SUPPLEMENT A. Field Sampling Thirty-one samples were collected from the summit region of Erebus volcano in December 2011 for surface exposure age determinations. Samples locations are listed by lava flow in Table A.1 and by sample ID in Table A.2. Areas that were sampled include each of the ten known post-collapse lava flows identified by Harpel et al. (2004), one lava flow pre-dating the older caldera collapse (referred to as the old pre-caldera lava flow), and one lava flow predating the younger caldera collapse (referred to as the young pre-caldera lava flow). Sample E11-12, located in the newly identified West flow, was thought to be in the Northwest flow at the time of collection. Samples E11-03 and E11-08 are lava bombs that were dated using 3He but not used in the interpretation or conclusions of this study. Table A.1. Sample locations listed by lava flow. Lava Flow or Feature Northeast lava flow Lower Hut lava flow Nausea Knob lava flow Tramways lava flow Northwest lava flow Lower Ice Tower Ridge lava flow Upper Ice Tower Ridge lava flow Southwest lava flow South lava flow Southeast lava flow West flow Old pre-caldera lava flow Young pre-caldera lava flow Lava bombs Samples E11-02, E11-26, E11-27 E11-01, E11-16, E11-17 E11-06, E11-18, E11-19 E11-07, E11-14, E11-15 E11-05, E11-13 E11-22, E11-25 E11-21, E11-23 E11-09, E11-20, E11-24 E11-10, E11-28 E11-11, E11-29, E11-30 E11-12 E11-31 E11-04 E11-03, E11-08 In order to collect samples whose exposure ages reflect lava flow emplacement ages as accurately as possible, sample locations within each flow were selected based on the following criteria: Rock is part of the lava flow and not a lava bomb. Rocks from flows and bombs can generally be distinguished by their densities and degree of vesiculation. Surface is planar and has a dip of less than 15 degrees. Surface is not shielded from cosmic rays by surrounding outcrops. Surface is elevated above the surrounding area (e.g., on top of a ridge or tumulus), such that the potential for past snow coverage of significant depth and duration is minimal. Minimal likelihood that the surface has shifted since emplacement of the flow. For this reason, large blocks that were obviously detached were avoided. Surface shows little evidence of erosion. Ideally, evidence of flow texture (such as pahoehoe ropes and folds in the surface) can be seen nearby. Sample is away from edges and large cracks in the rock. Visible pyroxene phenocrysts present. Not all criteria could be met for all of the sample locations. For the Southwest, South, and Upper Ice Tower Ridge flows and large areas of the Nausea Knob, Tramways, and Lower Ice Tower Ridge flows, it was especially difficult to find rock exposures that were elevated, flat, not eroded, and did not show evidence of surface shift. As the quality of the sample location decreases (based on the above characteristics), the likelihood that its exposure age is younger than its emplacement age increases. Each sample was collected from the top 5 cm of rock using a hammer and chisel and stored in a canvas bag. All samples consisted of multiple pieces of rock collected from a contiguous portion of the same surface. Sample masses ranged from 1 to 5 kg. The following information was recorded at each sample location during sample collection (see table B.2): GPS latitude, longitude, and elevation (measured using a handheld Garmin Oregon 300 GPS). Profile of the horizon. This was documented by standing or sitting at the sample location and measuring the azimuth (relative to True North) and inclination angle of high and low points along the horizon using a Brunton compass/clinometer. Surface dip and dip direction. Notes describing the sample area, surface texture, evidence of weathering and erosion, potential for past snow coverage, likelihood that the surface being sampled has shifted since eruption, and any nearby visible flow texture. Pictures documenting the sample location before and after sample collection (taken from north, east, south, and west) and the horizon in all directions (taken every 45 degrees). For each of the 10 post-caldera collapse lava flows sampled, one of the samples collected was from a location as close as possible to that of the sample dated for that flow by Harpel et al. (2004) or Kelly et al. (2008) using the 40Ar/39Ar technique. Additional samples were collected from different areas of the flow. Generally the sample collected near the Ar/Ar location was the one dated using both 36Cl and 3He, while the replicate samples were dated using only 3He. Samples from the older and younger pre-caldera lava flows were collected from locations as close to the edge of the collapse as possible while still having good cosmic ray exposure. Based on field observations, it is uncertain whether these samples have been exposed to cosmic rays since emplacement of their respective lava flows or if they were not exposed until collapse of the caldera. Two samples—E11-03 (Upper Hut Slump) and E11-08 (Upper Ice Tower Ridge flow)— were determined to be lava bombs shortly after sample collection. Field notes, clinopyroxene compositions, 3He concentrations, and exposure ages are reported for these samples in Supplements A through D but are left out of the Results and Discussion sections of this paper. Table A.2. Sample location data and field notes. Sample ID E11-01 E11-02 E11-03 E11-04 Horizon profile: Collection Azimuth & Inclination Collected by date/time (degrees) Az: 0, 45, 90, 135, 180, -77.508017 12/12/2011 Dave Parmelee Lower Hut 3,283 13 W 225, 270, 315 167.096200 18:55 Nels Iverson In: 0, 6, 9, 16, 7, 0, 0, 0 Notes: Sample is from a pahoehoe rope on top of a tumulus. Significant past snow coverage unlikely, surface shift unlikely. Some glassy patches are visible on surface, although most of surface is not glassy. Rock is very hard and very difficult to sample (breaks in small chips), not vesiculated. Anorthoclase crystals prominent on surface. Sparse pyroxene phenocrysts (<0.5 cm). Az: 0, 45, 110, 145, 180, -77.508667 215, 270, 280, 315, 325 12/13/2011 Northeast 3,360 2 SW Dave Parmelee 167.200433 In: 0, 0, 9, 11, 10, 14, 4, 0, 22:40 2, 0 Notes: Sample is from flat surface of a broad, low tumulus. Surface appears similar to Lower Hut flow, but with a bit more erosion and no patches of glassy texture. No ropes visible. Past snow coverage possible, surface shift possible but unlikely. Rock breaks easily and crumbles, inside is glassy and vesiculated w/ lots of yellow salts. Sparse pyroxene phenocrysts. Az: 0, 40, 80, 120, 160, -77.525117 12/14/2011 Dave Parmelee Lava bomb 3,617 7 NE 190 167.136117 13:40 Nels Iverson In: 0, 8, 26, 25, 22, 0 Notes: Location is within Upper Hut Slump. Sample location is on a low, eroded, rounded ridge extending north from door-end of Upper Hut. Most rock on ridge is broken and moveable, and most of area is covered with bombs. Significant erosion may have occurred. Cannot tell if sample location is part of a very large bomb. Rock is soft, easy to sample, inside is very vesiculated and more closely resembles bomb than flow. Az: 15, 30, 50, 70, 90, 110, 120, 160, 180, 195, Young Pre- -77.529833 12/14/2011 Dave Parmelee 3,473 5E 205, 220, 350 caldera 167.084450 16:12 Nels Iverson In: 7, 0, 5, 11, 11, 6.5, 7, 0, 5, 4, 8, 0, 0 Notes: Sample location is on top of exposed ridge near edge of eastern cliff. Minor nearby snow cover; light past snow coverage possible, but significant past snow coverage is very unlikely. Surface shift unlikely. Some erosion Lava flow Latitude/ Longitude Elevation (m) Surface dip (degrees) Sample ID E11-05 E11-06 E11-07 E11-08 Surface Horizon profile: Collection dip Azimuth & Inclination Collected by date/time (degrees) (degrees) evidenced by gravel in the area; some evidence of flow texture may be preserved. Rock is fairly hard, inside is only a little vesiculated and has lots of yellow salts. Az: 0, 45, 100, 120, 160, -77.520367 12/14/2011 Dave Parmelee Northwest 3,298 8W 180 167.079500 17:35 Nels Iverson In: 0, 4, 13, 13, 9, 0 Notes: Sample location is flat area near middle of an elongate tumulus sloping to the west. Semi-eroded ropes visible on south side. Minor coverage by windblown snow in area, past significant snow coverage possible but unlikely, surface shift unlikely. Surface is weathered gray with some yellow salts. Rock breaks fairly easily, inside is glassy with minor vesiculation. Small pyroxene phenocrysts visible. Nausea -77.519417 Az: 0, 80, 110, 160, 225 12/14/2011 3,502 3S Dave Parmelee Knob 167.140183 In: 0, 0, 16, 25, 0 22:26 Notes: Sample location is fragmented tumulus on N-facing slope. Fairly significant shielding to south. Significant past snow coverage unlikely; small possibility of surface shift. Surface has a greater degree of whitish-grayish alteration than flows sampled so far; no ropes visible in area. Inside of rock is vesiculated, with some yellow salts. Az: 40, 60, 80, 135, 160, -77.522200 12/15/2011 Tramways 3,534 0 210 Dave Parmelee 167.131333 22:58 In: 0, 11.5, 13.5, 17, 12, 0 Notes: Sample location is near top of the flow, ~0.1 mi from Ar/Ar sample location (confident that it is the same flow). Two rectangular pits at the sample location look like previous samples. Past significant snow coverage possible but unlikely, surface shift possible but unlikely. Surface is grayish-pinkish-yellowish, fairly weathered, no ropes visible in area. Rock breaks easily and crumbles, vesiculated inside, permeated by yellow salts. Anorthoclase crystals less prominent on surface than in previously-sampled flows. Az: 0, 50, 60, 100, 135, 160, 165, 200, 225, 270, -77.532217 12/16/2011 Dave Parmelee Lava bomb 3,556 5 NE 315 167.121100 18:00 Aaron Curtis In: 0, 15, 19, 4, 0, 0, 2, 2, 11, 11, 0 Notes: Location is within area of Upper Ice Tower Ridge flow. Sample area is heavily eroded, with few areas of flow exposure. Area is characterized by small hills of broken lava (cinder cones?). Sample location is near base Lava flow Latitude/ Longitude Elevation (m) Sample ID E11-09 E11-10 E11-11 E11-12 Surface Horizon profile: Collection dip Azimuth & Inclination Collected by date/time (degrees) (degrees) of one of these hills (SW of Western Crater). Location is eroded and may have been previously buried; past snow coverage likely, surface shift possible. No flow texture is apparent in area, and location is not definitely part of a flow (could be a very large bomb, possibly erupted from western or side crater). Weathering rind on surface is ~1 cm thick. Rock breaks easily, crumbles. Inside is fairly vesiculated, seems to be between typical bomb and typical flow. LATER: Returned to location, positively identified sample surface as part of a large bomb. Az: 0, 5, 30, 100, 285, -77.535250 320, 325, 355 12/17/2011 Dave Parmelee Southwest 3,544 5 ENE 167.134250 In: 23, 13, 20, 0, 0, 11, 2, 15:00 Nels Iverson 13 Notes: Sample area is eroded and has very few good flow exposures. Sample location is on a small, low outcrop with high likelihood of past snow coverage. Slope has southern exposure. Not definite that location is same flow as the Ar/Ar location; probable, but not definite, that the location is a flow feature. No flow texture preserved in vicinity. Surface has ~1 cm thick weathering rind. Rock breaks easily and crumbles, inside is vesiculated and has some yellow salts. Anorthoclase crystals very prominent on surface. -77.534000 Az: 0, 75, 280, 320 12/17/2011 South 3,653 7 SW Dave Parmelee 167.159667 In: 22, 0, 0, 17 16:25 Notes: Sample area is exposed broken outcrop on side of steep S-facing slope, significantly shielded to the N. Appears to be part of a ridge (flow levee?). Light past snow coverage possible, significant past snow coverage possible but not likely. Surface shift possible. Surface is weathered, gray, no flow texture preserved in vicinity. Rock is hard and brittle, little vesiculation inside, yellow salts inside. Anorthoclase crystals less prominent on surface compared to most other flows. -77.536633 Az: 0, 80, 270, 340, 350 12/17/2011 Southeast 3,502 11 S Dave Parmelee 167.175483 In: 20, 0, 0, 22, 22 19:50 Notes: Sample location is on a tumulus on a lava ridge on S-facing slope. Location is uphill from, but probably on same ridge as, Ar/Ar sample. Past snow coverage possible, surface shift unlikely. Surface is gray, some eroded flow texture may be visible. Rock breaks easily, inside is fairly vesiculated and heavily permeated by yellow salts. -77.524833 Az: 0, 110, 130, 160, 340 12/18/2011 West 3,199 6W Dave Parmelee 167.052717 In: 4, 17, 17, 0, 0 14:25 Notes: Sample area is on a tumulus with well-preserved flow structure, including a rope ~1 m S of sample Lava flow Latitude/ Longitude Elevation (m) Sample ID E11-13 E11-14 E11-15 E11-16 Surface Horizon profile: Collection dip Azimuth & Inclination Collected by date/time (degrees) (degrees) location. Other nearby tumuli have lots of well-preserved ropes. Flow appears young. Past snow coverage is possible but unlikely, surface shift unlikely. Surface is blackish-gray with yellow salts. Rock is hard but easy to sample, inside is fairly vesiculated, has some yellow salt. Pyroxene difficult to find. Az: 30, 90, 120, 135, 200, -77.524917 215, 225, 260, 270 12/18/2011 Dave Parmelee Northwest 3,436 8 NW 167.102667 In: 0, 17, 18, 14, 0, 5, 3, 16:20 Nels Iverson 16, 0 Notes: Sample location is on outcrop near head of the flow. Shielded by a higher portion of the ridge to the west. Past snow coverage possible, surface shift unlikely. Lots of gravel in sample area. Surface appears relatively fresh; grayer than E11-12. Inside is vesiculated, has yellow and white salts. Anorthoclase crystals prominent on surface. Pyroxene larger and more abundant than in E11-12. Az: 20, 70, 135, 195, 225, -77.515433 12/18/2011 Tramways 3,372 