tic ph y to p la n kto n . A q u a tic M ic r o b ia l E col 56: 1 4 7 -1 6 2 . editors. C h lo ro p h y ll a fluorescence in a quatic sciences: m ethods a n d a pplica 19. tions. S prin ger D o rd re c h t, p p . 103—127. H a lse y K H , M illig a n AJ- B eh ren feld M J (2 0 10 ) Physiological o p tim iza tio n underlies g ro w th ra te-d ep en d e n t chlorophyll-specific gross a n d n e t p rim a ry Falkow ski P G , K o lb e r Z S (1 9 9 5 ) V a ria tio n s in C h lo ro p h y ll Fluorescence Yields pro d u c tio n . Photosynth Res 103: 1 2 5 -1 3 7 . in P h yto p lan k to n in the W o r ld O ceans. A u s tr J P la n t Physiol 22: 3 4 1 -3 5 5 . 20. M o o r e M G , Suggett D J , H o llig a n P M , Sharpies J , A b ra h a m s E R (2 0 03 ) Physical H a lse y K H , M illig a n AJ- B eh ren feld M J (2 0 11 ) L in k in g tim e -d e p en d e n t carbonfix a tio n efficiencies in D u n a lie lla controls on p h y to p la n kto n physiology a t a shelf fro n t: a fast rep etitio n -rate tertiolecta (C hlorop hyceae) to u n d e rlyin g m e tab olic pathw ays. J P hycol 47: 6 6 —76. flu o ro m e te r based fie ld study. M a r E co l P rog Ser 259: 29M -5. PLOS ONE I www.plosone.org (1 9 89 ) T h e e le c tro n transport w ith gas exchange: pa ram e te ris ing exchange rates betw ee n alternative Suggett D J , M o o r e M , G e id e r R J (2 0 1 1 ) E s tim a tin g a quatic p ro d u c tiv ity fro m active fluorescence m easurem ents. In : Suggett D J , Prásil O , B o ro w itzk a M A , 10. B aker N R o f p h o to s y n th e tic 8 9 -1 0 2 . flu x o n a v o lu m e basis: a n e w appro ac h to the analysis o f Fast R e p e titio n R a te 9. y ie ld p re d ic te d a ccurately fro m chlo ro p h yll fluorescence analysis? Photosynth Res 37: estim ation o f fu n c tio n a l P S II reaction centre c o ncentration a n d P S II electron . B, B riantais J - M , c hlo ro p h yll fluorescence. B io c h im Biophys A c ta 9 90 : 8 7 —92 in basic a n d a p p lie d photosynthesis research. Photosynth Res 3 6:65 —72. 8 G e n ty q u a n tu m m e d iu m -fre q u en c y pulsed X e -fla s h m easuring light: A hig h ly sensitive n e w tool 7. Fogg G E , C a lv a r io -M a r tin e z O (1 9 89 ) Effects o f bo td e size in de te rm ina tions o f p rim a ry p ro d u c tiv ity b y ph y to p la n kto n . H y d ro b io lo g ia 173: 8 9 —94 Cycles 19: G B 1 0 0 6 , d o i:1 0 .1 0 2 9 /2 0 0 4 G B 0 0 2 2 9 9 . V e n r ic k E L , Beers, J R , H e in b o k e lJ F (1 9 77 ) Possible consequences o f co n ta in in g m ic ro p la n k to n fo r physiological rate m easurem ents. I E x p e rim e n ta l M a r B iol Res 17: 1 2 4 5 -1 2 7 1 . 6 M a c In ty r e H L , C u lle n JJ (2 0 05 ) U s in g cultures to investigate the physiological ecology o f m icroalgae. In : A ndersen R A , e ditor. A lg a l c u ltu rin g techniques. D e e p Sea Res I I 5 3 3 , 7 4 1 7 7 0 , d o i:1 0 .1 0 1 6 /j.d s r2 .2 0 0 6 .0 1 .0 2 8 . 5. B eh ren feld M J , K o lb e r Z S (1 9 99 ) W id e s p re a d iro n lim ita tio n o f p h y to p la n kto n in the S outh P acific O c e a n . Science 283: 8 4 0 —8 43 . com parison o f global estimates o f m a rin e p rim a ry p ro d u c tio n fro m ocean color. 4. M o o r e M C , S uggett D J, H ic k m a n A E , K i m Y - N , T w e d d le J F , e t al. (2006) P h yto p lan k to n p h o to ac clim a tio n a n d p h o to ad a p ta tio n in response to e n viro n 4 18 . 