Nitrogen transport and transformation at the groundwater – surface water interface How important is the Hyporheic Zone? Stefan Krause A.L. Heathwaite (2), A. Binley (1) (2) (3) (3), (1) D. Kaeser (3) Earth Science and Geography Department, Keele University, UK Centre for Sustainable Water Management, Lancaster, UK Lancaster Environment Centre, Lancaster, UK Rese arch Institute for the Environment, Physical Sciences & Applied Mathematics Stefan Krause Hydroecology meets Hydrogeology BGS 2008 Outline • Introduction – Motivation • Efficiency of nitrate attenuation at the groundwater – surface water interface • Transport and transformation of N in the Hyporheic Zone - physical streambed controls on transport - chemical controls on transformation • Potential implications of HZ nitrogen cycling - upscaling strategies Stefan Krause Hydroecology meets Hydrogeology BGS 2008 1 Motivation – The Nitrate Time Bomb? Nitrate Concentrations in 40 Cumbrian GW- Boreholes 1972 - 2007 Nitrate Directive WHO 10.3 mg l -1 Why are GW Nitrate concentrations still incr easing in man y aquifer s? ! Results of diffuse inputs and long r esidence times - The Nitr ate Tim e Bomb? Stefan Krause Hydroecology meets Hydrogeology BGS 2008 Motivation – Riparian Attenuation? (Potential) impact of riparian nitrate attenuation ammonificatio n, nitrification N-fixation, mineralisation Denitrification?! Background: Expectations for potential Nitrate attenuation in riparian groundwaters 20 yrs of r esear ch: What is the riparian nitrate retention capacity? How much amelioration can be achieved? Stefan Krause Hydroecology meets Hydrogeology BGS 2008 2 Riparian Controls on Nutrient Delivery Nitrate retention within riparian groundwaters Model: IWAN: Coupled Groundwater - Surface Water Model Rathenow Berlin Riparian Attenuation: Havel - River Brandenburg Potsdam (Krause and Bronstert, 2007, Krause et al. 2007) Stefan Krause - up to 40 % NO3 redu ction in rip arian GW - baseflo w contributions up to 20% (from 1% of the cat chment !) Hydroecology meets Hydrogeology BGS 2008 Motivation – The Hyporheic Panacea? Hyporheic Transport and Transformation of Nutrients dissolution anaerobic fine grain upwelling, sizes infiltration of solutes mineralisation, binding river transformation, degradation aerobic coarse s ediment groundwater The Hyporheic Zone (H Z) - reactiv e area of GW-SW mixing (SW> 10% ) with strong redox gradients and poten tial for nutrient transformatio n in depende nce of: - pattern of transmissiv ities and fluxes (contact and residence times) - pattern of redox co nditio ns, nutrient co ncentrations and av ailability o f reductiv e agents (FeS 2 , Corg) Previous Studies of HZ processes (usually accounting for surface water infiltrating and exfiltrating into/from the streambed) derived evidence for HZ potential to moderately change N transported at GW-SW interface Stefan Krause Hydroecology meets Hydrogeology BGS 2008 3 Motivation – The Hyporheic Panacea? Hyporheic Transport and Transformation of Nutrients ammonificatio n, nitrification N-fixation, mineralisation Denitrification?! GW-SW interface potentially c ontrols transport a n transformatio n of ni trogen How much of the riparian nitrate finally reaches the riv er? Specific hyporheic process d ynamics are not taken in to account i n modelling a pproaches Stefan Krause Hydroecology meets Hydrogeology BGS 