0 245 Dave Parmelee 167.110383 18:10 In: 0, 4, 15, 3, 4, 0 Notes: Sample location appears to be a large rope, possibly detached. All lava in area consists of large rubble, very difficult to find a good, stable exposure age location. Past snow coverage possible but not likely, surface shift very possible. Surface has weathered gray appearance. Rock breaks easily, inside fairly vesiculated. Anorthoclase crystals prominent on surface. Small pyroxenes. Az: 0, 5, 40, 45, 90, 120, -77.518950 12/19/2011 Tramways 3,453 0 140, 225 Dave Parmelee 167.124833 14:40 In: 0, 3, 8, 3, 11, 16, 19, 0 Notes: Sample location is a boulder or outcrop near top of a mound on the flow levee. Location is not ideal for exposure age (there are no good locations in this part of the flow). All lava along the levee and below is brecciated. To the NW two levees clearly bound a channel. Past snow coverage of the sample site in its current location is unlikely, but surface shift is very possible, as the block appears detached. Surface is gray with some orange alteration. Rock is very hard and brittle, difficult to sample; inside is not vesiculated, has some yellow salt. Anorthoclase crystals prominent on surface. Az: 30, 90, 110, 135, 180, -77.514850 12/19/2011 Lower Hut 3,285 5S 200, 350 Dave Parmelee 167.081250 18:55 In: 5, 13, 6, 13, 7, 0, 0 Lava flow Latitude/ Longitude Elevation (m) Sample ID E11-17 E11-18 E11-19 E11-20 Surface Horizon profile: Collection dip Azimuth & Inclination Collected by date/time (degrees) (degrees) Notes: Sample location is on a low, flat bulge. Surrounding area shows lots of flow texture, including ropes. Good location for exposure age sample. Past snow coverage possible, surface shift very unlikely. Surface is gray with a little orange alteration. Rock is hard (but not as hard as E11-01), inside is farily vesiculated, has some yellow salt. Anorthoclase crystals very prominent on surface. Pyroxene very small and sparse. -77.517300 Az: 90, 150, 165, 190, 225 12/19/2011 Lower Hut 3,488 0 Dave Parmelee 167.155433 In: 0, 11, 17, 15, 0 22:42 Notes: Sample area is in a large exposed portion of flow (tumulus?) that has cracked apart into large pieces. Good flow texture preserved nearby, including ropes. Past snow coverage possible but unlikely, surface shift very unlikely. Surface is gray and orange, texture is similar to E11-01 and E11-01. Rock is easy to sample, crumbles; inside is vesiculated, has some yellow salt. Anorthoclase crystals are prominent on surface, but slightly less so than E11-16. Pyroxenes slightly larger and more abundant than E11-16. Nausea -77.521183 Az: 85, 150, 180, 230, 240 12/20/2011 3,618 8 NW Dave Parmelee Knob 167.146200 In: 0, 15, 8, 2, 0 14:15 Notes: Sample area is on a steep N-facing slope; sample location is on a low bulge that drops steeply to the N. Rock appears fairly eroded, with lots of gravel in the area. Faint flow texture visible nearby. Past snow coverage unlikely, surface shift unlikely. Past coverage by other rock is possible. Surface is gray and orange, weathered. Rock is soft, easy to sample; inside is fairly vesiculated, has some yellow salt. Anorthoclase crystals less prominent on surface than in Lower Hut flow samples. Pyroxene more abundant than in Lower Hut flow samples. Az: 5, 25, 50, 110, 160, Nausea -77.516233 12/20/2011 3,396 0 185, 270 Dave Parmelee Knob 167.130633 16:45 In: 0, 10, 6, 12, 17, 13, 0 Notes: Sample area characterized by scattered loose outcrops, which area heavily weathered and have lots of gravel. Sample location is on only outcrop with a flat surface. Outcrop may be detached, therefore surface shift is very possible. Side of outcrop shows eroded flow texutre, but in wrong orientation. Past snow coverage is unlikely in current orientation. Surface appears weathered. Rock is hard and brittle, however most of sample is from a surface flake that was easy to detach. Inside is not very vesiculated, has some yellow salts. Anorthoclase phenocrysts appear smaller and possibly less abundant here than in other flows, they are worn almost flat at the surface (i.e. not prominent). Pyroxene is small but visible. -77.538350 Az: 5, 20, 60, 100, 270, 12/23/2011 Dave Parmelee Southwest 3,447 5E 167.133217 280 11:25 Nels Iverson Lava flow Latitude/ Longitude Elevation (m) Sample ID E11-21 E11-22 E11-23 Horizon profile: Collection Azimuth & Inclination Collected by date/time (degrees) In: 14, 19, 12, 0, 0, 4 Notes: Sample area is on a tumulus on south-facing slope. Very nice flow exposure. Light snow covering on much of tumulus, so significant past snow coverage is possible. Surface shift is unlikely. Surface is dark with a little yellow salt, inside of rock is vesiculated. Anorthoclase crystals prominent. Pyroxenes are small and medium size, moderately abundant. Az: 320, 350, 5, 20, 40, Upper Ice -77.535633 65, 75, 95, 120 12/23/2011 Dave Parmelee Tower 3,510 5S 167.113550 In: 0, 7, 12, 11, 10, 14, 16, 12:55 Nels Iverson Ridge 5, 0 Notes: Sample area is in a somewhat exposed flow area lightly covered in freshly-blown snow. Flow texture, including ropes, is visible in the vicinity. Past snow coverage possible, surface shift unlikely (sample area connects to exposures with ropes). Sample "outcrop" is very small and low-lying and is shielded by its higher end (to the NE). Surface is dark, a little yellow salt, same color as Southwest flow. Rock is hard, brittle, difficult to sample; inside is somewhat vesiculated (vesicles are flat). Anorthoclase crystals slightly smaller and less prominent than those in Southwest flow. Pyroxene medium size, relatively abundant. Az: 0, 40, 60, 70, 110, Lower Ice -77.532967 150, 160, 180, 190, 200 12/23/2011 Dave Parmelee Tower 3,526 7 NE 167.107650 In: 0, 7, 14, 11, 5, 0, 7, 0, 14:30 Nels Iverson Ridge 6, 0 Notes: Sample area is on N side of Ice Tower Ridge. In line with a series of outcrops. Unsure whether it is in the upper or lower flow, but source appears to be cinder cone above sample site and to the east. Outcrop is low and small, past snow coverage possible, surface shift possible but not likely. Possible faint flow features are visible in an adjacent low outcrop to the west. Surface is dark, rock fairly soft and easy to sample, inside vesiculated. Pyroxene relatively abundant. Az: 0, 30, 50, 60, 90, 120, Upper Ice -77.534283 290, 330, 350, 355 12/23/2011 Dave Parmelee Tower 3,535 6E 167.116400 In: 4, 13, 15, 16, 3, 0, 0, 15:30 Nels Iverson Ridge 10, 4, 10 Notes: Sample area is in middle of a rubbly flow field on large chunk of rock sloping to the east. Surface appears to be eroded surface of flow. May be detached; slope indicates that surface shift is likely. Rock has light snow Lava flow Latitude/ Longitude Elevation (m) Surface dip (degrees) Sample ID E11-24 E11-25 E11-26 E11-27 Surface Horizon profile: Collection dip Azimuth & Inclination Collected by date/time (degrees) (degrees) coverage. Heavier snow coverage in past is possible but not very likely (based on current orientation). Rock is not too hard, not vesiculated. Anorthoclase crystals are prominent on the surface. Pyroxene not very abundant. Az: 10, 30, 45, 80, 100, -77.533933 280, 285, 320, 335 12/23/2011 Dave Parmelee Southwest 3,558 15 E 167.129233 In: 9, 20, 22, 4, 0, 0, 3, 6, 17:35 Nels Iverson 4 Notes: Sample area is sloping slab of rock near head of flow. More likely part of the Southwest flow (vent could be crater to NE beneath ice towers) than Upper Ice Tower Ridge flow. Past snow coverage possible, surface shift fairly unlikely. In line with similar exposures to N and S. Surface is weathered and cracked, shows no flow texture. Rock is soft, crumbly, and very vesiculated. Anorthoclase crystals fairly prominent on the surface. Pyroxene hard to find. Az: 35, 70, 90, 130, 165, Lower Ice -77.534867 175, 305, 315, 330, 345 12/23/2011 Dave Parmelee Tower 3,465 0 167.094983 In: 10, 12, 7, 5, 3, 0, 0, 3, 19:00 Nels Iverson Ridge 0, 2 Notes: Sample area is on a large, low tumulus. Good location for exposure age sample. Surface looks relatively fresh, dark, unweathered. Flow texture, including ropes (slightly eroded), is visible nearby. Past snow coverage possible, surface shift very unlikely. Glass on surface is dull, has a "fibrous" appearance. Rock somewhat hard, fairly vesiculated inside, easy to sample. Anorthoclase crystals prominent on surface. Pyroxene relatively abundant. -77.516167 Az: 95, 120, 195, 215, 280 12/25/2011 Northeast 3,453 5 SW Dave Parmelee 167.212850 In: 0, 3, 9, 12, 0 13:50 Notes: Sample area is a low rounded exposure (tumulus?). Good location for exposure age sample. Past snow coverage possible, surface shift very unlikely. Exposures to north (towards crater rim) appear to be same flow. Little flow texture has been preserved, however surface appears uneroded. Rock is hard, moderately difficult to sample, little vesiculation inside. Anorthoclase crystals are prominent on the surface. Pyroxenes crystals are moderately large and abundant. Az: 10, 180, 195, 200, -77.523367 12/25/2011 Northeast 3,538 5 SE 225, 250, 280, 315, 345 Dave Parmelee 167.204933 15:50 In: 0, 0, 2, 5, 12, 14, 7, 8, Lava flow Latitude/ Longitude Elevation (m) Sample ID E11-28 E11-29 E11-30 Lava flow Latitude/ Longitude Elevation (m) Surface dip (degrees) Horizon profile: Azimuth & Inclination (degrees) Collection date/time Collected by 3 Notes: Sample area is on a bulging outcrop in area of lots of exposed rock (flow). Past snow coverage is possible, surface shift unlikely. Eroded flow texture, including ropes, is visible on nearby outcrops. Surface is slightly more weathered than E11-26. Rock not too hard, fairly easy to sample; inside is flaky and a little vesiculated; large hollow area under one part of sample. Anorthoclase crystals slightly less prominent than E1126. Pyroxene smaller and less abundant than E11-26. Az: 260, 280, 330, 355, -77.534017 12/26/2011 Dave Parmelee South 3,633 0 40, 70 167.164717 16:15 Tehnuka Ilanko In: 0, 10, 19, 18, 7, 0 Notes: Sample area is on a small outcrop in a small area of lava flow exposure. Outcrop is low to the ground, and past coverage by snow or bombs is possible (area is not great for exposure age sample, but is one of only 2 exposures of the South lava flow). Surface shift is possible. Eroded ropes visible in multiple locations on nearby exposures. Most of the sample consists of a single bulge (rope?) from a small outcrop. Surface is gray; rock is hard and brittle with little vesiculation inside. Anorthoclase crystals not prominent on surface. Pyroxenes are small, moderately abundant. Az: 230, 240, 245, 255, 290, 310, 330, 340, 10, -77.532650 12/27/2011 Dave Parmelee Southeast 3,519 5S 25, 55, 65 167.194367 15:00 Nels Iverson In: 0, 5, 2, 11, 16, 21, 11, 8, 4, 9, 1, 0 Notes: Outcrop is a low bulge in an area of exposed lava where the slope steepens downhill. Some flow texture, such as eroded ropes, visible in nearby outcrops. Past snow coverage fairly unlikely, surface shift unlikely. Surface dips in all directions. Surface fairly weathered, grayish-brownish-yellowish, rock is hard and somewhat difficult to sample, a little vesiculated inside. Anorthoclase crystals not prominent on surface. Pyroxenes are moderately size and moderately abundant. Az: 255, 295, 310, 325, -77.533483 335, 10, 40, 55, 90 12/28/2011 Dave Parmelee Southeast 3,458 7 SE 167.210867 In: 0, 12, 16, 14, 9, 7, 8, 7, 19:55 Nels Iverson 0 Notes: Sample area is on low bulging outcrop at a change in slope angle (steeper downhill). Good location for Sample ID E11-31 Surface Horizon profile: Collection dip Azimuth & Inclination Collected by date/time (degrees) (degrees) exposure age sample. Past snow coverage unlikely, surface shift unlikely. Ropes visible on nearby outcrops. There are other good flow exposures in the area, however it is difficult to tell where Southeast flow ends and Northeast flow begins. Rock is somewhat hard, not too difficult to sample, inside is vesiculated. Surface is a light grayish-tannish color. Anorthoclase crystals large and prominent on surface. Visible pyroxene present but not abundant. Az: 30, 50, 120, 150, 170, 180, 195, 210, 225, 265, Old Pre-77.505367 12/29/2011 3,365 10 N 285 Dave Parmelee caldera 167.178500 13:50 In: 0, 10, 14, 6, 12, 12, 8, 3, 3, 4, 0 Notes: Sample is located on a small outcrop that appears to be a fixed, eroded portion of lava flow. Outcrop correlates well with other outcrops in area that also appear to be lava flow. Outcrop is "hollow" underneath. Past snow coverage very unlikely, surface shift very possible. Significant erosion evidenced by exfoliation visible on the surface. Surface is light gray, rock is hard, somewhat difficult to sample. Anorthoclase crystals are worn, not prominent. Pyroxene is abundant (more abundant here than in any other sample). Lava flow Latitude/ Longitude Elevation (m) Latitude, longitude, and elevation were measured using a handheld Garmin Oregon 300 GPS unit. Azimuth (Az) and inclination (In) of high and low points defining the skyline around the sample location were measured using a Brunton compass and clinometer. All azimuth angles are measured relative to true north, and all inclination angles are measured relative to a horizontal line extending from the sample location toward the horizon. The direction of true north was determined using the handheld GPS. The measurements are listed such that the inclination values are in the same order as their corresponding azimuths. For example, if Az = 0, 45 and In = 0, 6, then the horizon at an azimuth of 0° from the sample has an inclination of 0°, and the horizon at an azimuth of 45° has an inclination of 6°. SUPPLEMENT B. Sample characterization B.1. Sample thickness and bulk density Before each whole rock sample was crushed, its thickness was measured. Each sample consisted of