16 March 2013 | Volume 8 | Issue 3 | e58137 Electron Requirement for Carbon Fixation 21. B oy d P W , A ik e n J , fluo re sc e n ce based K o lb e r {p u m p ZS (1 9 97 ) Com parisons and p ro b e ) o f ra d io c a rb o n m eas u rem e n ts and 48. 49. p hotosynthetic characteristics in the N o rth e a s t A d a n tic O c e a n . M a r E co l P rog C o rn o G , L e te lie r R M , A b b o tt M R , K a rl D A T e c h n o l 18: 1 9 2 4 -3 4 . (2 0 06 ) Assessing p rim a ry 50. p ro d u c tio n v a ria b ility in the n o rth Pacific subtropical gyre: a com parison o f fast T halassiosira weissflogii. M a r E co l P rog Ser 448 : 6 7 —78. K r o m k a m p J C , D ijk m a n N A , Peene J , Sim is S G H , Gons H J (2 0 08 ) E stim ating 51. p h y to p la n k to n p rim a ry p ro d u c tio n in L a ke Ijsselm eer {T h e N e the rlands ) using v a ria b le fluorescence { P A M -F R R F ) a n d 14C -u p ta k e 25. 26. 27. E co l P rog Ser 13: 9 9 - 1 0 2 . 52. Suggett D J {2000) V a r ia b ility o f p h y to p la n k to n p ro d u c tiv ity rates in the A d a n tic photosynthesis S o u th a m p to n , U n ite d K in g d o m , D o c to ra l Thesis, 184 pp. m icroalgae a n d cyanobacteria. J P hycol 38: 17—38. 53. Suggett D J, M o o r e M C , M a r a ñ ó n E , O m a c h i C , V a r e la R A , e t al. {2006) 54. H ic k m a n {2007) T h e photophysiology a n d p rim a ry p ro d u c tiv ity o f p h y to p la n k S m yth T J , P e m b e rto n K L , A ik e n J , G e id e r R J {2004) A 56. R a a te o ja N , Seppälä J , K u o s a H 57. {2004) B io -o p d ca l m o d e llin g o f p rim a ry 58. T r ip a th y S C , Ish iza ka J , F u jik i T , 59. uptake by la b o ra to ry study s im ula ting v e rtic a l m ixin g . J G e n e ra l M ic ro b io l 139: 2 2 7 7 — 2 284. 61. 63. 64. 65. u n d e r transient A c a d Sei U S A 105: 7 8 8 1 -7 8 8 6 . Estévez-Blanco P, C e rm e ñ o P , E spiñe ira M , F e rn án d e z E {2006) P h ytoplank ton 66. 67. Baixas, N W o f Spain). J P la nk ton Res 28: 1 1 5 3 -1 1 6 5 . G rossm an A R , M a c k e y K R M , B ailey S {2010) A perspective on photosynthesis flow . J P hycol 46: 6 2 9 -6 3 4 68. 4 0 :4 -2 5 . B eh ren feld M J , W o rth in g to n K , S herrell R M , C h a v e z FP , S tru tto n P, e t al. {2006) C o n tro ls on tro p ic al Pacific O c e a n p ro d u c tiv ity revealed th ro u g h n u trie n t Suggett D J , M o o r e M C , H ic k m a n A E , G e id e r R J {2009) In te rp re ta tio n o f fast stress diagnostics. N a tu r e 4 42 : 1 0 2 5 -1 0 2 8 . re p etitio n ra te {F R R ) fluorescence: signatures o f p h y to p la n k to n c o m m u n ity 69. structure versus physiological state. M a r E co l P ro g Ser 376: 1—19. K ir k J T O {2010) L ig h t a n d photosynthesis in a quatic ecosystems, 3r edition. L o n d B 363: 2 6 8 7 -2 7 0 3 . 