2008 HZ Nitrogen Cycling – the GW Perspective Investigation of the dynamic controls of physical streambed conditions on hyporheic exchange fluxes and redox chemistry The Leith field site : • N - Cumbria • T ributary of the River Eden • Gaining section in riparian floodplain (222 Rn) • Baseflow conditions (May to October ) • GW & SW < 10 mg l -1 NO3 -N Stefan Krause Hydroecology meets Hydrogeology BGS 2008 4 HZ Nitrogen Cycling – the GW Perspective Experimental Setup - River Leith 19 G F 24 20 23 F G F G 18 G F 17 F G F G 16 F G 21 8 G F F G st rea mb ed eleva tio n ( m) 31 Valu e G F 32 F G 25 30 G F F G 14 F G 110.32 9 F G 11 F G F G ² Site B 26 7 G F 15 10 F G F G 29 27 G F 0 0 .5 1 2 3 28 G F 5 G 4 F F 1 G F G 4 Meters 6 G F 13 G F core, sampling point, piezometer 22 F G F G 12 F G 109.49 Site A 2 G 3 F F G Two sites - ph ysical and chemical properties: - 42 cores: - porosity, compaction, grain size distribution, hydr. cond. - cores: NO3 , NH4 , T N/T ON concentrations (foc, CEC (J. Smith)) - ca. 140 piezometer + gw boreholes in riparian floodplain: - hydraulic gradients, slug tests, temperature and radon survey - NO3 , NH4 , T N/T ON, DO, ORP, ph (fortnightly) - DET probes (sub cm scale) - tracer injection: salt, rhodamine – flow velocities, residence times Stefan Krause cm 55 c m 5 5 DDeept h( cm) p ht (c m) 550 0 cc m m 50 cm M embb ananrr ee FilF il erertt M em D ept h (m c ) De p ht (c m) rFr o F non tWi tWinn d odo w wP lPl teteaa 15c m 0 -5 -1 0 -1 5 -2 0 -2 5 -3 0 -2 5 -3 0 -3 5 -4 0 -3 5 -4 0 0 .0 1 cm 660 0 cm cm 60 cm D if Di f u siusi eevv GGelel LaL a ereryy M embran e iF tl er Dif fu s vi e Gel a L yer 0 -5 -1 0 -1 5 -2 0 1. 0 2. 0 3. 0 F e (mg /l Fe ( mg/ )l 0 0. 1 0. 2 0. 3 MMnn(( mg m/ g/l) Hydroecology meets Hydrogeology BGS Intr od 2008 ucti on HZ Nitrogen Cycling – the GW Perspective Identification of sources with different chem. background W E ? NH4 high SW GW II HZ NO3 low Nitrate 10 NO3 low GW I Ammoniu m Dissolved Oxygen 2.0 20 18 16 1.5 4 1.0 12 10 8 6 0.5 2 14 -1 6 DO (mg l ) -1 N H4- N ( mg l ) -1 NO3 -N (mg l ) 8 4 2 0 0.0 SW Stefan Krause HZ GW 0 SW HZ GW Hydroecology meets Hydrogeology SW HZ GW BGS 2008 5 Con c. NO3 - N ( mg l -1 ) HZ impact on porewater N along upwelling pathway grit, gravel 6.09E-04 ms-1 cs, gravel org. mat., ms Con c. NO3 - N ( mg l -1 ) 3.21E-03 ms-1 cs, gravel grit, red sst, ms Leith B (avg. sediment 50 cm) NO 3-N concentrations in piezometers Co nc. NO3 - N (mg l -1 ) 8.24E-04 ms-1 10 shal low piezometers 8 6 4 2 0 ca. 20 cm 10 intermedi ate pi ezometers 8 6 4 2 0 ca. 50 cm 10 deep p iezometers 4 18/08/ 06 13/09/ 06 02/10/ 06 10/10/ 06 23/10/ 06 2 pt-sst, ca. 100 cm 0 p ools 8 6 lb20 Stefan Krause riffles l b27 l b28 lb29 lb21 veg. b an k E lb22 l b25 lb26 lb24 lb31 veg. bank W l b23 l b30 Piezometer location Hydroecology meets Hydrogeology BGS 2008 Hyporheic Zone – Spatial Extend of Nitrogen Cycling HZ significantly impacts on nitrate delivery Highly redox reactive area (efficient transformations/turnover rates) exceeds the area usually understood as HZ HZ: rather static + arbitrary definition of SW-GW mixing with ≥ 10% SW Fig. Stefan Krause Alteration of Nitrate concen trations in the upwelling GW of 30 streambed piezometers Hydroecology meets Hydrogeology BGS 2008 6 Hyporheic Zone – Revising static concepts Episodic Mixin g Pe rma nent Mix ing Surfa ce Water W