multiple pieces of rock from the same surface. The average thickness of the all pieces composing a sample was estimated using a ruler and is considered accurate to ± 0.25 cm. All samples have an average thickness of less than 4 cm. Sample thicknesses are shown in Table 1 (samples E11-03 and E11-08, which are excluded from Table 1, have thicknesses of 3.75 cm and 4 cm, respectively). The bulk density of each sample was measured using rock that was collected from the same surface as the sample but was not crushed for analysis. A piece of rock was selected and weighed. The rock was dipped in hot wax to seal vesicles and then submerged in water in a 1 L graduated cylinder to determine its volume. Measurements were made using the largest piece of rock available that would fit in the graduated cylinder. If there was no piece of rock available that was large enough to have a bulk density representative of the sample then multiple smaller pieces were used. The measured bulk densities are considered accurate to ± 0.2 g/cm3. Sample bulk densities are shown in Table 1 (samples E11-03 and E11-08, which are excluded from Table 1, have bulk densities of 1.7 g/cm3 and 1.2 g/cm3, respectively). B.2. Clinopyroxene and olivine analyses Major element oxide concentrations were measured in all clinopyroxene and olivine separates prepared for 3He analysis (Tables B.1 and B.2). Measurements were made at the New Mexico Bureau of Geology and Mineral Resources using a Cameca SX-100 electron microprobe. A 1 μm beam was used at 20 nA and 15 kV. Detailed analytical conditions are shown in Tables B.3 and B.4. Total Fe is reported as FeO and listed as FeO*. The materials used as primary calibration standards, analyzed approximately once per week, are shown in Table B.5. Diopside and olivine standards were run immediately before and after each set of sample analyses to monitor calibration accuracy and inter-run reproducibility; measured and accepted values of these are shown in Table B.6. For each sample, 4-8 grains were analyzed with 2-4 points per grain. Points were measured in the core, rim, and intermediate sections of grains in each sample. Backscattered electron (BSE) imaging of the grains showed that they are heavily included by apatite, magnetite, glass, and olivine. Inclusions composed approximately 1-10% of the grains by volume. Inclusion content was variable between grains but fairly consistent between samples. In all samples, there did not appear to be any compositional zoning of the clinopyroxene or olivine in BSE images. Overall, the clinopyroxene and olivine grains are geochemically nearly identical between samples. However, clinopyroxenes from the older samples (E11-04, E11-12, and E11-31) can be distinguished by slight differences from the post-caldera flows in TiO2, Al2O3, FeO, MnO, and MgO. For instance, clinopyroxenes from the West (E11-12) and Young Pre-caldera (E11-04) flows are clearly distinct from the post-caldera flows on a plot of Na2O vs. FeO (Figure B.1), supporting the conclusion that the area in which sample E11-12 was collected is not part of the Northwest flow as it was originally mapped. B.3. Whole rock analyses Whole-rock major and trace-element analyses were done for each 36Cl sample (Table B.7). Powdered whole-rock samples were sent to SGS Mineral Services in Toronto, Canada for analysis. No effort was made to remove weathered or altered surface material from the sample prior to crushing and analysis. Major-element oxide concentrations were measured using X-ray fluorescence spectrometry (XRF). Trace elements and some major elements were measured using inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). B.4. Anorthoclase analyses Major-element oxide concentrations were measured in anorthoclase separates for each 36 Cl sample (Table B.8). Powdered anorthoclase samples sent to the Department of Geological Sciences at Michigan State University for XRF analysis using the analytical techniques described in Rooney et al. (2012). Measured and accepted values for calibration standards are shown in Table B.9. Table B.1. Electron microprobe analyses of clinopyroxene in the 3He samples. Major-element oxide concentrations are given in wt%. The grain number and position of each analysis (C=core, I=intermediate, R=rim) is given under “Grain.” Pyroxene end-members wollastonite (Wo; Ca2Si2O6), enstatite (En; Mg2Si2O6), and ferrosilite (Fs; Fe2Si2O6) are given in %. Sample Pt E11-01 Grain SiO2 TiO2 Al2O3 FeO* MnO MgO CaO Na2O Total Wo En Fs 1 1I 2 1R 3 2I 4 2I 13 2I 5 3C 6 3I 7 4C 8 4I 9 5I 10 5I 11 6I 12 6R 14 7I 15 7C 16 8I 17 8I 18 9I 19 9C Average 50.05 50.25 49.88 50.10 50.34 51.03 50.85 50.96 50.99 50.41 51.12 50.86 50.30 51.55 50.45 50.65 51.09 51.18 50.85 50.68 1.52 1.55 1.50 1.55 1.46 1.17 1.25 1.26 1.23 1.47 1.30 1.31 1.55 1.11 1.55 1.38 1.27 1.26 1.15 1.36 3.11 3.01 3.20 3.54 3.15 2.38 2.92 2.61 2.73 3.32 3.02 2.88 3.20 2.39 2.86 2.84 2.68 2.43 2.52 2.88 9.56 9.63 9.60 9.82 9.83 9.42 9.86 9.50 9.60 9.86 9.81 9.64 9.84 9.57 9.82 9.42 9.65 9.29 9.54 9.65 0.61 0.63 0.66 0.69 0.63 0.63 0.68 0.69 0.61 0.63 0.64 0.59 0.65 0.59 0.61 0.60 0.62 0.60 0.62 0.63 11.90 12.00 11.91 11.56 11.92 12.11 11.88 12.11 12.25 11.74 12.06 12.12 11.86 12.40 11.66 12.01 12.14 12.39 12.27 12.02 21.61 21.35 21.10 21.01 21.32 21.83 20.71 21.20 21.36 20.97 20.68 21.25 21.14 21.52 21.80 21.62 21.28 21.67 21.44 21.31 0.92 0.87 1.00 1.13 0.95 0.83 1.05 0.84 0.93 1.10 1.07 0.94 0.99 0.94 0.81 0.89 0.91 0.78 0.90 0.94 99.28 99.31 98.84 99.40 99.64 99.40 99.25 99.17 99.71 99.50 99.73 99.59 99.56 100.08 99.55 99.41 99.62 99.61 99.28 99.47 47.4 46.9 46.7 46.9 46.8 47.4 46.1 46.6 46.5 46.6 45.8 46.6 46.6 46.5 47.7 47.3 46.6 46.9 46.7 46.8 36.3 36.6 36.7 35.9 36.4 36.6 36.8 37.1 37.1 36.3 37.2 36.9 36.4 37.3 35.5 36.6 37.0 37.3 37.1 36.7 16.4 16.5 16.6 17.1 16.8 16.0 17.1 16.3 16.3 17.1 17.0 16.5 17.0 16.1 16.8 16.1 16.5 15.7 16.2 16.5 E11-02 1 1C 2 1I 3 2R 4 2I 5 3I 6 3I 7 4I 8 4I 9 5I 10 5C 11 6I 12 6C 13 7C 14 7I 15 8I 16 8C 17 9I 18 9I Average 51.16 50.76 51.14 50.88 51.04 50.98 51.02 50.97 50.35 50.29 51.08 51.09 51.06 50.91 51.29 50.90 50.94 50.58 50.91 1.20 1.28 1.11 1.20 1.33 1.26 1.30 1.21 1.64 1.52 1.23 1.19 1.20 1.11 1.17 1.27 1.23 1.38 1.27 2.75 2.70 2.47 2.83 2.71 2.97 2.77 2.64 3.50 3.45 2.57 2.60 2.58 2.58 2.35 2.60 2.59 3.18 2.77 9.97 9.96 9.83 9.87 9.60 9.84 9.68 9.58 10.04 10.01 9.74 9.67 10.09 10.17 10.11 10.21 9.56 9.82 9.88 0.67 0.62 0.67 0.64 0.55 0.65 0.65 0.61 0.59 0.61 0.66 0.66 0.73 0.69 0.66 0.70 0.62 0.63 0.65 11.86 11.98 12.06 11.97 12.07 12.14 12.04 12.14 11.42 11.44 12.02 12.00 11.89 11.83 11.78 11.80 12.14 11.74 11.91 20.91 21.23 21.37 21.10 21.59 20.80 21.18 21.23 20.88 20.87 21.36 21.72 21.29 20.99 21.59 21.26 21.45 20.98 21.21 1.04 1.01 0.86 0.98 0.87 1.07 0.92 0.92 1.15 1.07 0.94 0.85 0.99 0.97 0.84 0.97 0.85 1.11 0.97 99.56 99.55 99.51 99.47 99.76 99.71 99.56 99.31 99.58 99.29 99.61 99.76 99.82 99.24 99.79 99.71 99.39 99.42 99.56 46.3 46.5 46.6 46.4 47.1 45.9 46.6 46.6 46.8 46.8 46.7 47.2 46.6 46.2 47.1 46.6 46.8 46.6 46.6 36.5 36.5 36.6 36.6 36.6 37.2 36.8 37.0 35.6 35.7 36.6 36.3 36.2 36.3 35.7 36.0 36.9 36.3 36.4 17.2 17.0 16.7 16.9 16.3 16.9 16.6 16.4 17.6 17.5 16.6 16.4 17.2 17.5 17.2 17.5 16.3 17.0 16.9 E11-03 1 1I 2 1C 3 2I 4 2I 5 3R 6 3C 7 4C 8 4I Average 50.83 50.60 50.44 50.16 50.70 50.39 50.22 51.79 50.64 1.29 1.28 1.40 1.43 1.32 1.28 1.40 1.06 1.31 2.67 2.87 3.06 3.21 3.14 2.72 2.82 2.22 2.84 9.20 9.56 9.29 9.78 10.06 9.56 9.39 9.51 9.54 0.56 0.60 0.67 0.62 0.62 0.63 0.64 0.67 0.63 12.04 11.92 11.98 11.89 11.63 11.95 11.85 12.29 11.94 21.13 20.93 21.01 21.03 20.54 21.26 21.33 21.64 21.11 0.90 1.00 0.91 1.04 1.17 0.89 0.86 0.84 0.95 98.62 98.75 98.76 99.15 99.16 98.67 98.50 100.02 98.95 46.9 46.5 46.8 46.5 46.1 46.9 47.3 46.9 46.7 37.2 36.9 37.1 36.6 36.3 36.7 36.5 37.0 36.8 15.9 16.6 16.1 16.9 17.6 16.4 16.2 16.1 16.5 E11-04 1 2 3 4 5 51.04 51.08 51.37 51.16 50.79 1.19 1.03 1.00 1.02 1.21 2.51 2.37 2.25 2.23 2.64 11.03 10.89 10.84 10.81 11.14 0.72 0.75 0.78 0.84 0.76 11.34 11.44 11.55 11.45 11.41 20.96 20.67 20.97 21.04 20.62 1.00 1.04 0.96 0.99 0.99 99.81 99.25 99.75 99.53 99.56 46.2 45.9 46.1 46.3 45.6 34.8 35.3 35.3 35.1 35.1 19.0 18.8 18.6 18.6 19.2 1I 1I 2I 2I 3I Sample Pt Grain 8 3I 6 4I 7 4C 9 5I 10 5I 11 6I 12 6I 13 7I 14 7I Average SiO2 51.04 51.65 51.33 51.09 50.94 51.36 51.61 51.23 51.22 51.21 TiO2 1.07 1.09 1.20 1.16 1.17 1.03 0.97 1.21 1.01 1.10 Al2O3 2.59 2.31 2.39 2.24 2.59 1.81 2.06 2.60 2.13 2.34 FeO* 11.00 10.99 10.71 10.67 10.67 10.52 10.89 11.07 10.71 10.85 MnO 0.70 0.79 0.72 0.71 0.80 0.73 0.72 0.69 0.78 0.75 MgO 11.29 11.44 11.42 11.65 11.70 11.94 11.69 11.30 11.41 11.50 CaO 20.96 20.62 21.13 21.33 20.46 21.59 20.91 20.34 20.92 20.89 Na2O 1.02 1.11 0.93 0.84 1.02 0.78 0.88 1.06 1.06 0.98 Total 99.67 100.00 99.85 99.70 99.34 99.77 99.74 99.53 99.23 99.62 Wo 46.3 45.7 46.6 46.5 45.4 46.5 45.8 45.5 46.3 46.1 En 34.7 35.3 35.0 35.3 36.1 35.8 35.6 35.2 35.2 35.3 Fs 19.0 19.0 18.4 18.2 18.5 17.7 18.6 19.3 18.5 18.7 E11-05 1 1I 2 1I 3 2I 4 2C 5 3I 6 3C 7 4I 9 5R 10 5I 11 6C 12 6C 13 7I 14 7C 15 8I 16 8C 17 9R 18 9C Average 50.73 51.06 50.93 50.43 50.48 51.06 51.36 51.14 51.14 50.98 50.55 50.42 50.48 51.39 51.34 50.73 51.12 50.90 1.37 1.29 1.33 1.48 1.41 1.26 1.22 1.28 1.22 1.25 1.53 1.61 1.44 0.97 1.03 1.36 1.29 1.31 2.94 2.74 2.95 3.31 3.21 2.85 2.56 2.57 2.59 2.47 3.24 3.40 3.10 2.17 2.20 2.82 2.61 2.81 9.51 9.47 9.69 9.30 9.47 9.93 9.39 9.29 9.36 9.04 9.60 9.66 9.71 10.00 9.98 9.72 9.43 9.56 0.58 0.67 0.64 0.61 0.60 0.65 0.65 0.64 0.66 0.54 0.65 0.63 0.64 0.72 0.69 0.64 0.67 0.64 12.01 12.22 12.04 11.90 11.77 11.91 12.21 12.43 12.21 12.24 11.75 11.47 11.93 11.83 11.89 11.99 12.22 12.00 21.19 21.29 20.92 21.16 21.15 20.80 21.26 21.73 21.10 21.76 21.08 21.22 21.18 21.41 21.31 20.91 21.12 21.21 0.98 0.92 1.07 0.93 0.99 1.09 0.89 0.79 0.92 0.79 1.01 0.97 0.96 0.85 0.91 1.01 0.99 0.95 99.31 99.66 99.56 99.12 99.07 99.55 99.55 99.86 99.22 99.06 99.40 99.38 99.44 99.34 99.38 99.21 99.47 99.39 46.8 46.6 46.3 47.0 47.1 46.1 46.7 47.0 46.5 47.5 46.9 47.4 46.7 46.9 46.7 46.3 46.4 46.8 36.9 37.2 37.0 36.8 36.4 36.7 37.3 37.4 37.4 37.1 36.4 35.7 36.6 36.0 36.2 36.9 37.4 36.8 16.4 16.2 16.7 16.1 16.5 17.2 16.1 15.7 16.1 15.4 16.7 16.9 16.7 17.1 17.1 16.8 16.2 16.5 E11-06 1 1I 2 1C 3 1I 4 1R 5 2C 6 2R 7 2I 8 3I 9 3C 10 4C 11 4I 12 5I 13 5C 14 6I 15 6I Average 50.68 51.17 50.95 49.97 51.47 51.17 51.08 51.09 51.28 50.56 50.04 51.07 51.00 50.97 50.49 50.87 1.31 1.17 1.29 1.61 1.06 1.18 1.08 1.34 1.16 1.42 1.59 1.30 1.32 1.38 1.51 1.31 3.05 2.63 2.59 3.70 2.04 2.42 2.46 2.93 2.32 3.02 3.35 2.86 2.74 3.12 3.22 2.83 9.72 9.48 9.41 9.77 9.79 9.93 9.66 9.59 9.25 9.65 9.65 9.67 9.32 9.91 9.38 9.61 0.63 0.61 0.62 0.60 0.71 0.71 0.70 0.59 0.60 0.60 0.60 0.58 0.61 0.56 0.59 0.62 11.96 12.05 12.37 11.53 12.18 11.90 12.04 11.99 12.48 12.03 11.77 11.99 12.24 11.81 11.94 12.02 20.66 20.98 21.59 20.64 21.48 21.29 21.26 21.04 21.58 21.04 21.20 20.95 21.29 20.84 21.31 21.14 1.04 0.94 0.80 1.17 0.79 0.96 0.93 0.93 0.77 0.90 0.97 0.99 0.85 1.14 0.93 0.94 99.05 99.02 99.63 98.99 99.52 99.57 99.23 99.51 99.44 99.23 99.19 99.43 99.38 99.77 99.39 99.36 46.0 46.5 46.8 46.6 46.6 46.7 46.7 46.5 46.8 46.4 47.0 46.4 46.7 46.3 47.1 46.6 37.1 37.1 37.3 36.2 36.8 36.3 36.8 36.9 37.6 36.9 36.3 36.9 37.4 36.5 36.7 36.9 16.9 16.4 15.9 17.2 16.6 17.0 16.6 16.6 15.6 16.6 16.7 16.7 16.0 17.2 16.2 16.5 E11-07 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 51.09 50.87 50.13 50.07 51.04 50.92 50.32 50.74 50.80 50.88 50.62 50.67 50.67 50.78 50.92 1.28 1.37 1.50 1.61 1.19 1.18 1.25 1.35 1.34 1.30 1.44 1.37 1.29 1.38 1.28 3.28 2.91 3.13 3.24 2.38 2.62 2.74 3.07 3.35 2.98 3.04 2.57 2.47 2.94 2.57 9.66 9.50 9.82 9.68 9.31 9.60 9.44 9.69 9.62 9.67 9.45 9.09 9.06 9.47 8.99 0.61 0.63 0.61 0.58 0.62 0.66 0.67 0.59 0.62 0.60 0.62 0.61 0.59 0.64 0.59 12.02 12.06 11.92 11.86 12.42 12.27 12.06 12.06 11.89 11.96 12.02 12.31 12.41 12.04 12.49 21.05 21.20 21.22 21.19 21.48 21.05 21.12 20.91 20.62 20.95 20.88 21.81 21.81 21.16 21.92 1.04 0.94 0.93 0.96 0.87 0.98 0.95 0.95 1.10 1.01 1.04 0.73 0.79 0.97 0.76 100.06 99.51 99.27 99.21 99.32 99.30 98.54 99.37 99.35 99.37 99.11 99.17 99.10 99.38 99.50 46.5 46.7 46.7 46.8 46.7 46.2 46.7 46.2 46.2 46.4 46.4 47.4 47.3 46.7 47.3 36.9 37.0 36.5 36.5 37.5 37.4 37.1 37.1 37.0 36.9 37.2 37.2 37.4 37.0 37.5 16.6 16.3 16.9 16.7 15.8 16.4 16.3 16.7 16.8 16.7 16.4 15.4 15.3 16.3 15.1 1C 1I 2I 2I 3C 3I 3R 4C 4R 5I 5C 6R 6I 6C 6C Sample Pt Grain Average SiO2 50.70 TiO2 1.34 Al2O3 2.89 FeO* 9.47 MnO 0.62 MgO 12.12 CaO 21.22 Na2O 0.93 Total 99.30 Wo 46.7 En 37.1 Fs 16.2 E11-08 1 1C 2 1I 3 1I 4 1R 5 2R 6 2I 7 2C 8 3I 9 3I 10 4I 12 5C 13 5I 14 6I 15 6I Average 50.46 50.93 50.76 50.32 50.68 51.35 51.29 51.27 51.15 51.11 51.27 50.80 50.83 50.73 50.93 1.39 1.36 1.49 1.51 1.40 1.24 1.35 1.20 1.27 1.12 1.23 1.27 1.26 1.40 1.32 3.31 2.78 2.95 3.39 3.18 2.69 2.88 2.57 2.59 2.52 2.60 2.81 2.58 2.74 2.83 9.56 9.50 9.52 9.72 9.50 9.53 9.73 9.44 9.40 9.79 9.51 9.63 9.34 9.42 9.54 0.63 0.65 0.58 0.67 0.60 0.56 0.66 0.61 0.65 0.63 0.61 0.65 0.65 0.66 0.63 12.20 12.19 11.85 11.64 11.96 12.24 12.19 12.24 12.24 11.97 12.27 11.97 12.23 12.06 12.09 20.91 21.37 21.18 20.59 20.99 21.21 21.01 21.56 21.37 21.33 21.27 21.01 21.41 21.39 21.19 0.97 0.91 0.89 1.13 0.99 0.94 1.00 0.88 0.88 0.93 0.91 1.06 0.88 0.81 0.94 99.44 99.69 99.22 98.99 99.30 99.77 100.12 99.80 99.58 99.39 99.67 99.20 99.20 99.24 99.47 46.1 46.7 47.0 46.4 46.6 46.4 46.1 46.9 46.7 46.8 46.5 46.5 46.8 47.0 46.6 37.4 37.1 36.6 36.5 36.9 37.3 37.2 37.1 37.2 36.5 37.3 36.9 37.2 36.9 37.0 16.5 16.2 16.5 17.1 16.5 16.3 16.7 16.0 16.0 16.7 16.2 16.6 15.9 16.2 16.4 E11-09 1 1C 2 1I 3 2C 4 2I 5 3R 6 3I 7 3C 8 4I 9 4C 10 5I 11 5C 12 6R 13 6I 14 6C 15 6I Average 50.58 50.69 50.58 49.69 51.34 50.96 51.31 50.13 50.54 50.72 50.82 