70. Suggett D J, K r a a y ,G , H o llig a n P, D a v e y M , A ik e n J , e t al. {2001) Assessment o f 71. K o lb e r Z S , Prásil O , Falkow ski P G {1998) M easurem ents o f v aria b le c hlo ro phyll 72. Suggett D J , O x b o ro u g h K , B a ke r N R , M a c In ty r e H L , K a n a T M , e t al. {2003) 73. m easurem ents fo r assessment o f photosynthedc electron transport in m a rin e use o f v a r ia b le fluorescence 74. tu rn o v e r protocols a n d suggested term inolo gy. E u r J P hycol 38: 103—112. spring p h y to p la n k to n b lo o m . D a v is RF L im n o l The b la n k c an m a ke a b ig diffe re n ce in 77. o f active fluorescence to estim ate dyn am ic s in th e F la m e lin g IA , K ro m k a m p J {1984) Responses o f respiration a n d photosynthesis L i W K W , H a rris o n W G , H e a d E J H {2006). C o h e re n t assembly o f p h y to p la n k to n c om m unities in diverse tem p e ra te ocean ecosystems. P roc R o y a l Soc B B iol ph y to p la n k to n photosynthesis in situ. L im n o l O c e a n g r 38: 1646—1665. PLOS ONE I www.plosone.org n u tr ie n t Res 16: 1 7 8 1 -1 7 9 1 . L im n o l O ce a n o g r M e th 2: 3 1 6 -3 3 2 . U se and o f Scenedesm us protuberans Fritsch to g ra d u al a n d steep salinity increases. J P la nk ton optical d e term inations o f lig h t absorption b y photosystem I I in p h y topla nkton. {1993) p ro to z o o p la n k to n Basin {Baltic Sea) in 2 0 0 2 —2 00 3 d u rin g the G e rm a n G L O B E G P roject., I n t J E a rth Sei 98: 2 5 1 -2 6 0 . 76. Suggett D J , M a c In ty r e H L , G e id e r R J {2004) E v a lu a tio n o f biophysical and Falkow ski P G P h y to p la n k to n , B o rn h o lm {2 0 0 3 ) {2007) M o d e llin g nitro g e n a n d phosphorus v a n Beusekom JJE , M e n g e d o h t D , A ugusting C B , S chilling M , Boersm a M {2 0 0 9 ) o ceanographic m easurem ents. L im n o l O c e a n g r B u ll 12:29—35. ZS, Lessin G , Lips I , R audsepp U O ce a n o lo g ía 49: 2 5 9 -2 7 6 . 75. O c e a n o g r 51: 2064—2 076. C u lle n JJ, T a m m in e n T , A ndersen T {2007) Seasonal p h y to p la n k to n n u trie n t lim ita tio n lim ita tio n on p h y to p la n k to n g ro w th in N a r v a B ay, south-eastern G u lf o f Fin lan d . Suggett D J , M a b e r ly S C , G e id e r R J {2006) Gross photosynthesis a n d lake the W a g n e r H , J ak o b T , W ilh e lm C {2 00 6) B alancing the energy flo w fro m captured e utrophic ation. M a r E co l P rog Ser 340: 1 2 1 -1 3 8 . The m easurem ents in a quatic ecosystems: differences b etw een m u ltip le a n d single d u rin g {2001) Photosystem I I patterns as revealed b y bioassays over B altic Sea gradients o f salinity and ph y to p la n kto n . E u r J P hycol 38: 3 7 1 -3 8 4 . m etab o lis m M a s o jid e k J , G ro b b e la a r J U , P echar L , K o b liz e k M lig h t to biom ass u n d e r flu c tu a tin g lig h t conditions. N e w P h yto l 169: 9 5 —108. Fast re p etitio n ra te a n d pulse a m p litu d e m o d u la tio n c h lo ro p h yll a fluorescence c o m m u n ity {2012) D iffe re n t responses o f photosynthesis a n d flo w cyanobacteria d u rin g a diel cycle. J P la n k to n Res 23: 5 7 —6 6. e xp e rim en tal protocols. B io c h im Biophys A c ta 1367: 8 8 —106. {2 0 0 3 ) Q iu electron tra ns port a n d oxygen p ro d u c tio n in n a tu ra l w aterbloom s o f freshw ater fluorescence using fast re p etitio n rate techniques: defin in g m e thodology and RM S -W , B-S Synechococcus strains {C yanophyceae). M a r B iol 159 :5 19 —5 32 . flu o ro m e te r. L im n o l O c e a n o g r 46: 8 0 2 —8 10 . F o rs te r L iu c ytom etric signals to iro n lim ita tio n a n d nitro g e n source in coastal a n d oceanic photosynthesis in a spring cyanobacteria! b lo o m b y use o f a fast re p etitio n rate K ro m k a m p J C , B eh ren feld M J , H a lse y K H , M illig a n AJ {200 8) E vo lv ed physiological responses o f p h y to p la n kto n to th e ir inte g rated g ro w th enviro n m e n t. P h il T ra n s R Soc C a m b rid g e : C a m b rid g e U n iv ers ity Press. 