BARCODED PYROSEQUENCING FOR DE NOVO CHARACTERIZATION OF A MICROBIOTA Thursday, February 20, 2014 NIZO Microbiota Characterization Platform prior knowledge targeted / profiling quantitative selectivity before you start sensitivity phylogeny information depth of phylogeny throughput costs / sample FISH qPCR t-RFLP TGGE / DGGE X-IT-CHIP pyro-sequencing yes targeted +++ +++ probe 1% yes taxon to genus low high (laborious) yes targeted +++ +++ primer & probe 0.001 % yes phylum to OTU high low (broad analysis is costly) no profiling + + no 0.1 % no phylum low to medium medium no profiling + ++ no (group primers) 1% no phylum to OTU low to medium medium yes profiling ++ + no 0.05 % yes (prediction) phylum to OTU high high no profiling +++ ++ no 0.1 % yes phylum to genus high low taxon > phylum > genus > species (OTU) Depending on scientific question, choice of technology is determined targeted or profiling composition or relative proportion (quantitative values) composition pattern or phylogeny (phylogenetic information) ambition of detection depth prior knowledge or de novo approach available budget…….. NIZO Microbiota Characterization Platform Quantification of bacterial groups Real-time qPCR Microbiota profiling Micro-array technology (HITCHIP) Detector Tube Thermal Cycler Base FISH combined with Flow Cytometry Barcoded pyrosequencing Substantiation of EFSA health claims: Molecular quantification platform (potential pathogens) Quantitative RT-PCR Count bacterial groups by specific primers & probes (DNA quantification) FISH-FACS Count bacterial groups by specific fluorescence tags (cell quantification) Luminex xMAP technology Quantification of multiple targets (bacteria/viral/parasite) Detector xMAP-technology Tube Thermal Cycler Base Barcoded pyrosequencing SAMPLE -intestinal content - biopsy -faeces -skin LYSIS 1. Optimization DNA isolation protocol ISOLATE DNA FRAGMENTS DNA LIBRARY PREPARATION DNA SEQUENCER REMOVE CHIMERAS RDP 10 CLASSIFIER VISUALIZATION MICROBIOTA 2. Primer design & PCR optimalisation 3. Bioinformatics tool for classification, visualization & statistical DNA isolation 16S rRNA gene variable B conserved Sample specific sequence tag conserved PCR amplification of mixed 16s population ~ 750 bp amplicon A Primer design: Balancing phylogenetic coverage vs resolution PHYLOGENETIC COVERAGE Primer pair should target highly conserved sequence domain 16S rRNA V6 V4 V7 V5 V3 V8 V1 V9 V2 PHYLOGENETIC RESOLUTION / DEPTH OF PHYLOGENY Primer pair should amplify highly variable sequence domain Primer coverage universal probes selected primers for amplifying V3-V6 % coverage for different groups Domain Phylum Proteo Firmi bacteria archaea bacteria cutes primer name p338Forward 357 NIZO F2 detlefsen et al plos biology (2008) vol 6(11) Reverse 1061RR4 F. Andersson Plos ONE (2008) vol 3(8) NIZO Reverse 520 F F9 Cleasson et al Plos ONE (2009) vol 4(8) NIZO Class suborder Family Gamma Propioni Coryne Staphylo Actino Bacteroi proteo bacterine bacterine Enteroco Streptoc coccacea Lacto Bifidobact bacteria detes bacteria ae ae c caceae oc caceae e bacillales er iaceae 93,54% 0,01% 97,05% 93,98% 96,97% 96,96% 96,99% 97,74% 97,70% 97,75% 97,39% 97,66% 97,19% 96,30% 97,67% 2,46% 98,05% 97,83% 98,29% 97,96% 98,18% 98,19% 98,43% 98,77% 97,50% 98,09% 97,92% 96,71% 97,32% 14,90% 97,27% 97,50% 98,01% 97,54% 97,88% 97,95% 98,08% 97,07% 97,42% 97,77% 97,46% 97,33% 79,87% 70,24% 86,89% 81,20% 82,08% 79,86% 84,13% 69,27% 81,32% 41,64% 82,27% 60,75% 86,97% 69,10% 80,97% 89,25% 87,46% 88,65% 70,04% 93,32% 85,61% 88,61% 64,25% 92,06% 46,53% 79,49% 73,26% 69,96% 63,75% 84,48% 59,17% 76,70% 35,22% 79,82% 64,71% 85,62% 79,84% 88,22% 73,75% 72,89% 66,78% 78,96% 64,63% 89,80% 70,31% 69,51% 45,38% 84,76% reference papers Forward 8F Gao et al. Reverse 1510R Gao et al. PLoS ONE (2008) Vol 3(7) PLoS ONE (2008) Vol 3(7) 83,02% 71,27% Forward 8F Grice et al. Reverse 1391R Grice et al. Science 2009; 324, 1190 Science 2009; 324, 1190 60,17% 76,30% 71,72% Data processing: NIZO’s Bio-informatics pipeline I N P U T RAW microbiota sequences Pyronoise metadata 0 Chimeras PCA Statistics Visualization tools 5. Chimera removal -Chimera slayer -Wigeon -Mallard Dynamics of the microbiome after skin damage Skin damage by repetitive tape-stripping of skin microbial diversity (phylogenetic distance) of the skin microbiota in different niches 8/9 Lowerback 3 inner-elbow 1 Fronthead inner-elbow Armpit Fronthead Fronthead ~ P. acnes CCA analyses of the microbiota composition of the lowerback The impact of the different variables: Volunteer, gender and stripping depth Clustering and microbial community composition of different volunteers and epidermal layers (weighted UNIFRAC) Large inter-individual differences between all the sampled skin layers Tape stripping of skin epidermal layers Phylogenetic visualisation human skin microbiota example lower back How to compare for e.g. treatment effects? Visualization of all taxa being significantly increased or decreased in abundance between Halithosis versus healthy subjects - Size of node = size of bacterial group - Color of node = fold increase (red) or fold-decrease (blue) between groups - Thickness and color of node bored = how well supported is difference by all individual members within the groups being compared Jos boekhorst Sacha van Hijum Difference in microbiota composition between the genders The Females versus The males Recolonization patterns of the skin microbiome The developing ‘neo-microbiome’ was more similar to that of the deeper stratum corneum layers Can the microbiome of the deeper layers be regarded as the host indigenous microbiome? Stronger statistical tools to indentify OTUs/bacterial taxa (biomarkers) specific for treatment, health condition, inflammatory status etc. Random Forest modelling & multivariate statistics Dorsal tongue microbiota of 3 healthy volunteers Mouse Instance Elephant Instance Class overlap Class Mouse Class Elephant Technology for your success NOP OP NOP OP NOP Visual analytics – browsing your phylogenetic data with personalized NIZO-tools (BIOTAVIZ) Skin microbiota: P. acnes * S. epidermidis * the rest…. Acknowledgements Kasper Dinkla Michel Westenberg Iris van Swam Jos Boekhorst Esther van der Meulen Esther Floris Erik Smit Peter Bron Sacha van Hijum Koos Oosterhaven Michiel Kleerebezem Tim te Beek Marc van Driel Joost van Schalkwijk Patrick Zeeuwen
© Copyright 2026 Paperzz