50.20 50.47 48.38 50.59 50.47 1.44 1.29 1.45 1.83 1.17 1.31 1.19 1.63 1.52 1.32 1.20 1.51 1.35 2.12 1.43 1.45 2.89 2.63 3.22 3.87 2.67 2.57 2.67 3.77 3.31 3.15 2.54 3.13 3.04 5.28 3.08 3.19 9.02 8.85 9.40 9.52 9.15 8.85 9.15 9.54 9.40 9.42 9.29 9.30 9.25 9.40 9.51 9.27 0.62 0.60 0.62 0.63 0.59 0.54 0.59 0.68 0.62 0.62 0.57 0.56 0.63 0.50 0.61 0.60 11.93 12.37 11.87 11.48 12.18 12.30 12.19 11.48 11.94 11.92 12.24 11.81 11.84 11.35 11.88 11.92 21.36 21.56 21.00 20.67 21.15 21.77 21.12 20.29 20.75 20.54 21.06 20.89 20.95 20.48 20.80 20.96 0.93 0.78 1.06 1.16 0.96 0.82 0.93 1.17 1.06 1.08 0.89 0.99 1.05 1.19 0.96 1.00 98.77 98.79 99.20 98.87 99.22 99.12 99.14 98.73 99.15 98.77 98.64 98.41 98.59 98.73 98.87 98.87 47.5 47.2 46.8 46.9 46.8 47.5 46.7 46.4 46.4 46.2 46.4 46.9 46.9 47.0 46.5 46.8 36.9 37.7 36.8 36.2 37.4 37.4 37.5 36.5 37.2 37.3 37.6 36.8 36.9 36.2 36.9 37.0 15.7 15.1 16.4 16.9 15.8 15.1 15.8 17.0 16.4 16.5 16.0 16.3 16.2 16.8 16.6 16.2 E11-10 1 1C 2 1I 3 2I 4 2C 5 3R 6 3I 7 3I 8 3C 9 4C 10 4I 11 5I 12 5I 13 6R 14 6I 15 6C Average 50.90 51.24 51.46 51.33 52.29 51.39 50.93 51.19 50.96 51.19 50.66 51.10 51.38 50.79 50.72 51.17 1.12 1.07 1.09 1.10 1.04 1.14 1.17 1.24 1.20 1.18 1.28 1.20 1.10 1.38 1.25 1.17 2.64 2.32 2.44 2.61 2.28 2.53 2.70 2.84 2.89 2.67 2.57 2.55 2.45 2.92 2.70 2.61 10.02 10.12 10.05 9.75 9.57 10.04 10.03 10.02 10.14 10.11 9.77 9.98 9.72 10.03 10.31 9.98 0.65 0.75 0.69 0.73 0.67 0.75 0.68 0.66 0.67 0.75 0.70 0.68 0.70 0.69 0.72 0.70 11.83 11.94 11.99 12.06 12.63 12.00 11.95 11.93 11.67 11.94 11.85 11.76 12.23 11.63 11.63 11.94 20.92 20.99 21.09 21.00 21.29 20.96 20.80 20.79 20.49 20.75 21.31 21.25 21.29 20.79 20.98 20.98 1.05 1.01 1.01 1.02 0.84 1.00 1.02 1.07 1.20 1.09 0.81 0.94 0.95 1.01 1.06 1.01 99.17 99.48 99.81 99.62 100.61 99.81 99.30 99.73 99.22 99.68 98.96 99.45 99.83 99.23 99.37 99.55 46.3 46.1 46.2 46.3 45.9 46.1 46.0 46.0 45.9 45.9 46.9 46.8 46.4 46.4 46.4 46.2 36.4 36.5 36.6 37.0 37.9 36.7 36.7 36.7 36.4 36.7 36.3 36.0 37.1 36.1 35.8 36.6 17.3 17.4 17.2 16.8 16.1 17.2 17.3 17.3 17.7 17.4 16.8 17.2 16.5 17.5 17.8 17.2 E11-11 1 2 3 4 5 6 7 8 9 10 11 50.70 50.05 51.29 50.95 50.38 51.06 51.30 50.59 51.15 51.32 51.75 1.28 1.54 1.14 1.19 1.46 1.17 1.17 1.22 1.14 1.13 1.05 2.79 3.50 2.27 2.59 3.35 2.60 2.35 2.77 2.63 2.41 1.95 9.66 9.53 9.15 8.98 9.80 9.66 9.49 9.89 9.97 9.91 9.59 0.63 0.61 0.70 0.61 0.71 0.61 0.70 0.64 0.64 0.70 0.67 11.88 11.75 12.33 12.31 11.53 11.99 12.29 11.72 11.96 12.02 12.31 20.96 20.94 21.73 21.61 20.70 21.32 21.45 21.01 20.79 21.10 21.60 0.96 1.01 0.79 0.76 1.19 0.93 0.84 0.99 1.02 0.93 0.84 98.86 98.94 99.42 99.00 99.11 99.36 99.58 98.84 99.31 99.53 99.77 46.5 46.8 47.2 47.2 46.6 46.8 46.7 46.7 46.0 46.3 46.7 36.7 36.5 37.3 37.4 36.1 36.6 37.2 36.2 36.8 36.7 37.1 16.8 16.6 15.5 15.3 17.2 16.6 16.1 17.1 17.2 17.0 16.2 1R 1I 1I 1C 2R 2I 2C 3I 3C 4C 4R Sample Pt Grain 12 5C 13 5I 14 6I 15 6I Average SiO2 50.94 51.11 51.02 51.29 50.99 TiO2 1.25 1.19 1.19 1.16 1.22 Al2O3 2.71 3.04 2.59 2.44 2.67 FeO* 10.10 10.19 9.63 9.83 9.69 MnO 0.66 0.73 0.59 0.63 0.66 MgO 11.56 11.75 11.78 12.05 11.95 CaO 20.80 20.52 21.39 21.13 21.14 Na2O 0.99 1.03 0.84 0.92 0.94 Total 99.04 99.56 99.05 99.47 99.26 Wo 46.5 45.8 47.2 46.4 46.6 En 35.9 36.5 36.2 36.8 36.7 Fs 17.6 17.7 16.6 16.8 16.7 E11-12 1 1I 2 1R 3 1C 4 1I 5 2C 6 2C 7 2R 8 3I 9 3I 10 4I 11 4C 12 5I 13 5I 14 6I 15 6C Average 51.36 51.05 51.55 51.44 51.36 51.54 50.27 50.87 50.86 51.19 51.23 51.12 51.75 51.52 50.92 51.20 0.96 1.02 1.01 0.98 0.96 0.98 1.11 1.07 1.25 1.07 1.11 1.03 0.94 0.98 1.13 1.04 2.27 2.43 1.87 2.18 2.10 2.06 2.47 2.47 2.65 2.28 2.59 2.41 2.23 2.20 2.49 2.31 10.70 10.61 10.38 10.68 10.66 10.41 10.72 10.73 10.75 10.10 10.30 10.36 10.16 10.08 10.43 10.47 0.71 0.69 0.64 0.74 0.74 0.68 0.67 0.66 0.72 0.66 0.65 0.73 0.69 0.63 0.69 0.69 11.52 11.57 12.01 11.70 11.52 11.68 11.15 11.57 11.63 11.77 11.51 11.67 11.75 11.84 11.40 11.62 20.81 20.81 21.46 21.04 20.97 21.21 21.12 20.64 20.66 21.14 20.82 20.83 21.38 21.35 21.04 21.02 0.99 1.04 0.83 1.01 0.95 0.86 0.94 1.07 1.05 0.92 1.07 0.98 0.89 0.89 0.94 0.96 99.34 99.25 99.75 99.77 99.27 99.42 98.45 99.07 99.57 99.14 99.26 99.14 99.81 99.50 99.04 99.32 46.1 46.0 46.4 46.1 46.3 46.5 46.9 45.8 45.7 46.6 46.4 46.1 46.8 46.7 46.7 46.3 35.5 35.6 36.1 35.7 35.4 35.6 34.5 35.7 35.8 36.1 35.7 35.9 35.8 36.0 35.2 35.6 18.5 18.3 17.5 18.3 18.4 17.8 18.6 18.6 18.5 17.4 17.9 17.9 17.4 17.2 18.1 18.0 E11-13 1 1C 2 1R 3 2R 4 2I 5 3C 6 3I 7 4I 8 4R Average 51.46 50.77 51.80 51.52 51.21 51.50 51.17 50.79 51.28 1.31 1.48 1.08 1.30 1.38 1.29 1.47 1.61 1.37 2.45 3.18 2.46 2.66 3.13 2.52 3.02 3.57 2.87 9.68 9.93 10.28 10.11 9.99 9.30 9.66 9.77 9.84 0.68 0.62 0.67 0.66 0.61 0.58 0.64 0.64 0.64 12.04 11.60 11.93 11.80 11.98 12.38 12.04 11.80 11.95 21.65 21.25 20.97 21.28 20.88 21.57 21.46 20.88 21.24 0.80 0.97 0.96 0.92 1.09 0.78 0.89 1.09 0.94 100.06 99.80 100.15 100.23 100.27 99.93 100.36 100.14 100.12 47.1 47.1 46.0 46.7 46.1 46.8 46.9 46.5 46.7 36.4 35.7 36.4 36.0 36.7 37.4 36.6 36.6 36.5 16.4 17.2 17.6 17.3 17.2 15.8 16.5 17.0 16.9 E11-14 1 1C 2 1I 3 2I 4 2C 5 3I 6 3C 7 4R 8 4C Average 50.83 51.09 51.02 50.31 51.11 51.64 50.72 50.88 50.95 1.51 1.37 1.34 1.62 1.31 1.19 1.52 1.18 1.38 3.25 2.79 3.13 3.81 2.90 2.38 3.31 2.62 3.02 9.74 9.23 9.91 9.93 9.52 9.58 9.52 10.06 9.69 0.68 0.66 0.63 0.57 0.64 0.60 0.63 0.66 0.63 11.85 12.22 11.84 11.69 12.03 12.40 11.96 11.82 11.98 20.93 21.60 20.75 20.64 21.28 21.41 21.09 21.05 21.09 1.06 0.82 1.05 1.11 0.93 0.86 0.93 0.92 0.96 99.85 99.78 99.67 99.68 99.71 100.06 99.67 99.19 99.70 46.5 47.2 46.2 46.2 46.8 46.4 46.7 46.4 46.6 36.6 37.1 36.6 36.4 36.8 37.4 36.9 36.3 36.8 16.9 15.7 17.2 17.4 16.3 16.2 16.4 17.3 16.7 E11-15 1 1R 2 1I 3 2I 4 2I 5 3I 6 3C 7 4C 8 4I Average 48.42 50.23 50.07 49.59 50.54 50.95 50.38 50.51 50.09 1.79 1.43 1.67 1.40 1.30 1.23 1.14 1.31 1.41 4.54 3.15 2.89 2.90 2.92 2.49 2.58 2.71 3.02 9.68 9.48 9.19 9.62 9.67 9.52 10.23 9.75 9.64 0.56 0.63 0.56 0.57 0.59 0.60 0.70 0.62 0.60 11.68 11.89 12.12 12.00 12.07 12.41 11.55 11.79 11.94 20.43 20.96 21.56 21.18 20.94 21.25 20.70 21.24 21.03 1.08 0.98 0.87 0.96 0.97 0.82 1.06 0.92 0.96 98.18 98.75 98.93 98.21 98.99 99.26 98.35 98.86 98.69 46.2 46.7 47.3 46.7 46.3 46.3 46.2 46.9 46.6 36.7 36.8 37.0 36.8 37.1 37.6 35.9 36.3 36.8 17.1 16.5 15.7 16.5 16.7 16.2 17.8 16.8 16.7 E11-16 1 1C 2 1I 3 2R 4 2I 5 3I 6 3I 7 4I 8 4C Average 50.96 51.30 51.16 51.10 48.99 50.36 51.01 51.04 50.74 1.11 1.25 1.23 1.20 1.98 1.46 1.17 1.27 1.33 2.69 2.94 2.74 2.57 4.37 3.21 2.72 2.72 3.00 10.02 10.15 10.05 10.02 9.54 9.69 9.92 9.77 9.90 0.71 0.62 0.63 0.64 0.60 0.64 0.64 0.67 0.64 11.89 12.04 11.78 11.84 11.49 11.89 11.84 12.18 11.87 20.77 20.57 21.08 21.17 20.65 21.17 21.02 21.36 20.97 0.98 1.14 0.97 0.97 1.13 1.02 1.02 0.85 1.01 99.13 100.01 99.64 99.49 98.75 99.44 99.35 99.86 99.46 46.0 45.5 46.5 46.6 46.8 46.7 46.5 46.5 46.4 36.6 37.0 36.2 36.2 36.3 36.5 36.4 36.9 36.5 17.3 17.5 17.3 17.2 16.9 16.7 17.1 16.6 17.1 E11-17 1 51.05 1.30 2.75 9.63 0.63 12.01 21.15 0.99 99.50 46.6 36.8 16.6 1R Sample Pt Grain 2 1C 3 2I 4 2R 5 3R 6 3C 7 4I 8 4C Average SiO2 50.75 50.53 50.08 50.91 51.42 51.35 51.12 50.90 TiO2 1.65 1.44 1.52 1.22 1.11 1.20 1.18 1.33 Al2O3 3.16 3.25 3.38 2.79 2.26 2.45 2.28 2.79 FeO* 9.36 9.90 9.77 9.73 9.58 9.41 9.19 9.57 MnO 0.56 0.64 0.63 0.66 0.63 0.60 0.57 0.62 MgO 11.99 11.81 11.66 12.03 12.35 12.43 12.42 12.09 CaO 21.25 20.94 20.88 20.95 21.67 21.75 21.66 21.28 Na2O 0.87 1.04 1.07 1.01 0.81 0.73 0.71 0.90 Total 99.58 99.54 99.00 99.29 99.84 99.93 99.12 99.48 Wo 47.0 46.4 46.7 46.3 46.8 46.9 47.0 46.7 En 36.9 36.4 36.3 37.0 37.1 37.3 37.5 36.9 Fs 16.2 17.1 17.1 16.8 16.1 15.8 15.6 16.4 E11-18 1 1C 2 1C 3 2I 4 2I 5 3I 6 3R 7 3I 8 3C 9 4C 10 4I 11 5I 12 5I 13 5C 14 6I 15 6R Average 50.87 51.24 50.65 50.58 51.07 50.65 51.42 50.66 51.52 51.00 51.40 50.52 50.22 50.65 50.32 50.85 1.30 1.20 1.22 1.32 1.30 1.25 1.22 1.26 1.19 1.31 1.18 1.26 1.28 1.43 1.43 1.28 2.89 2.83 2.75 3.00 2.77 2.84 2.68 2.84 2.39 2.98 2.42 2.81 2.86 2.79 3.10 2.80 9.45 9.57 9.30 9.33 9.53 9.63 9.65 9.43 9.22 9.62 9.48 9.54 9.40 9.45 9.70 9.49 0.60 0.64 0.61 0.62 0.61 0.67 0.65 0.64 0.61 0.68 0.66 0.59 0.58 0.62 0.58 0.62 12.01 12.10 11.92 11.71 12.20 11.95 12.16 12.01 12.52 12.02 12.37 11.96 12.20 12.02 11.88 12.07 21.01 20.78 21.04 21.08 20.80 20.88 21.06 20.92 21.57 21.10 21.18 20.88 21.15 21.21 21.00 21.04 0.91 0.97 0.87 1.01 1.00 0.93 0.98 0.92 0.79 1.05 0.89 1.03 0.92 0.85 0.99 0.94 99.06 99.33 98.37 98.65 99.30 98.79 99.82 98.68 99.82 99.76 99.57 98.59 98.61 99.05 99.01 99.09 46.6 46.1 46.9 47.2 46.0 46.4 46.3 46.5 46.7 46.5 46.3 46.4 46.5 46.8 46.6 46.5 37.1 37.3 37.0 36.5 37.5 36.9 37.2 37.1 37.7 36.9 37.6 37.0 37.3 36.9 36.6 37.1 16.4 16.6 16.2 16.3 16.5 16.7 16.5 16.4 15.6 16.6 16.2 16.6 16.1 16.3 16.8 16.4 E11-19 1 1R 2 1C 3 2C 4 2R 5 3C 6 3R 7 4I 8 4C Average 50.76 50.48 51.35 51.15 51.14 51.19 51.18 51.37 51.08 1.54 1.38 1.35 1.31 1.27 1.18 1.23 1.18 1.31 3.47 3.16 3.04 2.97 2.98 2.71 2.63 2.52 2.94 10.01 9.68 9.94 9.80 9.70 9.57 9.52 9.53 9.72 0.64 0.69 0.71 0.67 0.63 0.55 0.63 0.57 0.64 11.65 11.92 11.91 11.93 11.96 12.19 11.98 12.16 11.96 20.99 21.11 20.69 20.85 20.90 21.65 21.26 21.49 21.12 1.14 1.03 1.10 1.05 1.01 0.89 0.89 0.88 1.00 100.21 99.45 100.08 99.72 99.58 99.92 99.32 99.70 99.75 46.6 46.7 46.0 46.2 46.3 47.0 46.9 46.9 46.6 36.0 36.6 36.8 36.8 36.9 36.8 36.8 36.9 36.7 17.4 16.7 17.2 17.0 16.8 16.2 16.4 16.2 16.7 E11-20 1 1C 2 1I 3 2C 5 3C 6 3R 7 4C 8 4I Average 51.12 50.74 51.10 50.74 51.51 50.84 51.03 51.01 1.44 1.46 1.23 1.38 1.25 1.38 1.24 1.34 2.91 3.34 2.87 3.12 2.74 2.80 2.90 2.95 9.25 9.78 9.77 9.76 9.59 9.47 9.94 9.65 0.51 0.58 0.62 0.58 0.63 0.64 0.62 0.60 12.19 11.79 12.07 11.91 12.08 12.20 12.05 12.04 21.81 21.25 21.22 20.91 21.41 21.59 21.07 21.32 0.81 1.06 1.00 1.05 0.99 0.88 1.02 0.97 100.03 100.01 99.87 99.45 100.19 99.79 99.88 99.89 47.4 46.9 46.5 46.4 46.9 47.0 46.2 46.76 36.9 36.2 36.8 36.7 36.8 36.9 36.8 36.73 15.7 16.9 16.7 16.9 16.4 16.1 17.0 16.5 E11-21 1 1I 2 1C 3 2I 4 2C 5 3C 6 3R 7 4I 8 4I Average 50.98 50.63 51.01 51.13 51.41 51.58 51.94 51.85 51.32 1.42 1.33 1.42 1.27 1.13 1.17 1.09 1.13 1.25 2.79 2.83 2.85 2.85 2.28 2.46 2.24 2.47 2.60 10.22 10.01 9.81 9.95 9.99 10.30 9.86 9.82 10.00 0.64 0.67 0.56 0.67 0.67 0.73 0.67 0.72 0.67 11.90 11.77 12.17 11.87 12.15 11.98 12.22 12.04 12.01 21.27 21.23 21.55 21.02 21.58 21.28 21.45 21.39 21.35 0.94 0.92 0.87 1.11 0.85 0.98 0.88 0.95 0.94 100.15 99.40 100.25 99.87 100.05 100.48 100.35 100.36 100.11 46.4 46.8 46.7 46.4 46.6 46.3 46.5 46.7 46.6 36.1 36.0 36.7 36.5 36.5 36.2 36.8 36.6 36.4 17.4 17.2 16.6 17.1 16.8 17.5 16.7 16.7 17.0 E11-22 1 1I 2 1I 3 2I 4 2C 5 3I 6 3R 7 4I 8 4I Average 51.12 51.71 50.76 51.06 51.41 51.10 51.09 51.80 51.26 1.31 1.05 1.35 1.15 1.13 1.10 1.25 1.04 1.17 2.87 2.00 2.83 2.41 2.22 2.32 2.84 2.46 2.49 10.28 9.90 10.22 9.99 10.14 9.92 9.76 9.91 10.02 0.72 0.72 0.70 0.64 0.72 0.67 0.64 0.64 0.68 11.65 12.33 11.66 12.08 12.14 12.08 11.91 12.09 11.99 21.02 21.51 21.09 21.26 21.21 21.52 21.25 21.41 21.28 1.00 0.87 0.98 0.89 0.89 0.83 0.92 0.99 0.92 99.97 100.09 99.57 99.49 99.86 99.55 99.66 100.33 99.82 46.5 46.4 46.6 46.3 46.1 46.7 46.8 46.6 46.5 35.8 37.0 35.8 36.7 36.7 36.5 36.5 36.6 36.5 17.7 16.7 17.6 17.0 17.2 16.8 16.8 16.8 17.1 Sample Pt E11-23 Grain SiO2 TiO2 Al2O3 FeO* MnO MgO CaO Na2O Total Wo En Fs 1 1C 2 1I 3 2I 4 2R 5 3I 6 3I 7 3R 8 4I 9 4C 11 5I 12 5R 13 6I 14 6I Average 50.92 51.16 51.12 50.91 50.51 51.12 50.07 50.91 50.86 51.36 50.62 50.48 51.34 50.88 1.08 1.16 1.06 1.31 1.19 1.18 1.19 1.25 1.24 1.21 1.08 1.35 1.03 1.18 2.24 2.32 2.23 2.85 2.57 2.49 2.42 2.95 2.93 2.57 2.35 2.80 2.25 2.54 9.59 9.36 9.36 9.51 9.60 9.67 9.39 10.04 9.92 9.32 9.19 9.84 9.85 9.59 0.69 0.61 0.59 0.63 0.70 0.63 0.64 0.65 0.69 0.66 0.69 0.66 0.70 0.66 12.06 12.00 12.14 11.85 11.74 11.85 11.90 11.60 11.70 12.19 12.11 11.76 11.98 11.91 21.28 21.56 21.39 20.90 21.04 21.08 21.16 20.61 20.40 21.21 21.49 21.20 21.17 21.11 0.89 0.79 0.84 1.01 1.01 0.95 0.83 1.14 1.10 0.97 0.82 0.96 0.88 0.94 98.77 98.97 98.74 98.97 98.39 98.99 97.60 99.20 98.83 99.51 98.36 99.04 99.20 98.81 46.7 47.3 46.9 46.6 46.9 46.7 47.0 46.2 45.9 46.7 47.2 46.9 46.5 46.7 36.8 36.6 37.0 36.8 36.4 36.6 36.8 36.2 36.6 37.3 37.0 36.2 36.6 36.7 16.4 16.0 16.0 16.6 16.7 16.7 16.3 17.6 17.4 16.0 15.8 17.0 16.9 16.6 E11-24 1 1C 2 1I 3 1R 4 2C 5 2I 7 3I 8 3I 9 4I 10 5R 11 5I 12 5I 13 5C 14 6C 15 6I Average 50.16 50.16 50.46 50.80 50.57 50.35 50.91 51.27 51.09 50.52 50.58 50.52 51.28 50.59 50.66 1.48 1.39 1.43 1.25 1.35 1.47 1.36 1.24 1.25 1.42 1.46 1.47 1.22 1.43 1.37 3.12 3.00 2.87 2.57 2.63 3.24 2.78 2.66 2.88 3.48 3.24 2.84 2.75 3.07 2.94 9.27 9.39 8.97 9.14 8.82 9.31 9.11 9.22 9.40 9.36 9.21 8.84 9.27 9.18 9.18 0.61 0.58 0.61 0.53 0.58 0.61 0.60 0.64 0.65 0.58 0.63 0.55 0.61 0.54 0.59 11.76 11.86 11.96 12.23 12.17 11.79 12.12 12.10 11.84 12.08 11.82 12.27 11.94 11.83 11.98 20.84 21.04 21.32 21.33 21.56 20.75 21.46 20.99 20.74 20.32 20.76 21.30 21.20 21.21 21.06 1.05 0.96 0.92 0.82 0.76 1.00 0.86 0.93 1.01 1.08 1.14 0.85 0.96 0.96 0.95 98.30 98.38 98.54 98.68 98.44 98.50 99.21 99.10 98.86 98.83 98.85 98.64 99.23 98.82 98.74 46.9 46.9 47.4 46.9 47.5 46.7 47.2 46.6 46.6 45.7 46.8 47.1 47.1 47.3 46.9 36.8 36.8 37.0 37.4 37.3 36.9 37.1 37.4 37.0 37.8 37.0 37.7 36.9 36.7 37.1 16.3 16.3 15.6 15.7 15.2 16.4 15.6 16.0 16.5 16.4 16.2 15.2 16.1 16.0 16.0 E11-25 1 1C 2 1I 3 2C 4 2I 6 3C 7 3R 8 3C 9 4I 10 4I 11 5C 12 5I 13 6R 14 6I Average 51.14 50.88 50.95 50.84 50.91 50.65 51.32 50.96 50.94 51.19 51.04 50.49 51.21 50.96 1.20 1.26 1.27 1.27 1.20 1.29 1.05 1.23 1.19 1.11 1.12 1.36 1.15 1.21 2.43 2.80 2.88 2.86 2.65 2.89 2.46 2.92 2.70 2.41 2.56 2.85 2.41 2.68 9.50 9.78 9.75 9.67 9.60 9.39 9.48 9.92 9.66 9.66 9.82 9.22 9.23 9.59 0.63 0.69 0.65 0.67 0.69 0.58 0.62 0.66 0.66 0.69 0.64 0.63 0.67 0.65 11.95 11.72 