6 6 2 p. K o lb e r {2009) Biogeograp hy o f photosynthetic lig h t- in the oligotrophic oeans: hypotheses c oncerning a ltern a te routes o f electron B eh ren feld M J , Prásil O , B a b in M , B ru y a n t F {2004). I n search o f a p hysiological basis fo r covariations in lig h t-lim ite d a n d ligh t-s a tu rated photosynthesis. J Phycol 4 7. B ib b y T S , Z h a n g Y , C h e n M h arvesting genes in m a rin e ph y to p la n kto n . PloS O N E 4: e46 01 . re p etitio n ra te flu o ro m e try a t coastal em baym ents affected b y upw e llin g {Rias 4 6. C a rd o l P , B a ille ui B, R a p p a p o rt F , D e re lle E , B eal D , e t al. {2 00 8) A n original a d a p tatio n o f photosynthesis in the m a rin e green alga Ostreococcus. P roc N a tl photosynthedc efficiency a n d p rim a ry p ro d u c tio n rates estim ated fro m fast 45. S trzepek R F , H a rris o n PJ {2 00 4) Photosynthetic archite c tu re differs in coastal a n d oceanic diatom s. N a tu r e 431 : 6 8 9 —6 9 2 . conditions. P la n t Physiol 9 1 :3 3 1 —337. 4 4. S canlan D J {2003) Physiological diversity a n d niche a d a p tatio n in m a rin e Synechococcus. A d v M ic r o b Physiol 47: 1—64. H o lm e s JJ, W e g e r H G , T u r p in D H {1989) C h lo ro p h y ll a fluorescence predicts 2 Sunda W G , H u n ts m a n S A {1995) Photosynthetic a rchitecture differs in oceanic a n d coastal ph y to p la n kto n . M a r C h e m 50: 1 8 9 -2 0 6 . 53: 9 0 0 -9 1 3 . /N O {2006) M ic ro p h yto b e n th o s v ertical Res 90: 2 9 ^ 3 . 62. M a c k e y K R M , P ay ta n A , G rossm an A R , Bailey S {200 8) A photosynthetic 3 S erôdio J , V ie ir a S, C r u z S, C o e lh o H m ig ra to ry photoresponse as c h aracterized b y lig h t response curces. Photosynth B ailey S, M e h lis A , M a c k e y K R M , C a rd o l P , F in a zi G , e t al. {2008) A lte rn a tiv e or N O K r o m k a m p J , L im b e e k M {1993) E ffe c t o f s h o rt-term v a ria tio n in irrad ia n ce on light-ha rv es ting a n d photosynthesis o f the m a rin e d ia to m Skeletonema costatum : a strategy fo r c oping in a h igh-light, lo w -n u trie n t en viro n m e n t. L im n o l O ce a n o g r 43. Berges J A , G harlebois D O , M a u z e r a ll D C , Falkow ski P G {1996) D iffe re n tia l in m icroalge. P la n t Physiol 110: 6 8 9 -6 9 6 60. B adger M R , v o n C a e m m e re r S, R uuska S, N a k a n o H {2000) E le c tro n flo w to 2 D u b in s ky Z , Falkow ski P G , W y m a n K {1986) L ig h t harvesting a n d u tiliza tio n by effects o f nitro g e n lim ita tio n o n photosynthetic efficiency o f photosystem I a n d I I S hibata T , O k a m u r a K , e t al. {2010) to tal phytosynthetic electron flo w to C O Falkow ski P G , O w en s T G {1980) Light-shade adap tio n - tw o strategies in m a rin e ph y to p la n kto n . P la n t C e ll Physiol 27: 1 3 3 5 -1 3 4 9 . M e lro se D C , O v ia tt C A , O ’R e illy J E , B e rm a n M S {2006) Com parisons o f fast A c ta 1777: 2 6 9 -2 7 6 . 