ater Revised Concept of Hyporheic Zone Impacts on Nutrient Cycling RIVER diss olution fine grain sizes anaerobic episodic mixing aerobic transfor mation degr adation coarse s edime nt Low DO, Corg rich DO r ich, low Co rg episodic mixing Denitrification episodic mixing Nitrific ation Ground G rou nd Water W ater upwelling, infiltration of solutes upwelling, infiltration of solutes GROUNDWATER BEDROCK Considering episodic mixing as sufficient source for organic matter and dissolv ed oxygen Stefan Krause Hydroecology meets Hydrogeology BGS 2008 Hyporheic Nitrogen Cycling - Impact of Mixing 12 E 20 19 18 17 16 15 14 13 52 4 36 6 52 4 36 4 12 11 10 9 8 7 6 5 4 3 2 1 0 52 4 36 2 52 4 36 0 Transect I 52 4 35 8 52 4 35 6 52 4 35 4 Transect II W 3 58 76 0 3 58 7 62 35 87 64 35 87 6 6 3 58 76 8 hydr aulic gra dient (-) hyd. grad. 52 4 36 8 52 4 35 2 Transec t I 10 8 6 4 2 0 West Ce ntr al 20 Eas t Transec t II 18 hydra ulic gradient (-) 52 4 37 0 16 14 12 10 8 6 4 2 Hydraulic gradient in the superficial bed sediments at 18/08/2 006 Stefan Krause 0 West Hydroecology meets Hydrogeology Central East BGS 2008 7 Hyporheic Nitrogen Cycling - Impact of Mixing E 52 4 37 0 52 437 0 E hyd. grad. 52 4 36 8 52 436 8 NO3 - N (mg/ l) 20 19 18 17 16 15 14 13 52 4 36 6 52 4 36 4 52 436 6 52 436 4 12 11 10 9 8 7 6 5 4 3 2 1 0 52 4 36 2 52 4 36 0 Transect I 52 4 35 8 52 4 35 6 52 4 35 4 7.5 7 6.5 6 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 52 436 2 52 436 0 52 435 8 52 435 6 52 435 4 Transect II 52 4 35 2 10 9.5 9 8.5 8 52 435 2 W W 3 58 76 0 3 58 7 62 35 87 64 35 87 6 6 3 58 76 8 3 58 760 3 587 62 35 876 4 358 76 6 3 58 768 NO 3 – N concentrations 0.5 – 1.0 m Hydraulic gradient in the superficial bed sediments at 18/08/2 006 Stefan Krause 18/08/20 06 Hydroecology meets Hydrogeology BGS 2008 Hyporheic Nitrogen Cycling - Redox Conditions Nitrate concentration change along the upwelling gro und water passage: High foc: upwards decrease 3 .5 3 .0 up ward s de crease upw ards in cre ase foc (%) 2 .5 2 .0 Low foc : R2 = -0.77 1 .5 1 .0 upwards increase or no concentration chan ges p iezome te rs l ine ar fit 0 .5 0 .0 -4 Stefan Krause -3 -2 -1 0-1 chan ge C NO 3-N (mg l ) 1 2 Hydroecology meets Hydrogeology BGS 2008 8 Hyporheic Nitrogen Cycling - Retention Time NO 3 c ha ng e on hz p as sag e ( mg/ l NO 3- N) a vg. re sid e nce time s ( hr s) 38 5 4 .5 5 24 37 0 5 243 68 4 3 .5 3 5 24 36 8 5 243 66 2 .5 2 5 24 36 6 5 243 64 1 .5 1 0 .5 5 24 36 4 5 243 62 0 -0 .5 5 24 36 2 18 5 243 60 -1 -1 .5 -2 5 24 36 0 16 14 5 243 58 -2 .5 -3 5 24 35 8 5 243 56 -3 .5 -4 -4 .5 5 24 35 6 36 34 32 30 28 26 24 22 20 12 10 8 6 4 2 -5 5 243 54 0 5 24 35 4 5 243 52 358 764 35 876 6 3 587 68 HZ residence time vs. NO3 6 in upwelling groundwater 2 0 -2 -4 -6 -8 5 24 35 2 35 876 0 35 87 62 8 4 N O3 -N (mg l-1) 5 243 70 3 587 60 358 76 2 3 587 64 Tresd = Ltopsed k -1 358 766 0 35 87 68 50 100 150 time (hrs) 200 250 Ltopsed - coring, geoph. exploration k - derived by slug tests Longer residence times increase the efficiency of redox reactions – for both nitrification / de nitrification Stefan Krause Hydroecology meets Hydrogeology BGS 2008 Streambed Geomorphology - Parameterisation Proxy Geomorphic controls on transport and transformation Leith B central riffle – interpolated NO3 co nc., hydr. head gradients C SW = 5.0 mg l-1 NO3-N Stefan Krause Hydroecology meets