11.65 11.58 11.90 11.85 11.99 11.71 11.80 11.86 11.91 11.95 12.13 11.85 21.34 20.94 20.83 20.84 21.01 20.97 21.28 20.76 21.18 20.95 21.11 21.14 21.39 21.06 0.83 0.99 1.02 1.01 0.98 1.00 0.88 1.11 0.93 0.90 0.97 0.92 0.89 0.96 99.06 99.06 99.01 98.77 98.94 98.64 99.12 99.28 99.07 98.79 99.17 98.58 99.08 98.97 47.0 46.7 46.7 46.8 46.6 46.8 46.9 46.3 46.9 46.6 46.6 47.0 47.0 46.8 36.6 36.3 36.3 36.2 36.7 36.8 36.8 36.4 36.4 36.7 36.5 37.0 37.1 36.6 16.3 17.0 17.0 17.0 16.6 16.4 16.3 17.3 16.7 16.8 16.9 16.0 15.8 16.6 E11-26 1 1I 2 1C 3 2I 4 2C 5 3C 6 3I 7 4I 8 4I Average 50.72 50.10 50.82 50.51 51.36 50.19 50.03 50.15 50.49 1.28 1.43 1.31 1.37 1.22 1.43 1.65 1.54 1.40 2.92 3.17 3.09 3.28 2.82 3.02 3.32 3.16 3.10 10.11 10.22 10.02 9.88 10.17 9.92 10.08 10.13 10.07 0.67 0.62 0.60 0.57 0.66 0.60 0.64 0.58 0.62 11.69 11.56 11.92 11.74 11.80 11.78 11.52 11.74 11.72 20.93 20.94 20.74 20.81 20.89 21.06 21.08 21.10 20.94 1.05 1.04 1.09 1.12 1.05 0.94 1.00 1.04 1.04 99.37 99.07 99.59 99.28 99.95 98.93 99.32 99.43 99.37 46.4 46.5 46.0 46.4 46.2 46.6 46.9 46.5 46.4 36.1 35.7 36.7 36.4 36.3 36.3 35.6 36.0 36.1 17.5 17.7 17.3 17.2 17.5 17.1 17.5 17.4 17.4 E11-27 1 2 3 4 5 6 7 50.25 50.14 51.19 50.13 50.63 50.55 51.12 1.60 1.47 1.18 1.60 1.34 1.44 1.12 3.60 3.35 2.75 3.68 3.05 3.12 2.36 10.12 10.26 9.93 9.90 9.80 9.84 9.90 0.64 0.58 0.62 0.65 0.63 0.61 0.68 11.47 11.53 12.07 11.42 11.89 11.81 12.09 20.60 20.93 21.08 20.65 20.93 21.17 21.28 1.18 1.10 1.01 1.14 1.00 0.93 0.97 99.45 99.35 99.82 99.15 99.27 99.46 99.52 46.3 46.5 46.2 46.7 46.4 46.7 46.4 35.9 35.7 36.8 35.9 36.7 36.3 36.7 17.8 17.8 17.0 17.5 17.0 17.0 16.9 1I 1C 2I 2C 3I 3C 4C Sample Pt Grain 8 4I Average SiO2 50.44 50.56 TiO2 1.35 1.39 Al2O3 2.86 3.10 FeO* 9.97 9.97 MnO 0.65 0.63 MgO 11.69 11.75 CaO 21.40 21.01 Na2O 0.89 1.03 Total 99.25 99.41 Wo 47.1 46.5 En 35.8 36.2 Fs 17.1 17.3 E11-28 1 1I 2 1I 3 2I 4 2I 5 3I 6 3C 7 4I 8 4I Average 51.44 50.94 51.54 50.72 51.25 51.33 51.16 51.26 51.21 1.01 1.38 1.04 1.17 1.26 1.03 1.13 1.11 1.14 1.96 2.67 2.20 2.39 2.74 2.43 2.67 2.32 2.42 9.53 9.81 9.87 9.78 10.04 9.98 10.29 10.03 9.92 0.64 0.72 0.69 0.68 0.68 0.63 0.70 0.65 0.67 12.35 11.83 12.23 12.11 11.80 12.21 11.79 11.96 12.04 22.04 21.55 21.58 21.56 20.86 21.14 20.78 21.07 21.32 0.68 0.87 0.91 0.80 0.96 0.90 0.99 0.92 0.88 99.66 99.77 100.04 99.21 99.59 99.64 99.51 99.33 99.59 47.2 47.2 46.6 46.8 46.2 46.0 46.0 46.3 46.5 36.8 36.0 36.7 36.6 36.4 37.0 36.3 36.5 36.5 15.9 16.8 16.6 16.6 17.4 17.0 17.8 17.2 16.9 E11-29 1 1C 2 1C 3 2C 4 2I 5 3R 6 3C 7 4C 8 4I Average 50.85 51.19 50.58 51.14 51.32 51.14 50.80 51.19 51.03 1.08 1.10 1.28 1.15 1.25 1.15 1.13 1.34 1.19 2.44 2.43 2.87 2.44 2.82 2.29 2.67 2.78 2.59 9.83 9.73 9.90 9.76 9.90 9.87 9.88 10.19 9.88 0.64 0.65 0.63 0.67 0.70 0.70 0.59 0.67 0.66 11.94 11.95 11.79 12.04 11.85 12.02 11.88 11.62 11.89 21.28 21.00 21.06 21.14 20.98 21.32 21.25 20.96 21.12 0.90 0.93 1.02 0.99 1.03 0.88 0.99 1.00 0.97 98.96 98.97 99.13 99.34 99.85 99.36 99.18 99.74 99.32 46.7 46.4 46.6 46.5 46.4 46.6 46.7 46.5 46.6 36.5 36.8 36.3 36.8 36.5 36.6 36.3 35.9 36.5 16.8 16.8 17.1 16.7 17.1 16.8 17.0 17.6 17.0 E11-30 1 1C 2 1R 3 2I 4 2C 5 3I 6 3I 7 4I 8 4C Average 50.17 50.55 50.86 50.17 50.74 51.32 51.57 51.01 50.80 1.38 1.20 1.25 1.55 1.34 1.08 1.08 1.25 1.27 3.03 2.69 2.70 3.83 3.23 2.31 2.44 2.72 2.87 10.08 9.84 9.86 9.76 9.75 9.81 9.42 9.65 9.77 0.60 0.66 0.64 0.63 0.59 0.67 0.64 0.57 0.63 11.69 11.86 11.97 12.09 11.82 12.06 12.34 12.09 11.99 21.08 21.24 20.98 20.36 20.74 21.47 21.02 21.26 21.02 0.94 0.94 0.96 1.01 1.11 0.84 0.85 0.80 0.93 98.98 98.97 99.23 99.40 99.32 99.55 99.35 99.34 99.27 46.6 46.8 46.3 45.4 46.3 46.8 46.2 46.6 46.4 36.0 36.3 36.7 37.6 36.7 36.5 37.7 36.9 36.8 17.4 16.9 17.0 17.0 17.0 16.7 16.1 16.5 16.8 E11-31 1 1C 2 1C 3 2I 4 2C 5 3C 6 3C 7 4I 8 4R Average 50.33 50.17 50.78 50.37 50.37 50.28 51.14 50.96 50.55 1.45 1.59 1.34 1.47 1.43 1.39 1.25 1.33 1.41 3.29 3.38 2.66 2.84 3.04 3.01 2.66 2.94 2.98 9.34 9.31 8.91 9.04 9.48 9.28 9.34 9.04 9.22 0.62 0.51 0.50 0.53 0.58 0.58 0.57 0.54 0.55 12.13 11.96 12.69 12.46 12.22 12.20 12.38 12.46 12.31 20.72 20.81 21.64 21.25 20.75 20.99 21.14 21.17 21.06 1.04 0.97 0.76 0.79 1.02 1.01 0.97 0.88 0.93 98.92 98.69 99.26 98.75 98.88 98.74 99.44 99.33 99.00 46.2 46.5 46.8 46.6 46.0 46.4 46.3 46.5 46.4 37.6 37.2 38.2 38.0 37.6 37.5 37.7 38.0 37.7 16.2 16.2 15.0 15.5 16.4 16.0 16.0 15.5 15.9 *Total Fe reported as FeO. Table B.2. Electron microprobe analyses of olivine in the 3He samples. Major-element oxide concentrations are given in wt%. The grain number and position of each analysis (C=core, I=intermediate, R=rim) is given under “Grain.” Olivine end-members forsterite (Fo; Mg2SiO4), fayalite (Fa; Fe2SiO4), and Tephroite (Te; Mn2SiO4) are given in %. Sample SiO2 TiO2 FeO* MnO MgO CaO Total Fo Fa Te 2 1I 34.85 3 2C 34.64 4 2C 34.47 5 3I 34.62 6 3I 34.84 7 4I 34.54 8 4C 34.66 9 5I 34.46 10 5I 34.66 11 6I 34.57 12 6C 34.46 13 7I 34.55 14 7I 34.47 15 8I 34.77 16 8C 34.47 Average 34.60 E11-05 1 1I 34.94 4 1I 34.79 2 2C 34.88 3 2C 35.16 5 3I 34.79 6 3C 34.77 7 4I 37.45 8 4I 34.58 9 5I 34.93 10 5I 34.65 11 6I 34.70 12 6C 34.84 13 7I 34.73 14 7I 34.56 15 8C 34.80 16 8I 34.93 Average 34.97 E11-31 1 1C 35.79 2 1I 35.21 3 2I 35.31 4 2I 35.12 5 3C 34.99 6 3I 35.21 7 4I 35.05 8 4I 35.34 Average 35.25 *Total Fe reported as FeO. 0.01 0.06 0.06 0.01 0.02 0.03 0.04 0.06 0.06 0.04 0.03 0.07 0.03 0.05 0.07 0.04 0.04 0.05 0.05 0.02 0.00 0.03 0.08 0.04 0.05 0.06 0.03 0.05 0.06 0.07 0.04 0.07 0.05 0.053 0.054 0.03 0.058 0.055 0.041 0.057 0.08 0.05 39.30 38.86 39.16 38.15 38.33 39.27 39.43 39.16 39.54 38.42 38.80 38.81 38.76 38.16 38.58 38.85 37.71 38.68 38.45 37.95 38.30 38.76 40.54 38.22 37.82 38.46 38.31 38.52 38.25 38.79 38.49 38.38 38.48 36.40 36.49 36.17 36.53 36.22 36.40 36.17 36.15 36.32 2.13 2.20 2.12 2.14 2.18 2.04 2.14 2.14 2.07 2.21 2.14 2.07 2.08 2.12 2.12 2.13 2.05 2.14 2.12 2.08 2.10 2.15 2.26 2.08 2.11 2.12 2.05 2.06 2.14 2.11 2.19 2.21 2.12 1.72 1.71 1.82 1.72 1.66 1.77 1.70 1.73 1.73 24.18 24.33 24.30 24.53 24.76 24.36 24.25 24.08 24.16 24.36 24.44 24.32 24.60 24.73 25.01 24.43 24.72 24.89 24.71 24.64 24.53 24.70 26.83 24.95 24.97 24.85 24.74 24.82 24.79 24.54 24.85 24.83 24.90 26.41 26.68 26.53 26.58 26.46 26.73 27.01 26.70 26.64 0.46 0.51 0.46 0.48 0.50 0.43 0.48 0.45 0.41 0.50 0.50 0.45 0.44 0.44 0.46 0.46 0.49 0.47 0.46 0.50 0.45 0.45 0.50 0.42 0.47 0.47 0.44 0.47 0.46 0.48 0.49 0.47 0.47 0.41 0.42 0.51 0.46 0.41 0.45 0.40 0.40 0.43 100.95 100.61 100.56 99.92 100.64 100.69 101.01 100.35 100.91 100.10 100.37 100.29 100.37 100.27 100.71 100.52 99.94 101.02 100.68 100.35 100.18 100.84 107.66 100.29 100.34 100.61 100.27 100.77 100.44 100.55 100.87 100.89 100.98 100.78 100.57 100.36 100.48 99.79 100.59 100.37 100.40 100.42 51.0 51.3 51.2 52.0 52.1 51.2 51.0 50.9 50.8 51.6 51.5 51.4 51.8 52.2 52.3 51.5 52.5 52.1 52.0 52.3 52.0 51.8 52.8 52.4 52.7 52.2 52.2 52.1 52.2 51.7 52.1 52.1 52.2 55.2 55.4 55.4 55.3 55.4 55.5 56.0 55.7 55.5 46.5 46.0 46.3 45.4 45.3 46.3 46.5 46.5 46.7 45.7 45.9 46.1 45.8 45.2 45.2 46.0 45.0 45.4 45.4 45.2 45.5 45.6 44.7 45.1 44.8 45.3 45.3 45.4 45.2 45.8 45.3 45.2 45.3 42.7 42.5 42.4 42.7 42.6 42.4 42.0 42.3 42.5 2.6 2.6 2.5 2.6 2.6 2.4 2.6 2.6 2.5 2.7 2.6 2.5 2.5 2.5 2.5 2.6 2.5 2.5 2.5 2.5 2.5 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.6 2.5 2.6 2.6 2.5 2.0 2.0 2.2 2.0 2.0 2.1 2.0 2.0 2.0 E11-02 Pt Grain Table B.3. Detailed electron microprobe analytical conditions for clinopyroxene. Common information: File Name : pyx.qtiSet File Date: May/21/14-2:0 PM Column conditions: Cond 1 : HV (kV) : 15 I (nA) : 20 Size (µm) : 1 Scanning : Off RasterLength (µm) : .03 Xtal information: Xtal parameters: Na Ka Mg Ka Al Ka Si Ka Ca Ka Ti Ka Mn Ka Fe Ka Cr Ka Sp2 Sp2 Sp2 Sp2 Sp1 Sp1 Sp3 Sp3 Sp3 TAP TAP TAP TAP PET PET LLIF LLIF LLIF (2d= 25.745 (2d= 25.745 (2d= 25.745 (2d= 25.745 (2d= 8.75 (2d= 8.75 (2d= 4.0267 (2d= 4.0267 (2d= 4.0267 K= 0.00218) K= 0.00218) K= 0.00218) K= 0.00218) K= 0.000144) K= 0.000144) K= 0.000058) K= 0.000058) K= 0.000058) Bias (V) 1281 1278 1292 1292 1329 1350 1819 1819 1809 Dtime (µs) 3 3 3 3 3 3 3 3 3 Pha parameters : Elt. Line Spec Xtal Na Ka Mg Ka Al Ka Si Ka Ca Ka Ti Ka Mn Ka Fe Ka Cr Ka Sp2 Sp2 Sp2 Sp2 Sp1 Sp1 Sp3 Sp3 Sp3 TAP TAP TAP TAP PET PET LLIF LLIF LLIF Acquisition information: Elt. Line Spec Xtal Peak Na Ka Mg Ka Al Ka Si Ka Ca Ka Ti Ka Mn Ka Fe Ka Cr Ka Sp2 Sp2 Sp2 Sp2 Sp1 Sp1 Sp3 Sp3 Sp3 TAP TAP TAP TAP PET PET LLIF LLIF LLIF 46360 38499 32462 27736 38388 31400 52218 48088 56888 Gain 2508 2543 2579 2625 939 1372 365 365 348 Blin (mV) Wind (mV) Mode Inte Inte Inte Inte Inte Inte Inte Inte Inte Pk Time Bg Off1 Bg Off2 Slope/IBg Bg TimeCalibration Time/Repeat Range #Channels 20 -850 850 10 albite_NaSp2_078 20 -1800 1800 10 diop_MgSp2_059 10 -800 800 5 Al2O3_AlSp2_055 20 -1000 1000 10 ortho_SiSp2_250 20 750 1 10 diop_SiSp2_CaSp1_058 20 700 1.02 10 ilm_TiSp1_075 20 -1000 1000 10 MnO_MnSp1_MnSp3_061 20 10001.04 10 mag_FeSp3_187 40 -800 800 20 Cr2O3_CrSp1_CrSp3_054 Intensity (cps/nA) 56.5 137.6 1001.5 584.4 132.4 201.8 359.9 350.2 281.7 Table B.4. Detailed electron microprobe analytical conditions for olivine. Common information: File Name : oliv-parmelee.qtiSet File Date: May/21/14-2:2 PM Column conditions: Cond 1 : HV (kV) : 15 I (nA) : 20 Size (µm) : 1 Scanning : Off RasterLength (µm) : .03 Xtal information: Xtal parameters: Mn Ka Ti Ka Ca Ka Si Ka Mg Ka Ni Ka Fe Ka Sp1 Sp1 Sp1 Sp2 Sp2 Sp3 Sp3 PET PET PET TAP TAP LLIF LLIF (2d= 8.75 (2d= 8.75 (2d= 8.75 (2d= 25.745 (2d= 25.745 (2d= 4.0267 (2d= 4.0267 K= 0.000144) K= 0.000144) K= 0.000144) K= 0.00218) K= 0.00218) K= 0.000058) K= 0.000058) Bias (V) 1329 1350 1329 1292 1285 1819 1819 Dtime (µs) 3 3 3 3 3 3 3 Pha parameters : Elt. Line Spec Xtal Mn Ka Ti Ka Ca Ka Si Ka Mg Ka Ni Ka Fe Ka Sp1 Sp1 Sp1 Sp2 Sp2 Sp3 Sp3 PET PET PET TAP TAP LLIF LLIF Acquisition information: Elt. Line Spec Xtal Peak Mn Ka Ti Ka Ca Ka Si Ka Mg Ka Ni Ka Fe Ka Sp1 Sp1 Sp1 Sp2 Sp2 Sp3 Sp3 PET PET PET TAP TAP LLIF LLIF 23993 31400 38388 27736 38499 41161 48088 Gain 939 1372 939 2625 2597 365 365 Blin (mV) Wind (mV) Mode Inte Inte Inte Inte Inte Inte Inte Pk Time Bg Off1 Bg Off2 Slope/IBg Bg TimeCalibration Time/Repeat Range #Channels 20 -1000 1000 10 MnO_MnSp1_MnSp3_061 20 700 1.02 10 ilm_TiSp1_075 20 750 1 10 diop_SiSp2_CaSp1_058 20 -1000 1000 10 ortho_SiSp2_250 20 -1800 1800 10 Forst-Ol_MgSp2_059 60 -500 500 30 NiO_NiSp3_039 20 10001.04 10 mag_FeSp3_187 Intensity (cps/nA) 337.6 201.8 132.4 584.4 464.4 328.9 350.2 Table B.5. Primary calibration standards used for electron microprobe analysis. Element Si Ti Al Fe Mn Mg Ca Na K Material Orthoclase Ilmenite Anorthoclase Magnetite MnO Forsteritic olivine Beeson apatite Albite Orthoclase Table B.6. Standard reference materials analyzed by electron microprobe immediately before and after sample analyses. All values are wt%. Uncertainties are 1σ standard deviation. TiO2 Al2O3 FeO* MnO MgO CaO Na2O Total Diopside (n=12) Measured 55.91 ± 0.19 Accepteda 55.46 SiO2 0.02 ± 0.02 0.03 ± 0.01 0.03 0.09 ± 0.03 0.06 0.01 ± 0.02 18.38 ± 0.11 18.56 25.77 ± 0.17 25.87 0.01 ± 0.01 0.02 100.22 ± 0.23 100.00 Olivine-USNM (n=12) Measured 40.85 ± 0.41 Accepteda 40.81 0.00 ± 0.01 9.85 ± 0.17 9.55 0.10 ± 0.02 0.14 48.97 ± 0.12 49.42 0.10 ± 0.01 100.26 ± 0.23 99.92 Olivine-forsterite (n=12) Measured 42.90 ± 0.43 Accepteda 42.70 0.01 ± 0.01 0.02 ± 0.02 0.00 ± 0.00 57.26 ± 0.22 55.30 0.01 ± 0.01 100.20 ± 0.60 100.00 8.54 ± 0.18 8.90 8.38 0.09 ± 0.02 0.10 0.09 14.23 ± 0.10 13.89 14.14 12.31 ± 0.15 12.54 12.42 Kaersutite (n=12) Measured 39.45 ± 0.47 Accepteda 39.30 LTAb 39.14 4.14 ± 0.09 4.14 4.20 15.78 ± 0.08 15.37 15.68 2.28 ± 0.04 2.36 2.31 100.35 ± 0.49c 100.13 99.78 *Total Fe reported as FeO. a Accepted values from https://geoinfo.nmt.edu/labs/microprobe/standards/petrol.html. b LTA = long-term average of measurements made on the same standard in the New Mexico Tech electron microprobe lab. c Total includes measured K2O, H2O, F, and Cl concentrations, which are not shown. Table B.7. Major and trace element composition of the bulk rock in 36Cl samples. Major elements were measured by XRF and trace elements were measured by ICP-MS and ICP-AES. E11-01 E11-02 E11-04 E11-05 E11-07 E11-10 E11-11 E11-18 E11-23 E11-24 E11-25 Major-element oxide concentrations (in wt%) SiO2 55.4 54.9 55.9 54.8 TiO2 1.03 1.08 0.98 0.99 Al2O3 19.7 19.5 18.9 19.8 Fe2O3* 5.56 5.80 6.14 5.38 MnO 0.20 0.22 0.24 0.20 MgO 1.00 1.03 0.90 0.92 CaO 2.79 2.80 2.51 2.81 Na2O 8.34 8.36 8.34 8.45 K2O 4.50 4.48 4.67 4.44 P2O5 0.45 0.47 0.43 0.43 LOI 1.09 1.25 0.74 1.26 Total 100.0 99.9 99.8 99.5 54.5 1.03 19.6 5.64 0.20 0.97 2.75 8.21 4.39 0.46 2.19 100.0 55.3 1.04 19.3 5.89 0.22 1.00 2.63 8.21 4.54 0.44 0.88 99.4 55.6 1.03 19.6 5.77 0.22 1.00 2.66 8.28 4.51 0.43 1.07 100.2 53.0 1.06 19.2 5.79 0.19 0.98 2.64 8.12 4.37 0.48 5.49 101.3 55.8 1.02 19.4 5.65 0.21 0.96 2.75 8.23 4.53 0.44 0.44 99.5 55.0 1.06 19.5 5.73 0.23 1.02 2.75 8.24 4.51 0.44 0.86 99.4 55.2 1.05 19.5 5.80 0.22 1.02 2.81 8.31 4.55 0.46 0.79 99.7 Trace element concentrations (in ppm) Li 20 20 20 Be 8 8 8 B <10 <10 <10 Sc <5 <5 <5 V 13 14 11 Cr 30 30 30 Co 3.0 3.5 2.3 Ni <5 <5 <5 Cu 40 28 23 Zn 121 126 141 Ga 31 32 32 Ge 2 2 2 As 27 28 14 Rb 106 104 106 Sr 883 846 713 Y 53.1 53.5 59.6 Zr 842 858 863 Nb 257 246 248 Mo 14 15 14 Ag <1 <1 <1 Cd <0.2 <0.2 <0.2 In 0.3 0.3 <0.2 Sn 10 7 7 Sb 0.4 0.3 0.2 Cs 1.5 1.5 1.3 Ba 994 995 1100 La 130 133 138 Ce 242 247 261 Pr 25.8 26.6 28.6 Nd 88.2 91.4 100 Sm 14.3 15.2 16.8 Eu 4.88 5.09 5.64 Gd 11.5 12.0 13.4 Tb 1.81 1.83 2.09 Dy 9.91 10.3 11.3 Ho 1.87 1.91 2.05 Er 5.57 5.75 6.08 Tm 0.87 0.91 0.98 Yb 5.0 5.2 5.4 Lu 0.80 0.81 0.91 Hf 21 21 21 Ta 15.4 15.0 15.0 W 4 4 4 Tl <0.5 <0.5 <0.5 Pb 19 11 12 Bi 0.3 0.2 0.1 Th 20.9 21.2 20.7 U 6.24 6.28 6.04 20 8 <10 <5 12 30 3.0 <5 26 120 32 2 75 