4 2. Law s E A {1991) Photosynthetic quotients, n e w p ro d u c tio n a n d n e t c o m m u n ity ph y to p la n kto n . P la n t 66: 5 9 2 -5 9 5 . Finnish coastal zone, B altic Sea: fast re p ed d o n rate p hotosynthetic electron flo w to oxygen in m a rin e Synechococcus. B io c h im Biophys 4 1. W illia m s PJ le B , R obinson C , S onderg aard M , Jespersen A - M , B entley T L , et p ro d u c tio n in the o pen ocean. D e e p Sea Res 30: 143—167. 1446. 4 0. of w ith the d ia to m Skeletonema costatum. J P la nk ton Res 18: 1 961—1974. {M e h le r reaction) a n d rubisco oxygenase. P h il T ra n s R Soc L o n d D 355: 1 43 3 — 39. {2004) C h lo ro p h y ll fluorescence as a pro b e al. {1996) A lg a l 1 4 C a n d to tal c arbon m etabolism . 2. E x p e rim e n ta l observations m ethodology to oxygen in hig h e r plants a n d algae: rates a n d co n tro l o f d irec t photored u c tio n 38. K a n d b io ta -e n v iro n m e n t 85. 55. B ay, southwestern J a p a n . E stuarine C oastal S h e lf Sc 87: 163—173. 37. O x b o ro u g h s im ilarity profiles p h y ll fluorescence: a signature o f photosynthesis. S prin ger, D o rd re c h t, pp. 6 5 — Assessment o f c arb o n - a n d fluorescence-based p rim a ry p ro d u c tiv ity in A ria k e 36. analyses: o f O c e a n a n d E a rth Sciences, D o c to ra l Thesis, 237pp. P e m b e rto n K L , C la rk e R , J o in t I {2006) Q u a n tify in g uncertainties associated re p ed d o n ra te fluorescence estim ated p rim a ry p ro d u c tio n a n d 14C 35. B a ke r N R , c o m m u n ity photosynthetic prod u c tiv ity. In : P apageorgiou G C , G o vin d je e, editors. C h lo ro p h y to p la n kto n . M a r E co l P rog Ser 311: 37—46. 34. in to n w ith in the deep c h lo ro p h yll m a x im u m . U n iv ers ity o f S o u th a m p to n , School flu o ro m e try in Case 2 w aters. M a r E co l P rog Ser 267: 9 —26. 33. a n d photosynthetic pigm ents C la rk e K R , S om erfie ld I J , G o rle y R N {2008) Testin g o f n u ll hypotheses in linkage. J E x p M a r B io l E co l 3 6 6 :5 6 -6 9 . p ro d u c tio n in the S W 32. curves D e e p Sea Res I I 5 3 :1 5 7 3 -1 5 9 2 . 1350. 31. response e xp lo ra to ry fro m fast re p ed d o n ra te flu o ro m e try . J o u rn a l o f P la nk ton R esearch 26: 1 33 7 — 30. irrad ia n ce Photosynthedc electron tu rn o v e r in the tro p ic al a n d subtropical A d a n tic O ce a n . d e te rm in e p rim a ry p ro d u c tio n a n d p h y to p la n kto n photosynthedc param eters 29. M a c ln tr y e H L , K a n a T M , A n n in g T , G e id e r R J {2002) P hoto a cc lim atio n o f O ceans observed using the Fast R e p e d d o n R a te fluo ro m e te r. U n iv e rs ity o f w ith the m eas u rem e n t o f p rim a ry pro d u c tio n . M a r E co l P rog Ser 322: 5 1 —59. 28. Lew is M R , S m ith J G {1983) A S m all V o lu m e , S h o rt-In c u b a tio n -T im e M e th o d fo r M e a s u re m e n t o f Photosynthesis As A F u n c tio n o f In c id e n t Irra d ia n c e . M a r techniques. E u r J P hyc ol 43: 3 2 7 -3 4 4 . 24. M illig a n AJ, A p a ric io U A , B eh ren feld M J {2011) Fluorescence a n d n o n p h o to c hem ical q ue nch ing responses to sim ulate v ertic al m ix in g in the m a rin e d iato m re p etitio n rate flu o ro m e try a n d 14C m easurem ents. J P hyc ol 4 2 :5 1 —6 0. 23. L a n e y S R , L e te lie r R M , D esiderio R A , A b b o tt M R , K ie fe r D A , e t al. {2001) M e a s u rin g the n a tu ra l fluorescence o f p h y to p la n k to n cultures. J A tm o s O c e a n Ser 149: 2 1 5 -2 2 6 . 