Hydrogeology BGS 2008 9 Hyporheic Connectivity The Principle of Hyporheic Connectivity Chemical connectivity, Redox reactivity Physical connectivity, Riverbed transmissivity HYPORHEIC CONNECT IVIT Y = + High moderate low controlling controlling: controlling: - Exchange flow rates - Mixing intensities - Pathw ays and residence, reaction times -Redox environment -Transformation types (Nitrification/Denitrification) - Reaction rates - Efficiency of transport, exchange and transformation rates Stefan Krause Hydroecology meets Hydrogeology BGS 2008 Seasonally Variable HZ Implications Temporally variable implications of nitrate contributions from hyporheic groundwater 8 7 C NO3-N (mg l-1) D 6 5 4 M S SW Leith upstream SW Leith midstream SW Leith downstream GW deep GW intermediate GW shall ow D M D D M S M D S M D S M S D 3 2 1 7/ 25/ 0 S D M S D M D S M S M S S D M S D M D M sample period 07/2006 - 08/2007 0/0260075/20075/ 2007 6/ 20077/20078/20078/ 20079/ 2007 0/20070/2007 24 2006 08/2006 08/ 2006 09/2006 09/ 2006 10/2006 10/ 2006 10/0 31/ 18/ 09/0 30/0 20/ 0 11/ 0 01/0 22/0 12/ 0 03/ 1 24/ 1 17/ 03/ 19/ 05/ 22/ 08/ Stefan Krause Hydroecology meets Hydrogeology BGS 2008 10 Spontaneous Changes of HZ Conditions -1 NO 3-N (mg l ) 7 6 5 4 3 2 1 0 180806 130906 021006 101006 231006 020507 dat e 170507 170707 010807 150807 10 9 171007 301007 s tre amb ed 4 0 - 60 cm -1 NO 3- N (m g l ) 8 7 6 5 4 3 2 1 0 180806 130906 021006 101006 231006 020507 d ate 170507 170707 010807 150807 171007 301007 10 str eam bed 80 - 1 00 cm 9 8 3 Concentration alteration disappears st ream bed 15 - 30 cm 8 -1 Impact of sediment restructuring after storm events 10 9 NO -N (mg l ) NO3 conc. changes along upwelling HZ flowpath (due to denitrification, nitrification) 7 6 5 4 3 2 1 0 180806 130906 021006 101006 231006 020507 170507 170707 010807 150807 171007 301007 da te Stefan Krause Hydroecology meets Hydrogeology BGS 2008 Future Challenges - Model Upscaling plot scale local scale hz hz cross section stream reach regional scale hz catchment Knowledge Impact ?! How does the impact of hyporheic connectivity controls on exchange fluxes and nutrient amelioration change with scale? Stefan Krause Hydroecology meets Hydrogeology BGS 2008 Hyporhei c Zone 11 Conclusions i. The h yporheic flo w path can have a significant impact on the GW nitrate concentrations (attenuation + enrichment) – effect can be lost du e to HZ disturbance ii. Pattern of groundwater n itrate transform ations and contributions to surface water are controlled b y H yporheic Connectivity: a) Ph ysical Riverbed Connectivit y: • Mixing (sources of different chem. signature) • Residen ce/r eaction time (ac tive/non- active areas) • Flow path ways (ex pos ure to redox reactive z ones) b) Chemical Reactivit y: • Redox environment Annamox….) • Reaction efficien cy (Reacti on ty pe (Nitrification / Denitrification / iii. River(basin) manag ement requires assessm ent of HZ impact on at least subcatchment scale - Model based upscaling of exp erim ental small scale kno wledge Stefan Krause Hydroecology meets Hydrogeology BGS 2008 Special Thanks to: P. Keenan (CSWM); J. W. Smith (EA); M. Schaerer (FOEN); J. Cox (CSIRO), S. Skradde (UP); H. Rubilar (UP); R. Rees (LU); J. Keery (CEH); M. Morgner (UP); A. Bauer (UP); THANK YOU ! Stefan Krause Hydroecology meets Hydrogeology BGS 2008 12
© Copyright 2026 Paperzz