102 858 50.5 863 260 15 <1 1.5 0.5 11 0.4 1.3 1010 126 234 25.1 84.9 14.0 5.01 11.5 1.76 9.72 1.78 5.37 0.85 4.8 0.73 21 15.3 4 0.8 20 0.3 21.2 6.49 20 8 <10 <5 13 20 3.2 <5 37 199 32 2 20 105 800 57.0 881 254 14 <1 0.2 <0.2 6 0.6 1.3 1080 136 252 27.4 93.9 15.5 5.44 12.4 1.93 10.6 1.90 5.92 0.94 5.1 0.86 22 15.1 4 <0.5 8 <0.1 21.4 6.63 20 8 <10 <5 15 40 3.3 <5 22 119 32 2 26 106 808 55.1 899 262 15 <1 0.3 <0.2 6 0.3 1.4 1060 132 248 26.3 91.4 15.3 5.19 12.1 1.91 10.1 1.87 5.78 0.90 5.2 0.77 21 15.3 4 <0.5 10 <0.1 21.8 6.74 20 8 <10 <5 13 30 2.9 <5 26 122 32 2 113 104 825 51.3 900 271 16 <1 1.3 0.4 16 0.4 1.6 970 127 237 25.3 86.4 14.3 4.78 11.3 1.77 9.68 1.83 5.48 0.85 5.0 0.77 22 15.7 4 1.4 30 0.4 21.4 6.88 20 8 <10 <5 14 30 3.4 <5 19 122 31 2 9 104 845 54.7 862 252 15 <1 0.2 <0.2 6 0.7 1.3 1080 137 255 27.4 94.2 15.4 5.49 12.4 1.93 10.7 1.97 5.81 0.94 5.4 0.84 21 15.7 4 <0.5 11 0.1 22.2 6.49 20 9 <10 <5 13 30 3.2 <5 21 135 31 2 13 107 811 53.5 887 260 14 <1 0.2 <0.2 6 0.3 1.3 967 130 245 26.0 89.3 14.5 4.78 11.9 1.78 10.1 1.88 5.60 0.91 5.2 0.85 22 15.6 4 <0.5 10 0.1 22.4 6.70 20 9 <10 <5 15 30 3.6 <5 19 127 32 2 15 106 827 55.3 875 256 14 <1 <0.2 0.2 7 0.3 1.5 1030 137 256 27.5 94.8 15.8 5.22 12.3 1.85 10.4 1.96 5.81 0.90 5.2 0.76 21 15.4 4 <0.5 14 0.1 21.9 6.43 20 8 <10 <5 12 20 3.0 <5 9 117 31 2 17 106 899 51.2 837 245 13 <1 0.3 <0.2 6 0.3 1.6 974 130 238 25.4 86.7 14.4 5.01 11.3 1.77 9.57 1.83 5.55 0.88 4.8 0.80 21 14.7 4 <0.5 11 0.2 21.2 6.12 *Total Fe reported as Fe2O3. LOI = Loss on ignition. Table B.8. Major element composition of anorthoclase separated from the 36Cl samples. Measured by XRF. Major-element oxides are in wt%, Rb, Sr, and Zr are in ppm, and feldspar end-members anorthite (An; CaAl2Si2O8), albite (Ab; NaAlSi3O8), and orthoclase (Or; KAlSi3O8) are in %. SiO2 TiO2 Al2O3 Fe2O3* MnO MgO CaO Na2O K2O P2O5 Total Rb Sr Zr An Ab Or E11-01 E11-02 E11-04 E11-05 E11-07 E11-10 E11-11 E11-18 E11-23 E11-24 E11-25 62.63 0.13 22.35 0.42 <0.03 <0.25 3.22 7.63 3.02 0.01 99.41 27 2381 68 15.6 67.0 17.4 62.47 0.12 21.89 0.32 <0.03 <0.25 2.92 7.56 3.21 0.01 98.50 28 2217 59 14.3 67.0 18.7 63.34 0.12 21.68 0.34 <0.03 <0.25 2.48 7.60 3.61 0.01 99.18 33 1957 49 12.1 67.0 20.9 62.27 0.13 22.36 0.37 <0.03 <0.25 3.25 7.57 3.01 0.01 98.97 27 2407 71 15.8 66.7 17.5 62.56 0.13 22.19 0.39 <0.03 <0.25 3.17 7.55 3.03 0.01 99.03 24 2370 74 15.5 66.8 17.6 63.32 0.13 22.14 0.35 <0.03 <0.25 2.79 7.70 3.39 0.01 99.83 29 2136 60 13.4 67.1 19.4 62.72 0.12 21.91 0.35 <0.03 <0.25 2.85 7.66 3.23 0.01 98.85 28 2187 61 13.9 67.4 18.7 62.26 0.13 22.01 0.36 <0.03 <0.25 3.13 7.54 3.04 0.01 98.48 26 2341 74 15.3 66.9 17.7 62.94 0.12 21.93 0.36 <0.03 <0.25 2.87 7.61 3.23 0.01 99.07 31 2175 61 14.0 67.2 18.8 62.66 0.13 22.28 0.38 <0.03 <0.25 3.28 7.59 2.94 0.01 99.27 30 2395 70 16.0 67.0 17.1 63.02 0.12 22.11 0.35 <0.03 <0.25 2.95 7.63 3.24 0.01 99.43 30 2203 60 14.3 67.0 18.7 *Total Fe reported as Fe2O3. Table B.9. XRF standards run with anorthoclase analyses. Major-element oxides are in wt% and Rb, Sr, and Zr are in ppm. Measured (n=3) SiO2 TiO2 Al2O3 Fe2O3* MnO MgO CaO Na2O K2O P2O5 Total Rb Sr Zr 73.76 0.26 13.68 1.86 0.04 0.26 0.98 4.39 4.32 0.05 99.85 150 108 242 73.74 0.27 13.73 1.87 0.04 0.26 0.98 4.40 4.32 0.05 99.86 150 108 244 RGM-1 Avg 74.16 0.27 13.62 1.88 0.04 0.27 0.99 4.05 4.33 0.05 99.66 163 105 240 73.89 0.27 13.68 1.87 0.04 0.26 0.98 4.28 4.32 0.05 99.85 154 107 242 BHVO-1 SD Accepted 0.24 0.01 0.06 0.01 0.00 0.01 0.01 0.20 0.01 0.00 --7.5 1.7 2.0 73.45 0.27 13.72 1.86 0.036 0.27 1.15 4.07 4.30 0.048 99.17 155 102 241 Measured (n=4) 49.40 2.74 13.48 12.38 0.17 7.20 11.47 2.25 0.53 0.28 99.90 12 392 185 49.39 2.73 13.48 12.38 0.17 7.21 11.48 2.24 0.53 0.27 99.88 12 393 187 49.33 2.73 13.52 12.38 0.17 7.20 11.46 2.25 0.53 0.28 99.87 12 391 186 50.26 2.73 13.64 12.29 0.17 7.29 11.36 2.25 0.52 0.28 100.79 11 376 174 Avg SD Accepted 49.60 2.73 13.53 12.36 0.17 7.23 11.44 2.25 0.53 0.28 100.11 12 388 183 0.44 0.01 0.08 0.05 0.00 0.04 0.06 0.00 0.01 0.01 --0.5 8.0 6.1 49.94 2.71 13.80 12.23 0.168 7.23 11.4 2.26 0.52 0.273 100.53 9.5 390 180 Accepted values for each standard are from Tyrone Rooney (personal communication) at Michigan State University. SD = Standard deviation *Total Fe reported as Fe2O3. 1.3 West Post-caldera flows Young Pre-caldera Old Pre-caldera Na2O (wt%) 1.2 1.1 1 0.9 0.8 0.7 0.6 8 8.5 9 9.5 10 10.5 11 11.5 FeO (wt%) Figure B.1. Na2O vs. FeO in clinopyroxenes determined by electron microprobe analysis. Each data point represents a different analytical point on a grain. The newly-identified West flow, represented solely by sample E11-12, has FeO content higher than the post-caldera flows and close to that of the Young Pre-caldera flow represented by sample E11-04, supporting the 3He evidence that it is substantially older than the post-caldera flows. SUPPLEMENT C. 3He and 36Cl results (expanded version) C.1. 3He determination Table C.1 shows the results of the mass spectrometric measurements of helium released during crushing and melting of the grains. Calculated cosmogenic 3He concentrations are shown using both the 3He/4He ratio measured during the crushing of each sample (3Hec,meas) as well as the mean 3He/4He value measured from crushing the DVDP olivines (3Hec,DVDP) as the magmatic 3 He/4He ratio. Table C.2 shows the 3He/4He ratios measured during crushing of the DVDP olivines. 3He/4He measurements made during melting of three of the crushed samples are also included. The 3He/4He ratios measured during melting are lower most likely due to the release of radiogenic 4He that has accumulated in the crystal matrix since eruption. C.2. 36Cl determination Table C.3 includes anorthoclase sample mass, spike mass, volume of acid used for dissolution, measured 35Cl/37Cl and 36Cl/Cl ratios, and calculated Cl and 36Cl concentrations with and without blank corrections. No AMS data was returned for E11-11 due to high sulfur content. Table C.4 includes the spike mass, volume of acid used, measured 35Cl/37Cl and 36Cl/Cl ratios, and calculated Cl and 36Cl concentrations for each blank. Blank concentrations outside of 3σ of the mean (BS-01 for Cl and BS-02 for 36Cl) were excluded from the blank averages used for blank-correcting sample concentrations. C.2.1. Calculation of Cl and 36Cl concentrations The equations used to calculate Cl and 36Cl concentrations from the AMS results are show below. C.2.1.1. Uncorrected concentrations First the number of chlorine atoms from the spike ([𝐶𝑙𝑠𝑝 ]) was calculated: 35 𝐶𝑙 𝑚𝑠𝑝 𝐶𝑠𝑝 𝑁𝐴 𝑚𝑠𝑝 𝐶𝑠𝑝 𝑁𝐴 1 − ( 𝐶𝑙 )𝑠𝑝 [𝐶𝑙𝑠𝑝 ] = [ 35𝐶𝑙𝑠𝑝 ] + [ 37𝐶𝑙𝑠𝑝 ] = + ( 35 ) 𝐶𝑙 1000𝑊35 1000𝑊35 ( 𝐶𝑙 ) 𝑠𝑝 where [ 35𝐶𝑙𝑠𝑝 ] and [ 37𝐶𝑙𝑠𝑝 ] are the number of 35Cl and 37Cl atoms from the spike, 𝑚𝑠𝑝 is grams of spike solution added to the sample, 𝐶𝑠𝑝 is the concentration of 35Cl in the spike in mg 35Cl/g solution, ( 35𝐶𝑙 𝐶𝑙 ) 𝑠𝑝 is the 35Cl/Cl ratio in the spike, 𝑁𝐴 is Avogadro’s number (6.02214 x 1023 mol- ), and 𝑊35 is the atomic weight of 35Cl (34.96885268 g/mol). The number of chlorine atoms in the anorthoclase ([𝐶𝑙𝑎𝑛 ]) was then calculated using the following equation from Desilets et al. (2006a): 1 35 𝐶𝑙 ( 37 ) [ 37𝐶𝑙𝑠𝑝 ] − [ 35𝐶𝑙𝑠𝑝 ] 𝐶𝑙 𝑚𝑒𝑎𝑠 [𝐶𝑙𝑎𝑛 ] = 35 35 𝐶𝑙 where ( 37𝐶𝑙) 𝑚𝑒𝑎𝑠 𝐶𝑙 (1 + ( 37 ) ) 𝐶𝑙 𝑟𝑐𝑘 35 𝐶𝑙 𝐶𝑙 ( 37 ) − ( 37 ) 𝐶𝑙 𝑟𝑐𝑘 𝐶𝑙 𝑚𝑒𝑎𝑠 ( 35 ) 35 𝐶𝑙 is the 35Cl/37Cl ratio measured in the AgCl target and (37𝐶𝑙) is the natural 𝑟𝑐𝑘 terrestrial 35Cl/37Cl ratio (3.127). [𝐶𝑙𝑎𝑛 ] was converted to concentration in ppm (𝐶𝑙𝑎𝑛 ) by: 𝐶𝑙𝑎𝑛 = [𝐶𝑙𝑎𝑛 ]𝑊𝐶𝑙 6 10 𝑁𝐴 𝑚𝑠𝑎𝑚𝑝 where 𝑊𝐶𝑙 is the atomic weight of chlorine (35.453 g/mol) and 𝑚𝑠𝑎𝑚𝑝 is the mass of anorthoclase separate that was dissolved. Finally, the number of atoms of 36Cl per gram of anorthoclase separate ( 36𝐶𝑙𝑎𝑛 ) was calculated by: ( 36 𝐶𝑙𝑎𝑛 = where ( 36 𝐶𝑙 𝐶𝑙 ) 𝑚𝑒𝑎𝑠 36 𝐶𝑙 ) 𝐶𝑙 ([𝐶𝑙𝑎𝑛 ] + [𝐶𝑙𝑠𝑝 ]) 𝑚𝑒𝑎𝑠 𝑚𝑠𝑎𝑚𝑝 is the 36Cl/Cl ratio measured in the AgCl target. C.2.1.2. Blank-corrected concentrations The concentration of chlorine and number of 36Cl atoms in the blanks (Table C.4) were calculated using essentially the same equations as above. The number of atoms of non-spike chlorine in a blank ([𝐶𝑙𝑏𝑙 ]) was determined using the equation for [𝐶𝑙𝑎𝑛 ]. We assume chlorine contamination in the samples and blanks comes primarily from the HF used to dissolve anorthoclase during Cl extraction, and so convert the chlorine concentration in the blanks (𝐶𝑙𝑏𝑙 ) to units of atoms of chlorine per mL HF: 𝐶𝑙𝑏𝑙 = [𝐶𝑙𝑏𝑙 ] 𝑉𝐻𝐹 where 𝑉𝐻𝐹 is the volume of HF in milliliters used to prepare the blank. Any 36Cl in the samples and blanks is assumed to be introduced unintentionally by particulates during lab processing and is not a function of the amount of acid, spike, or sample used. The 36Cl content of the blanks was therefore calculated as the total number of 36Cl atoms ([ 36𝐶𝑙𝑏𝑙 ]), and not as a concentration: [ 36𝐶𝑙𝑏𝑙 ] = ( 36 𝐶𝑙 ) ([𝐶𝑙𝑏𝑙 ] + [𝐶𝑙𝑠𝑝 ]) 𝐶𝑙 𝑚𝑒𝑎𝑠 𝐶𝑙𝑏𝑙 and [ 36𝐶𝑙𝑏𝑙 ] were calculated for each blank, then averaged (Table C.4). [ 36𝐶𝑙𝑏𝑙 ] for BS-2 was well outside the analytical uncertainties of BS-1 and BS-3, as well as previous blanks run in the same lab by the same procedure, and was excluded from the calculated average [ 36𝐶𝑙𝑏𝑙 ]𝑎𝑣𝑔 . The most likely explanation for the anomalously high [ 36𝐶𝑙𝑏𝑙 ] value is that BS-2 was contaminated by a grain of dust or other particulate during lab processing. Blank-corrected concentrations of chlorine (𝐶𝑙𝑎𝑛,𝑐𝑜𝑟𝑟 ) and 36Cl ( 36𝐶𝑙𝑎𝑛,𝑐𝑜𝑟𝑟 ) were calculated for each sample as follows: 𝐶𝑙𝑎𝑛,𝑐𝑜𝑟𝑟 = ( 36 𝐶𝑙𝑎𝑛,𝑐𝑜𝑟𝑟 = ([𝐶𝑙𝑎𝑛 ] − 𝐶𝑙𝑏𝑙,𝑎𝑣𝑔 𝑉𝐻𝐹 )𝑊𝐶𝑙 6 10 𝑁𝐴 𝑚𝑠𝑎𝑚𝑝 36 𝐶𝑙 ) 𝐶𝑙 𝑚𝑒𝑎𝑠 ([𝐶𝑙𝑎𝑛 ] + [𝐶𝑙𝑠𝑝 ]) − [ 36𝐶𝑙𝑏𝑙 ]𝑎𝑣𝑔 𝑚𝑠𝑎𝑚𝑝 Note that 𝑉𝐻𝐹 in this case refers to the volume of HF used to dissolve the sample. Table C.1. Complete helium data for clinopyroxene and olivine samples. Crush Sample Grain size mm Mass g He 10-10 cc/g 1σ E11-01 E11-02 E11-02(ol) E11-03 E11-04 E11-05 E11-05(ol) E11-06 E11-07 E11-08 E11-09 E11-10 E11-11 E11-12 E11-13 E11-14 E11-15 E11-16 E11-17 E11-18 E11-19 E11-20 E11-21 E11-22 E11-23 E11-24 E11-25 E11-26 E11-27 E11-28 E11-29 E11-30 E11-31 E11-31(ol) 0.5-1 0.5-1 0.5-1 1-2 0.5-1 0.5-1 0.5-1 1-2 0.5-1 1-2 1-2 0.5-1 0.5-1 1-2 1-2 1-2 0.5-1 1-2 1-2 0.5-1 1-2 1-2 1-2 1-2 0.5-1 0.5-1 0.5-1 1-2 1-2 1-2 1-2 1-2 0.5-1 0.5-1 0.31612 0.30873 0.11791 0.28586 0.24059 0.30123 0.12110 0.29985 0.31422 0.26873 0.27791 0.31427 0.31090 0.25662 0.22167 0.31353 0.27611 0.29108 0.27318 0.30359 0.28262 0.28333 0.28760 0.29676 0.31262 0.30203 0.32800 0.27976 0.24568 0.26965 0.23493 0.28591 0.28532 0.11469 1.18 4.71 13.05 11.43 9.68 5.75 11.24 4.81 0.68 16.63 9.06 12.75 1.33 5.20 13.63 14.55 2.47 1.16 10.16 1.51 7.10 11.03 10.39 8.27 4.48 4.06 5.89 5.84 5.52 29.38 2.99 13.61 5.71 6.48 0.02 0.07 0.20 0.17 0.15 0.09 0.17 0.07 0.01 0.25 0.14 0.19 0.02 0.08 0.20 0.22 0.04 0.02 0.15 0.02 0.11 0.17 0.16 0.12 0.07 0.06 0.09 0.09 0.08 0.44 0.04 0.20 0.09 0.10 4 Melt 3 He/4He x RA 7.71 6.23 6.52 6.06 8.18 2.80 6.24 4.77 4.33 5.10 6.17 6.78 7.60 10.82 4.53 2.42 6.74 9.18 4.15 8.24 5.18 5.53 6.27 5.03 7.84 4.81 7.26 5.83 4.78 7.41 9.45 6.79 22.31 17.26 4 1σ Mass g He 10-10 cc/g 1σ 0.77 0.32 0.36 0.25 0.32 0.21 0.42 0.35 0.97 0.20 0.27 0.23 0.74 0.43 0.20 0.16 0.57 0.80 0.22 0.65 0.28 0.20 0.24 0.28 0.36 0.36 0.34 0.33 0.39 0.18 0.57 0.23 0.69 0.82 0.30747 0.29709 0.10971 0.27799 0.23297 0.29350 0.11418 0.29250 0.30029 0.26093 0.26887 0.30601 0.30143 0.24707 0.21388 0.30658 0.26823 0.28041 0.26566 0.29422 0.27385 0.27407 0.27895 0.28676 0.30535 0.29108 0.32345 0.27388 0.23616 0.26070 0.22567 0.27800 0.27606 0.10807 10.13 20.19 15.47 10.78 51.71 10.24 38.16 11.93 10.31 19.32 19.66 54.52 15.47 49.89 13.80 12.09 14.01 9.27 13.07 11.27 12.22 15.51 19.40 17.44 20.28 14.13 21.92 16.83 21.56 51.94 15.34 27.63 139.86 105.70 0.15 0.30 0.23 0.16 0.78 0.15 0.57 0.18 0.15 0.29 0.29 0.82 0.23 0.75 0.21 0.18 0.21 0.14 0.20 0.17 0.18 0.23 0.29 0.26 0.30 0.21 0.33 0.25 0.32 0.78 0.23 0.41 2.10 1.59 3 3 He/4He x RA 354.38 247.39 267.94 24.73 275.19 290.57 72.78 338.99 421.53 158.39 174.77 129.01 340.99 344.29 244.36 306.16 257.66 351.89 304.97 388.83 292.90 221.31 298.97 303.30 270.83 216.15 227.96 303.55 246.05 142.12 344.80 186.37 375.30 472.19 1σ 1σ Hec,meas 107 atoms/g 5.72 4.02 4.56 0.61 4.54 4.82 1.42 5.42 6.81 2.66 2.89 2.12 5.60 5.59 4.02 5.06 4.20 5.80 4.97 6.31 4.94 3.67 4.84 4.87 4.42 3.50 3.77 4.81 4.02 2.30 5.78 3.02 6.17 7.80 1.31 1.81 1.50 0.075 5.14 1.10 0.94 1.48 1.60 1.10 1.23 2.48 1.92 6.19 1.23 1.37 1.31 1.18 1.46 1.60 1.31 1.24 2.11 1.94 1.98 1.11 1.80 1.86 1.94 2.60 1.91 1.85 18.37 17.89 0.03 0.04 0.04 0.003 0.12 0.02 0.03 0.03 0.04 0.03 0.03 0.06 0.04 0.14 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.05 0.04 0.05 0.03 0.04 0.04 0.04 0.06 0.04 0.04 0.44 0.42 3 Hec,DVDP 107 atoms/g 1σ 1.31 1.81 1.50 0.071 5.16 1.08 0.94 1.47 1.59 1.09 1.23 2.48 1.92 6.26 1.22 1.35 1.31 1.19 1.45 1.60 1.30 1.24 2.11 1.92 1.99 1.10 1.80 1.86 1.92 2.61 1.93 1.84 19.17 18.30 0.03 0.04 0.03 0.003 0.12 0.02 0.03 0.03 0.04 0.03 0.03 0.06 0.04 0.14 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.05 0.04 0.05 0.03 0.04 0.04 0.04 0.06 0.04 0.04 0.43 0.41 All samples are clinopyroxene except Ell-02(ol), E11-05(ol), and E11-31(ol), which are olivine. All helium measurements have been corrected for analytical blanks and standards run between samples. 4He concentrations are calculated for standard temperature and pressure. 3Hec,meas is the cosmogenic 3He concentration calculated using the 3He/4He ratio measured during crushing of the exposure age sample for magmatic 3He/4He. 3Hec,DVDP is the cosmogenic 3He concentration calculated using the average 3He/4He ratio measured in the DVDP olivines for magmatic 3He/4He. Table C.2. Helium data for DVDP olivines. Sample Mass g 4 Hecr 10 cc/g -10 (3He/4He)cr x RA 1σ 4 Hem 10 cc/g -10 (3He/4He)m x RA 1σ DVDP3-268 0.16048 653.41 6.87 0.12 ------DVDP3-283A 0.23980 579.75 6.86 0.12 ------DVDP3-283B 0.22817 1099.44 6.79 0.11 ------DVDP3-289 0.28327 703.52 6.90 0.12 671.99 6.06 0.10 DVDP3-295A 0.20446 724.59 7.06 0.12 ------DVDP3-295B 0.28175 503.42 6.96 0.12 ------DVDP3-349 0.27844 251.90 7.05 0.13 350.94 6.05 0.11 DVDP3-359 0.22869 332.53 6.90 0.12 ------DVDP3-363 0.23665 310.11 6.88 0.12 ------DVDP3-370 0.14045 379.40 6.89 0.13 ------DVDP3-376 0.20532 217.83 6.92 0.13 393.58 5.77 0.10 Error-weighted mean: 6.91 0.08 cr=crushed, m=melted. 