22. T in g C S , O w en s G {1994) T h e effects o f excess irrad ia n ce on photosynthesis in the m a rin e d ia to m Phaeodactylum tricornutum. P la n t Physiol 106: 763 —770. o f p h y to p la n k to n Sei 2 7 3 {15 9 6) 1 9 5 3 -1 9 6 0 . 17 March 2013 | Volume 8 | Issue 3 | e58137 Electron Requirement for Carbon Fixation 78. 79. W u Y , Peterson I K , T a n g C C L , P la tt T , S ath ye n d ra n ath S, et al. (2 0 07 ) T h e 86 . n itra te , phosphate, o r iro n starvadon. J P hycol 29: 7 5 5 —766. W u Y , P la tt T , T a n g C C L , S athye n d ra n ath S (2 0 08 ) R e g io n a l differences in the 87. Z h a i L , P la tt T , T a n g C , S ath ye n d ra n ath S, W a lls R H (2 0 11 ) P h ytoplank ton 68 8 3. 88 M illig a n o f P haeodactylum AJ, B ehren feld MJ tricornutum (2011). (B acillariop hyceae) Surplus to photosynthedc . 6 : e l8 7 5 3 . R y a n -K e o g h T J , M a c e y A I , G ackshutt A M , M o o r e M G , B ib b y T S (2 0 12 ) T h e N a p o lé o n C , C la q u in P (2 0 12 ) M u lti-p a r a m e tr ic relationships betw ee n P A M cyanobacteria! c h lo ro p h yll-b in d in g -p ro te in Is iA Acts to increase the in vivo m easurem ents a n d c arbon in c o rp o ratio n , an in situ a pproach. P LoS O N E 7: effective absorption cross section o f P S I u n d e r iro n lim ita tio n . J P hycol 48: 145— 154. Lon g h u rs t A R (1 9 98 ) E cological geograph y o f the sea. A c ad em ic Press, 3 98 p. 89. B o n n e t S, G u ieu C , B ru y a n t F , Prasil O , V a n W a m b e k e F e t al. (2 0 08 ) N u tr ie n t G ree n e R M , G e id e r RJ, Falkow ski P G L e v ita n O , Rosenberg G , Sedik I , Sedokova E , G r ig e lJ , e t al. (2 0 07 ) E levated CO 2 enhances n itrogen fix a tio n a n d grow th in the m a rin e c ya nobacterium Trichodesm ium . G lo b a l C h a n g e B io l 13: 5 3 1 —538. Biogeosciences 5: 2 1 5 -2 2 5 . 90. (1 9 91 ) E ffe c t o f iro n lim ita d o n on L e v ita n O , K r a n z S A , S pungin D , Prásil O , R o s t B , e t al. (2 0 10 ) C o m b in e d effects o f C O photosynthesis in a m a rin e d iato m . L im n o l O ce a n o g r 36: 1 77 2 —1782. 8 5. PS, P LoS O N E : 7 8 1 -7 9 1 . lim ita tio n o f p rim a ry p ro d u c tiv ity in the S outheast Pacific { B IO S O P E cruise). 8 4. S chrader apparatus a n tennae com plexes unde rlie diagnostics o f iro n lim ita d o n in a cyanobacterium . e 40 28 4 . 8 2. (1 9 93 ) Response o f the L a b ra d o r Shelves. J P la n k to n Res 29: 5 0 9 -5 1 4 . ph enology on the Scotian Shelf. IC E S J M a r Sei 8 1. G reene R M , O la iz o la M photosynthetic tim in g o f the spring b lo o m in the L a b ra d o r Sea. M a r E co l P rog Ser 355: 9—20. 8 0. G e id e r RJ, L a R o c h e J , im p a c t o f sea ice on the in itia tio n o f the spring b lo o m on the N e w fo u n d la n d and 2 a n d lig h t on the N 2 -fix in g cya n o b a cteriu m T ric h o d e s m iu m IM S 1 0 1 : A m echanistic view . P la n t Physiol 154: 3 4 6 -3 5 6 . G ree n e R M , G e id e r R J, K o lb e r Z , Falkow ski P G (1 9 9 2 ) Iro n -in d u c e d changes in lig h t harvesdng a n d photo ch e m ica l energy conversion processes in eukaryodc m a rin e algae. P la n t Physiol 100: 5 6 5 -5 7 5 . PLOS ONE I www.plosone.org 18 March 2013 | Volume 8 | Issue 3 | e58137
© Copyright 2026 Paperzz