1σ for the error-weighted mean is reported as the standard deviation of the values used to calculate the mean (n=11). Table C.3. Complete chlorine data for anorthoclase samples. Sample Mass Spk mass HF HNO3 35 Cl/37Cl 1σ 36 Cl/1015 Cl 1σ 36 1σ Clan Clan 1σ Clan,corr 5 g g mL mL 36 Clan,corr 1σ 5 10 atoms/g ppm 1σ ppm 10 atoms/g E11-01 50.7594 3.0114 201.5 26 14.446 0.022 466.800 10.9988 20.85 0.23 6.44 0.17 9.93 0.75 6.38 0.17 E11-02 53.5758 3.0072 185 27 17.752 0.124 672.218 14.4196 15.08 0.21 8.24 0.20 5.58 0.68 8.18 0.20 E11-04 59.0636 3.0817 220 32 17.574 0.010 2102.62 44.8349 14.20 0.16 24.03 0.57 3.96 0.65 23.98 0.57 E11-05 60.6387 2.0222 206.5 31 10.153 0.011 560.417 14.7291 19.17 0.21 5.05 0.14 9.80 0.63 5.00 0.14 E11-07 52.3684 3.0222 214.5 26 13.500 0.019 536.255 14.5918 22.20 0.25 7.37 0.21 10.93 0.75 7.31 0.21 E11-10 52.6520 3.0265 200.5 31 13.916 0.015 837.266 26.0859 21.23 0.24 11.34 0.37 10.75 0.72 11.28 0.37 E11-11 53.2062 3.0275 210 27 ------------------------E11-18 59.1791 3.0757 200 32 9.055 0.019 532.959 14.4567 35.55 0.39 8.00 0.23 26.25 0.72 7.95 0.23 E11-23 49.3166 3.0211 181.5 27 12.652 0.021 637.085 16.8609 25.75 0.29 9.53 0.27 15.62 0.76 9.47 0.27 E11-24 52.3936 3.0026 214 28 11.292 0.021 360.247 10.5518 28.23 0.31 5.29 0.16 17.00 0.77 5.23 0.16 E11-25 50.6565 3.0158 175 26 19.789 0.044 662.877 25.9790 13.94 0.16 8.39 0.34 4.43 0.69 8.33 0.34 36 35 1σ of the calculated Cl concentrations is based on the uncertainty of the AMS analyses reported by PRIME Lab and ± 0.01 mg Cl/g solution uncertainty of the concentration of 35 Cl in the spike. No AMS results were returned for E11-11 because sulfur content was too high. an=anorthoclase, corr=blank-corrected using the data in Table C.4. Clan and 36Clan are not blank-corrected, Clan,corr and 36Clan,corr are blank-corrected. Table C.4. 36Cl and total chlorine concentrations of blanks. Sample Spk mass g HF mL HNO3 mL 35 Cl/37Cl 1σ 36 Cl/1015 Cl 1σ Clbl 1016 atoms Cl/mL HF 1σ 36 Clbl 1σ 5 10 atoms BS-1 2.1153 150 25 16.456 0.07 7.4208 2.03188 7.10 0.48 3.50 0.96 BS-2 2.0574 150 25 29.468 0.242 144.165 11.6178 3.33 0.23 58.45 4.75 BS-3 2.1167 150 26 28.325 0.121 6.62402 2.07337 3.60 0.24 2.78 0.87 Average 4.67 0.20 3.14 0.65 Numbers in italics were used to calculate averages. 1σ of the calculated Clbl and 36Clbl concentrations was determined based on the uncertainty of the AMS analyses reported by PRIME Lab and ± 0.01 mg 35Cl/g solution uncertainty of the concentration of 35Cl in the spike. bl=blank. SUPPLEMENT D. Exposure age calculation D.1. Scaling factors Production rate scaling factors calculated for each sample location using the models of Lal (1991)/Stone (2000) (St) and Lifton et al. (2014) (LSD) are shown in Table D.1. D.2. 3He exposure ages (no erosion) Helium-3 LSD and St exposure ages calculated using both 3Hec,meas and 3Hec,DVDP (see Supplement C) are shown in Table D.2. Production rates for each sample are also shown. All cosmogenic production of 3He is assumed to be by spallation, and the same production rate was used for clinopyroxene and olivine. Only ages calculated using 3Hec,DVDP concentrations are used in the results and discussion sections of this paper. D.2.1. Radiogenic correction In Table D.3, a radiogenic correction is applied to the 3HeDVDP LSD ages. The correction is based on a gross approximation of the radiogenic 4He content (4Herad) that has accumulated in clinopyroxene and olivine phenocrysts since eruption and is only intended to give a general idea the effect of 4Herad on the calculated exposure ages of the samples. Corrected 3He ages are 0.40.9% older than uncorrected ages in clinopyroxene and 0.1-0.2% older than uncorrected ages in olivine. The difference between corrected and uncorrected ages in clinopyroxene may be overestimated because the content of apatite inclusions—the main source of 4Herad in clinopyroxene samples—is likely overestimated below for many samples. For this reason, the corrected ages are not used in the results or discussion section of this paper. Radiogenic 4He in most minerals comes primarily from the alpha decay of uranium and thorium. In Erebus phonolites, the main U- and Th-bearing phases are the matrix glass and fluorapatite micophenocrysts (Kelly et al., 2008b); a small amount of U and Th also resides in the clinopyroxene or olivine crystal lattice (Blard and Farley, 2008). To estimate U and Th concentrations of the clinopyroxene and olivine crystal lattices, we multiply the average whole rock U (6.46 ppm) and Th (21.5 ppm) concentrations from the whole rock XRF analyses of the 36 Cl samples by diffusion coefficients from Table 1 in Blard and Farley (2008) (0.03 for U and 0.04 for Th in clinopyroxene, and 0.01 for both U and Th in olivine; the latter value is approximated based on other values in the table). For U and Th concentrations of matrix and melt inclusion glass, we use the average concentrations measured by Kelly et al. (2008b) in Erebus lava bombs (9.08 ppm for U and 30.4 ppm for Th), which are lithologically and geochemically nearly identical to the lava flows. For U and Th concentrations of apatite inclusions, we extrapolate based on P2O5 concentrations, as neither U nor Th has ever been measured in Erebus apatite. Kelly et al. (2008b) measured an average P2O5 concentration in Erebus lava bomb glass of 0.28 wt% and in fluorapatite grains of 41.07 wt%. The average P2O5 concentration measured on whole rock samples in this study is 0.45 wt%. Assuming P2O5 is concentrated entirely in apatite grains or matrix glass and the lava flows consist of 65% glass and 35% minerals,1 a mass balance calculation indicates that the whole rock is 0.65% apatite. Using the average U and Th concentrations of the whole rock measured in this study (6.46 ppm and 21.5 ppm, respectively) and assuming that all U and Th in the whole rock is concentrated in apatite grains or the matrix glass, we estimate the concentrations of U and Th in apatite to be 86 ppm and 267 ppm, respectively. To approximate the contribution of 4Herad from the decay of U and Th in clinopyroxene and olivine phenocrysts to the total 4He concentration measured after melting the grains, we start by assuming a simple cylindrical geometry for all grains (pyroxene = 2 mm in length and 0.75 mm in diameter; olivine = 0.75 mm in length and diameter). Based on backscattered electron imaging using the electron microprobe (see section B.2), we assume clinopyroxene grains contain 2 vol% glass inclusions and 2 vol% apatite inclusions and olivine grains contain 2 vol% glass inclusions and no apatite inclusions (note that actual apatite content observed in clinopyroxene grains ranged from ~0 to 2 vol%). Specific gravities of 3.4 for pyroxene, 3.7 for olivine, 3.2 for apatite, and 2.4 for glass are used to calculate the mass of apatite and glass inclusions in one gram of clinopyroxene or olivine grains. The concentrations given above for U and Th in glass, apatite, and the grain matrix are combined with the 3HeDVDP LSD from Table D.2 and known decay constants and nuclide abundances (shown in the notes below Table D.3) to calculate the number of 4He atoms that have been produced by the decay of 238U, 235U, and 232Th within clinopyroxene and olivine phenocrysts over the duration of each sample’s exposure. Additional radiogenic 4He will have been implanted in the surfaces of clinopyroxene and olivine grains by the decay of U and Th in the surrounding matrix glass. To estimate this component, all clinopyroxene and olivine grains are assumed to be surrounded by matrix glass,2 the stopping distance of α particles ejected from U and Th nuclei is assumed to be 20 μm (Farley et al., 1996), and 40% of the α particles ejected within this distance of the grain surface are assumed to be implanted in the grain (see similar calculation in Ackert et al., 2003). The number of atoms of 4He implanted in one gram of clinopyroxene or olivine grains from U and Th decay in the surrounding glass matrix is added to the number of 4He atoms produced by the decay of U and Th in glass and apatite inclusions and the grain matrix to yield 4 Herad,total—the estimated total number of radiogenic 4He atoms in one gram of clinopyroxene or olivine separates. The concentration of magmatic 3He is then recalculated as follows: 3 𝐻𝑒 𝐻𝑒𝑚𝑎𝑔𝑚𝑎𝑡𝑖𝑐 = ( 4 ) × ( 4𝐻𝑒𝑚𝑒𝑙𝑡 − 4𝐻𝑒𝑟𝑎𝑑 ) 𝐻𝑒 𝑚𝑎𝑔𝑚𝑎𝑡𝑖𝑐 3 1 Estimated using Rb concentrations from the whole rock, glass, and anorthoclase, as well as visual estimates of the non-anorthoclase mineral content. The modal abundances of minerals and glass in lava bombs determined by Kelly et al. (2008b) using major-element least squares mass balance are similar. 2 Since many of the clinopyroxene grains are hosted in anorthoclase phenocrysts, the assumption that each grain is surrounded by glass likely results in overestimation of the 4Herad content implanted in the minerals. 3 𝐻𝑒 The DVDP 3He/4He ratio from crushing is used for ( 4𝐻𝑒) (see section C.1). We use the 𝑚𝑎𝑔𝑚𝑎𝑡𝑖𝑐 revised value for 3𝐻𝑒𝑚𝑎𝑔𝑚𝑎𝑡𝑖𝑐 to recalculate the concentration of cosmogenic 3He ( 3𝐻𝑒𝑐,𝑐𝑜𝑟𝑟 ), which is used to calculate revised 3He LSD ages in Table D.3 (shown as Age (corr)). D.3. 36Cl exposure ages (no erosion) Chlorine-36 LSD and St exposure ages assuming no erosion are calculated using both uncorrected and blank-corrected concentrations for 36Cl and total Cl. All samples are assumed to have zero pore water. For analytical water content of the bulk rock, we use the measured LOI. Ages and production rates are shown in Table D.4. Because no AMS results were returned for E11-11, no exposure age is calculated for that sample. Only ages calculated using blankcorrected 36Cl concentrations are used in the results and discussion sections of this paper. D.4. Effects of erosion and snow burial on 3He and 36Cl ages Erosion or past snow coverage of the sample surface will cause underestimation of the exposure age if left unaccounted for in the age calculation. Here we recalculate exposure ages for various erosion rates and snow burial depths. D.4.1. Erosion Table D.5 shows 3He and 36Cl LSD ages calculated for five different erosion rates (1, 3, 5, 7, and 9 mm/ka). The ages are calculated using 3Hec,DVDP and 36Clrck,corr. For the 3He ages, only clinopyroxene samples are shown. D.4.2. Snow burial Table D.6 shows 3He and 36Cl LSD exposure ages recalculated assuming the samples were previously buried under various snow depths for 50% of their exposure histories (the erosion rate is assumed to be zero). To account for variable snow depth during a sample’s exposure history, equations for snow burial correction factors from Gosse and Phillips (2001) and Zweck et al. (2013) were modified as follows: 𝑆𝑠𝑛𝑜𝑤,𝑠𝑝 = 𝑓 (𝑒 𝑧 − 𝑠𝑛𝑜𝑤,𝑖 𝛬𝑓 𝑆𝑠𝑛𝑜𝑤,𝑒𝑡ℎ = 𝑓 [(𝑎1 𝑧𝑠𝑛𝑜𝑤 + 1)𝑎2 − ( ) + (1 − 𝑓) 𝑧𝑠 (𝑧𝑠𝑛𝑜𝑤 )𝑎3 )] + (1 − 𝑓) 𝑎4 −𝑧 𝑆𝑠𝑛𝑜𝑤,𝑡ℎ = 𝑓[(𝑏1 𝑒 𝑏2 𝑧𝑠𝑛𝑜𝑤 + 𝑏3 𝑒 𝑏4 𝑧𝑠𝑛𝑜𝑤 )𝑏5 𝑠 ] + (1 − 𝑓) 𝑆𝑠𝑛𝑜𝑤,𝑠𝑝 , 𝑆𝑠𝑛𝑜𝑤,𝑒𝑡ℎ , and 𝑆𝑠𝑛𝑜𝑤,𝑡ℎ are, respectively, the ratios of the production rate in a snow cover to that in an uncovered sample for production by spallation, epithermal neutron capture, and thermal neutron capture. 𝑓 is the fraction of the sample’s exposure history during which it was covered by snow, 𝑧𝑠𝑛𝑜𝑤 is the mass thickness of the snow covering the sample (equal to the product of snow depth and snow density), 𝑧𝑠 is the sample thickness, and 𝑎 and 𝑏 are coefficients given in Zweck et al. (2013) for basalt. We assume a density 0.5 g/cm3 for snow on Erebus. In the Erebus samples, production of cosmogenic 3He is assumed to be entirely spallogenic and production of 36Cl is dominated by spallation. The effect of snow coverage on exposure age is therefore dominated by 𝑆𝑠𝑛𝑜𝑤,𝑠𝑝 . Monte Carlo simulations produced by Zweck et al. (2013) suggest that the moderating effect of snow on the high-energy neutron flux is significantly greater than the 𝑆𝑠𝑛𝑜𝑤,𝑠𝑝 equation indicates. The exposure ages calculated in Table D.6 should thus be considered minimum ages for the given depth and duration of snow coverage. Table D.1. Production rate scaling factors. Sample E11-01 E11-02 E11-02(ol) E11-03 E11-04 E11-05 E11-05(ol) E11-06 E11-07 E11-08 E11-09 E11-10 E11-11 E11-12 E11-13 E11-14 E11-15 E11-16 E11-17 E11-18 E11-19 E11-20 E11-21 E11-22 E11-23 E11-24 E11-25 E11-26 E11-27 E11-28 E11-29 E11-30 E11-31 E11-31(ol) LSD Sel,n Sel,μ 18.64 7.15 19.63 7.45 --19.63 --23.25 21.16 7.90 18.83 7.21 --18.83 --21.57 22.02 8.15 --22.34 --22.17 23.79 8.66 --21.57 --17.60 --20.65 --19.79 --20.88 --18.66 --21.37 23.26 8.51 --20.11 --20.80 --21.68 --21.91 22.04 8.16 22.37 8.25 21.05 7.87 --20.88 --22.08 --23.49 --21.81 --20.95 --19.69 --19.69 St Sel,n 17.82 18.66 18.66 21.67 19.94 17.98 17.98 20.28 20.66 20.92 20.78 22.12 20.28 16.93 19.51 18.79 19.71 17.84 20.12 21.68 19.06 19.64 20.38 20.57 20.67 20.95 19.85 19.71 20.71 21.87 20.48 19.77 18.71 18.71 Sel,μ 7.15 7.45 ----7.90 7.21 ----8.15 ----8.66 --------------8.51 --------8.16 8.25 7.87 --------------- LSD = flux-based scaling model from Lifton et al. (2014). St = Lal (1991)/Stone (2000) scaling model. Sel,n = Scaling factor for the nucleonic cosmic-ray flux; used to scale rates of 3He production by spallation and 36Cl production by spallation and lowenergy neutron absorption. Sel,μ = Scaling factor for the muonic cosmic-ray flux; used to scale rates of 36Cl production by slow and fast muons. All samples are clinopyroxene except E11-02(ol), E11-05(ol), and E11-31(ol), which are olivine. Table D.2. 3He production rates and exposure ages (no erosion). LSD P(z) Sample E11-01 E11-02 E11-02(ol) E11-03 E11-04 E11-05 E11-05(ol) E11-06 E11-07 E11-08 E11-09 E11-10 E11-11 E11-12 E11-13 E11-14 E11-15 E11-16 E11-17 E11-18 E11-19 E11-20 E11-21 E11-22 E11-23 E11-24 E11-25 E11-26 E11-27 E11-28 E11-29 E11-30 E11-31 E11-31(ol) atoms He/g/a 2185 2277 2277 2659 2490 2182 2182 2493 2582 2607 2589 2759 2509 2046 2402 2308 2446 2178 2467 2737 2329 2420 2524 2561 2561 2606 2470 2435 2578 2736 2511 2459 2308 2308 3 Age (meas) 1σ ka 5.41 7.16 5.96 0.25 18.55 4.53 3.86 5.37 5.59 3.75 4.27 8.00 6.89 27.29 4.61 5.35 4.82 4.90 5.35 5.26 5.07 4.63 7.49 6.80 6.97 3.79 6.56 6.90 6.75 8.46 6.85 6.76 71.80 69.94 St Age (DVDP) 1σ ka 0.11 0.15 0.13 0.01 0.43 0.11 0.13 0.12 0.12 0.12 0.10 0.18 0.15 0.62 0.11 0.13 0.11 0.11 0.13 0.11 0.12 0.12 0.15 0.14 0.16 0.08 0.16 0.14 0.14 0.21 0.16 0.15 1.70 1.63 5.42 7.14 5.95 0.25 18.64 4.46 3.82 5.34 5.55 3.70 4.25 7.99 6.90 27.61 4.57 5.27 4.82 4.93 5.30 5.27 5.04 4.60 7.47 6.76 7.00 3.75 6.57 6.86 6.70 8.50 6.91 6.75 74.94 71.52 P(z) atoms He/g/a 2071 2146 2146 2458 2327 2066 2066 2324 2402 2421 2407 2543 2339 1952 2251 2173 2289 2065 2303 2530 2189 2266 2352 2384 2382 2419 2309 2279 2398 2526 2338 2301 2174 2174 3 0.12 0.15 0.13 0.01 0.42 0.11 0.11 0.14 0.12 0.09 0.12 0.18 0.14 0.63 0.11 0.11 0.11 0.13 0.11 0.11 0.14 0.11 0.16 0.15 0.14 0.11 0.16 0.16 0.13 0.19 0.15 0.15 1.71 1.64 Age (meas) 1σ ka 6.31 8.44 7.01 0.30 22.08 5.31 4.57 6.38 6.66 4.55 5.12 9.75 8.20 31.71 5.47 6.28 5.71 5.72 6.35 6.31 5.98 5.49 8.98 8.12 8.33 4.59 7.79 8.18 8.07 10.31 8.18 8.02 84.48 82.28 Age (DVDP) 1σ ka 0.14 0.19 0.16 0.01 0.51 0.12 0.13 0.14 0.15 0.11 0.12 0.23 0.19 0.73 0.13 0.14 0.13 0.13 0.14 0.14 0.14 0.13 0.20 0.18 0.19 0.10 0.18 0.18 0.18 0.24 0.19 0.18 2.02 1.92 6.32 8.42 7.00 0.29 22.19 5.23 4.53 6.34 6.62 4.50 5.10 9.74 8.22 32.08 5.42 6.19 5.71 5.76 6.29 6.33 5.94 5.46 8.96 8.07 8.36 4.55 7.81 8.15 8.00 10.34 8.24 8.02 88.16 84.15 0.14 0.19 0.16 0.01 0.51 0.12 0.12 0.14 0.15 0.11 0.12 0.23 0.19 0.73 0.12 0.14 0.13 0.13 0.14 0.14 0.14 0.13 0.20 0.18 0.19 0.10 0.18 0.18 0.18 0.24 0.19 0.18 2.01 1.91 P(z) is the sample-specific cosmogenic 3He production rate (scaled to the sample location and corrected for shielding and sample thickness) at the depth of the middle of the sample. For the LSD calculation, which implements time-dependent scaling and integrates production rates across the thickness of the sample, the production rate shown in the table is based on the contemporary strength of the terrestrial and solar magnetic fields and is the average of the production rates measured at 100 depths within each sample. Age (meas) is the exposure age calculated using the 3He/4He ratio measured during crushing of each sample for magmatic 3He/4He. Age (DVDP) is the exposure age calculated using the mean 3He/4He ratio measured during crushing of the DVDP olivines for magmatic 3He/4He. Table D.3. 3He LSD ages corrected for radiogenic 4He. Sample E11-01 E11-02 E11-02(ol) E11-03 E11-04 E11-05 E11-05(ol) E11-06 E11-07 E11-08 E11-09 E11-10 E11-11 E11-12 E11-13 E11-14 E11-15 E11-16 E11-17 E11-18 E11-19 E11-20 E11-21 E11-22 E11-23 E11-24 E11-25 E11-26 E11-27 E11-28 E11-29 E11-30 E11-31 E11-31(ol) 4 Age (DVDP) 1σ ka ka 5.416 7.139 5.950 0.246 18.638 4.458 3.816 5.337 5.552 3.703 4.250 7.987 6.902 27.605 4.568 5.269 4.816 4.928 5.303 5.275 5.043 4.604 7.467 6.756 6.998 3.745 6.572 6.864 6.698 8.497 6.907 6.752 74.940 71.525 0.120 0.152 0.134 0.007 0.424 0.112 0.114 0.138 0.120 0.093 0.118 0.176 0.136 0.627 0.106 0.109 0.108 0.128 0.113 0.106 0.135 0.106 0.157 0.147 0.140 0.105 0.159 0.159 0.135 0.194 0.154 0.146 1.714 1.641 4 Herad,grn 4 4 109 atoms/g 1.03 1.35 0.32 0.05 3.53 0.84 0.21 1.01 1.05 0.70 0.81 1.51 1.31 5.23 0.87 1.00 0.91 0.93 1.00 1.00 0.96 0.87 1.41 1.28 1.33 0.71 1.25 1.30 1.27 1.61 1.31 1.28 14.20 3.86 109 atoms/g 7.07 9.32 0.00 0.32 24.33 5.82 0.00 6.97 7.25 4.83 5.55 10.43 9.01 36.04 5.96 6.88 6.29 6.43 6.92 6.89 6.58 6.01 9.75 8.82 9.14 4.89 8.58 8.96 8.75 11.09 9.02 8.82 97.84 0.00 109 atoms/g 0.58 0.77 0.59 0.03 2.00 0.48 0.38 0.57 0.60 0.40 0.46 0.86 0.74 2.96 0.49 0.57 0.52 0.53 0.57 0.57 0.54 0.49 0.80 0.73 0.75 0.40 0.71 0.74 0.72 0.91 0.74 0.73 8.05 7.06 Herad,ap Herad,gl 4 Herad,mat 109 atoms/g 1.40 1.85 1.63 0.06 4.83 1.15 1.05 1.38 1.44 0.96 1.10 2.07 1.79 7.15 1.18 1.36 1.25 1.28 1.37 1.37 1.31 1.19 1.93 1.75 1.81 0.97 1.70 1.78 1.74 2.20 1.79 1.75 19.41 19.64 4 Herad,total 3 109 atoms/g 10.08 13.29 2.54 0.46 34.70 8.30 1.63 9.94 10.33 6.89 7.91 14.87 12.85 51.39 8.50 9.81 8.97 9.17 9.87 9.82 9.39 8.57 13.90 12.58 13.03 6.97 12.23 12.78 12.47 15.82 12.86 12.57 139.51 30.55 107 atoms/g 1.32 1.82 1.50 0.07 5.19 1.09 0.94 1.48 1.60 1.10 1.24 2.49 1.94 6.31 1.23 1.36 1.32 1.20 1.46 1.61 1.31 1.25 2.12 1.94 2.00 1.11 1.81 1.87 1.93 2.63 1.94 1.86 19.30 18.33 Hec,corr Age (corr) Age diff ka ka 5.456 7.186 5.957 0.247 18.756 4.501 3.824 5.371 5.587 3.721 4.279 8.028 6.942 27.819 4.604 5.305 4.850 4.965 5.333 5.305 5.079 4.632 7.508 6.803 7.034 3.768 6.613 6.909 6.733 8.543 6.950 6.801 75.459 71.643 0.040 0.048 0.007 0.001 0.118 0.043 0.008 0.034 0.035 0.018 0.028 0.040 0.040 0.213 0.036 0.036 0.034 0.038 0.030 0.030 0.036 0.029 0.042 0.047 0.037 0.023 0.041 0.045 0.035 0.046 0.043 0.049 0.519 0.118 Herad,ap = radiogenic 4He from U and Th in apatite inclusions. 4Herad,grn = radiogenic 4He from U and Th in the grain matrix. Herad,gl = radiogenic 4He from U and Th in glass inclusions. 4Herad,mat = radiogenic 4He from U and Th in the matrix glass surrounding the clinopyroxene or olivine grains. Half-lives: 238U = 4.47 x 109 a; 235U = 7.04 x 108 a; 232Th = 1.40 x 1010 a. Nuclide abundances: 238U = 0.99274; 235U = 0.0072; 232Th = 1. Additional significant figures are shown in the ages to more effectively illustrate the effect of the radiogenic correction on the calculated exposure age. 4 Table D.4. 36Cl production rates and exposure ages (no erosion). LSD Psp(z) Sample E11-01 E11-02 E11-04 E11-05 E11-07 E11-10 E11-18 E11-23 E11-24 E11-25 atoms Cl/g/a 95.51 101.84 118.40 95.35 112.70 127.55 119.37 114.66 112.17 111.52 36 Plen(z) (uncorr) atoms 36 Cl/g/a 9.62 7.73 7.25 9.69 11.91 12.98 18.59 14.51 15.82 7.29 Plen(z) (corr) atoms 36 Cl/g/a 4.58 2.86 2.02 4.95 5.86 6.57 13.73 8.81 9.52 2.32 Pμ(z) atoms Cl/g/a 1.77 1.87 2.15 1.77 2.03 2.25 2.15 2.05 2.00 2.02 36 St Age (uncorr) 1σ ka 5.34 6.62 17.19 4.13 5.16 7.09 5.01 6.44 3.44 6.22 Age (corr) 1σ ka 0.16 0.18 0.41 0.14 0.16 0.21 0.15 0.19 0.12 0.26 5.62 6.95 17.95 4.36 5.44 7.41 5.21 6.75 3.66 6.50 Psp(z) atoms Cl/g/a 87.89 93.31 107.79 87.63 101.78 114.38 107.13 103.68 101.05 101.37 36 0.16 0.16 0.45 0.14 0.17 0.22 0.14 0.19 0.14 0.25 Plen(z) (uncorr) atoms 36 Cl/g/a 8.66 6.92 6.44 8.71 10.52 11.36 16.31 12.82 13.95 6.48 Plen(z) (corr) atoms 36 Cl/g/a 4.12 2.56 1.79 4.45 5.18 5.76 12.04 7.78 8.40 2.06 Pμ(z) atoms Cl/g/a 1.80 1.90 2.18 1.80 2.06 2.29 2.18 2.09 2.03 2.05 36 Age (uncorr) 1σ ka 6.42 8.02 21.05 5.01 6.33 8.80 6.20 7.92 4.33 7.59 Age (corr) 1σ ka 0.17 0.20 0.52 0.15 0.19 0.30 0.19 0.23 0.14 0.32 6.76 8.40 21.97 5.27 6.67 9.23 6.43 8.30 4.59 7.93 0.18 0.21 0.55 0.16 0.20 0.31 0.20 0.25 0.15 0.33 Psp(z) = production rate of 36Cl by spallation of K, Ca, Ti, and Fe at the depth of the middle of the sample. Plen(z) (uncorr) = production rate of 36Cl by capture of low-energy neutrons, including muon-induced neutrons, calculated using uncorrected Cl concentration. P len(z) (corr) = production rate of 36Cl by capture of lowenergy neutrons, calculated using blank-corrected Cl concentration. Pμ = production rate of 36Cl by muons (including fast muons and absorption of slow negative muons). Age (uncorr) is the exposure age calculated if blank corrections for 36Cl and Cl are not used. Age (corr) is the exposure age calculated if blank corrections are used. Table D.5. 3He and 36Cl LSD ages for different erosion rates. Sample E11-01 E11-02 E11-03 E11-04 E11-05 E11-06 E11-07 E11-08 E11-09 E11-10 E11-11 E11-12 E11-13 E11-14 E11-15 E11-16 E11-17 E11-18 E11-19 E11-20 E11-21 E11-22 E11-23 E11-24 E11-25 E11-26 E11-27 E11-28 E11-29 E11-30 E11-31 No erosion He Age 36Cl Age 5.42 5.62 7.14 6.95 0.25 --18.64 17.95 4.46 4.36 5.34 --5.55 5.44 3.70 --4.25 --7.99 7.41 6.90 --27.61 --4.57 --5.27 --4.82 --4.93 --5.30 --5.27 5.21 5.04 --4.60 --7.47 --6.76 --7.00 6.75 3.75 3.66 6.57 6.50 6.86 --6.70 --8.50 --6.91 --6.75 --74.94 --- 3 1 mm/ka He Age 36Cl Age 5.44 5.64 7.17 6.97 0.25 --18.89 18.17 4.47 4.37 5.35 --5.57 5.45 3.71 --4.26 --8.02 7.43 6.92 --28.13 --4.59 --5.29 --4.84 --4.95 --5.31 --5.29 5.21 5.06 --4.61 --7.51 --6.79 --7.02 6.77 3.75 3.66 6.60 6.51 6.90 --6.72 --8.54 --6.94 --6.78 --78.82 --- 3 3 mm/ka He Age 36Cl Age 5.49 5.68 7.23 7.02 0.25 --19.42 18.62 4.51 4.40 5.39 --5.60 5.47 3.71 --4.29 --8.11 7.48 6.98 --29.28 --4.61 --5.31 --4.87 --4.99 --5.36 --5.31 5.21 5.10 --4.64 --7.58 --6.85 --7.09 6.81 3.77 3.67 6.64 6.56 6.96 --6.79 --8.65 --7.01 --6.83 --88.55 --- 3 5 mm/ka He Age 36Cl Age 5.53 5.71 7.30 7.08 0.25 --20.00 19.11 4.53 4.41 5.41 --5.64 5.50 3.73 --4.31 --8.21 7.53 7.03 --30.56 --4.64 --5.34 --4.91 --5.02 --5.40 --5.34 5.21 5.15 --4.67 --7.66 --6.91 --7.15 6.85 3.79 3.68 6.69 6.60 7.03 --6.85 --8.76 --7.09 --6.90 --102.51 --- 3 7 mm/ka He Age 36Cl Age 5.58 5.75 7.36 7.14 0.25 --20.61 19.65 4.56 4.44 5.44 --5.67 5.51 3.75 --4.33 --8.30 7.59 7.09 --32.01 --4.67 --5.37 --4.95 --5.06 --5.44 --5.37 5.22 5.20 --4.70 --7.75 --6.98 --7.21 6.89 3.80 3.69 6.74 6.64 7.11 --6.92 --8.87 --7.15 --6.95 --125.35 --- 3 9 mm/ka He Age 36Cl Age 5.62 5.80 7.43 7.20 0.25 --21.30 20.23 4.60 4.46 5.47 --5.71 5.54 3.76 --4.35 --8.40 7.64 7.14 --33.66 --4.71 --5.41 --5.00 --5.10 --5.48 --5.40 5.22 5.23 --4.73 --7.84 --7.04 --7.27 6.93 3.81 3.70 6.79 6.69 7.17 --6.99 --8.98 --7.22 --7.01 --176.91 --- 3 The given erosion rate is assumed to be constant for the duration of the samples exposure. 3He ages use the DVDP 3He/4He ratio for magmatic 3He/4He. Only 3He ages in clinopyroxene are shown. 36Cl ages are calculated using blank-corrected concentrations for 36Cl and total Cl. Table D.6. 3He and 36Cl LSD ages for different depths of prior snow coverage (ρsnow = 0.5 g/cm3). Duration of snow coverage is assumed to be 50% of the duration of the sample’s exposure. Sample E11-01 E11-02 E11-03 E11-04 E11-05 E11-06 E11-07 E11-08 E11-09 E11-10 E11-11 E11-12 E11-13 E11-14 E11-15 E11-16 E11-17 E11-18 E11-19 E11-20 E11-21 E11-22 E11-23 E11-24 E11-25 E11-26 E11-27 E11-28 E11-29 E11-30 E11-31 3 No snow coverage He Age 36Cl Age 5.42 5.62 7.14 6.95 0.25 --18.64 17.95 4.46 4.36 5.34 --5.55 5.44 3.70 --4.25 --7.99 7.41 6.90 --27.61 --4.57 --5.27 --4.82 --4.93 --5.30 --5.27 5.21 5.04 --4.60 --7.47 --6.76 --7.00 6.75 3.75 3.66 6.57 6.50 6.86 --6.70 --8.50 --6.91 --6.75 --74.94 --- 3 0.5 m He Age 36Cl Age 5.90 6.01 7.71 7.44 0.26 --20.30 19.44 4.87 4.68 5.80 --6.03 5.78 4.06 --4.65 --8.70 7.89 7.46 --30.06 --4.99 --5.72 --5.25 --5.38 --5.76 --5.73 5.37 5.49 --5.01 --8.10 --7.32 --7.57 7.19 4.11 3.90 7.14 7.01 7.43 --7.26 --9.26 --7.47 --7.32 --81.66 --- 3 1m He Age 36Cl Age 6.38 6.58 8.31 8.05 0.28 --21.92 21.11 5.27 5.13 6.25 --6.51 6.32 4.41 --5.02 --9.41 8.61 8.04 --32.49 --5.40 --6.18 --5.66 --5.80 --6.21 --6.20 5.99 5.91 --5.42 --8.76 --7.87 --8.17 7.85 4.47 4.34 7.65 7.55 8.00 --7.79 --10.01 --8.03 --7.86 --88.27 --- 3 2m He Age 36Cl Age 7.26 7.54 9.50 9.25 0.31 --25.01 24.20 6.01 5.90 7.11 --7.38 7.26 5.05 --5.72 --10.75 9.96 9.20 --37.08 --6.14 --7.03 --6.45 --6.61 --7.07 --7.05 7.01 6.74 --6.17 --10.01 --9.00 --9.36 9.11 5.14 5.06 8.72 8.62 9.14 --8.90 --11.44 --9.19 --8.99 --100.79 --- 3 3m He Age 36Cl Age 8.01 8.35 10.56 10.26 0.35 --27.75 26.89 6.66 6.55 7.82 --8.14 8.01 5.59 --6.34 --11.95 11.09 10.21 --41.15 --6.81 --7.73 --7.14 --7.30 --7.77 --7.75 7.76 7.43 --6.84 --11.13 --10.00 --10.41 10.14 5.70 5.62 9.68 9.56 10.15 --9.87 --12.70 --10.20 --9.99 --111.86 --- 3 4m He Age 36Cl Age 8.68 9.05 11.46 11.13 0.38 --30.06 29.13 7.20 7.07 8.46 --8.84 8.66 6.05 --6.86 --12.95 12.00 11.10 --44.56 --7.34 --8.36 --7.67 --7.86 --8.41 --8.38 8.37 8.01 --7.37 --12.06 --10.84 --11.30 11.00 6.16 6.08 10.51 10.37 11.02 --10.71 --13.75 --11.07 --10.83 --121.15 --- 3 He ages use the DVDP 3He/4He ratio for magmatic 3He/4He. Only 3He ages in clinopyroxene are shown. 36Cl ages are calculated using blank-corrected concentrations for 36Cl and total Cl. SUPPLEMENT E. Lava flow surface areas The surface area of each of the post-caldera lava flows was estimated in ArcMap based on the mapped surface area of each flow (Table E.1). Areas do not include lava that flowed over the caldera rim and off the summit plateau. Areas are not given for the West, Young Pre-caldera, and Old Pre-caldera lava flows because most of the lava erupted flowed off the summit plateau and was not mapped. Table E.1. Post-caldera lava flow surface areas. Lava flow Area (km2) South 0.13 UITR 0.24 Northeast 1.61 Southeast 0.49 LITR 0.28 Tramways 0.37 Nausea Knob 0.27 Lower Hut 3.12 Southwest 0.17 Northwest 0.75 Total 7.44 Additional References The following references are cited in this supplement but not in the main paper: Blard, P.-H., Farley, K.A., 2008. The influence of radiogenic 4He on cosmogenic 3He determinations in volcanic olivine and pyroxene. Earth and Planetary Science Letters 276, 20-29. Farley, K.A., Wolf, R.A., Silver, L.T., 1996. The effects of long alpha-stopping distances on (UTh)/He ages. Geochimica et Cosmochimica Acta 60, 4223-4229. Rooney, T.O., Hart, W.K., Hall, C.M., Ayalew, D., Ghiorso, M.S., Hidalgo, P., Yirgu, G., 2012. Peralkaline magma evolution and the tephra record in the Ethiopian Rift. Contributions to Mineralogy and Petrology 164, 407-426.
© Copyright 2026 Paperzz