Direct Characterization of Kerogen by X-ray and Solid-State 13C NMR Methods 26th Oil Shale Symposium S. R. Kelemen, M. Afeworki, H. Freund M. L. Gorbaty, M. Sansone, M. Siskin, C.Walters ExxonMobil Research and Engineering Company, Annandale, NJ, 08801 M. Solum, R. J. Pugmire Departments of Chemical Engineering and Chemistry, University of Utah, Salt Lake City, Utah, 84112 Background • Understanding the chemistry of complex carbonaceous materials is aided by developing representative chemical structural models – Ideally want to link chemical structure models to reactivity models • In the past, model development was aided by information gathered using an indirect characterization strategy – Mildly decompose the organic solid, separate, identify and quantify the components using liquid and gaseous characterization methods – Employ selective nondestructive chemical derivatization and analysis • A large amount of chemical detail must be self-consistently integrated in order to derive a molecular level model of organic composition via indirect methods – Approach has been used to elucidate chemical structure of the organic matter in Green River and Rundle Ramsey Crossing Oil Shale 1 Original Organic Matter Models for Rundle and Green River Oil Shale from Indirect Characterization Rundle Organic Matter Model Scouten, C. G.; Siskin,M.; Scouten, C. G.; Rose, K. D.; Axzel,T.; Colgrove, S. G.; Pabst, R. E., Jr.; Prepr. Am. Chem. Soc., Div. Pet. Chem. 1989, 36 (1), 43 Green River Organic Matter Model Siskin,M.; Scouten, C. G.; Rose, K. D.; Axzel,T.; Colgrove, S. G.; Pabst, R. E., Jr.; in Geochemistry and Conversion of Oil Shales, ed. By C. Snape, NATO Series, 1995 2 Inherent Uncertainties with Indirect Characterization • Mildly decompose the organic solid and analyze products – Incomplete decomposition of the organic solid – Chemical transformation during decomposition • Chemical derivatization and analysis – Non-selective, incomplete or destructive derivatization of organic matter – Accuracy of methodologies to quantify derivatized products • Combination of Indirect characterization with new direct characterization methods can mitigate uncertainties 3 Direct Chemical State Probes for Carbonaceous Materials • Significant advances made over the past decade for different direct chemical state probes of complex carbonaceous samples – Provides average chemical composition • X-ray Photoelectron Spectroscopy (XPS) – Heteroatom (N, S, O), higher energy/spatial resolution, non-conducting samples • X-ray Absorption Near Edge Structure Spectroscopy (XANES) – Sulfur, Carbon and Nitrogen • Solid-State NMR Spectroscopy – 13C NMR for Carbon structures & oxygen functionalities, 15N NMR for speciation • Multiple technique strategy developed to quantify the average chemical structure of kerogen including Green River and Rundle oil shale (Type I Kerogen) 4 Multiple Technique Strategy for Defining the Organic Composition of Complex Carbonaceous Solids Organic Forms of Oxygen Carbon (H) Chemical/Skeletal Features Feature Approach Feature Approach H/C Elemental Analysis Average Aromatic Ring Size 13 Aliphatic C-O O-CH3 13 Σ C-O XPS C=O 13 C=O, O-C-O XPS O=C-O, O=C-N 13 O=C-O, O=C-N XPS % Methyl Carbon 13 C NMR Average Aliphatic Carbon Chain Length 13 Fraction of Aromatic Carbon with Attachments 13 Alkyl Carbon Chain Length Distribution (Isomerization) Indirect Methods C NMR Organic Forms of Sulfur Feature Approach Feature Approach R-S-S-R XANES XPS S/C Elemental Analysis XANES XPS SO, SO 2, SO3 XANES XPS 10-100 micron Spectroscopy (Yes) C NMR C NMR O/C XPS Organic Forms of Nitrogen Feature Pyridinic XPS XANES XPS C NMR C NMR Amine Ar-S-Ar(H) Elemental Analysis Indirect Methods Aromatic/ Naphthenic Ring Size Distribution Thiophenic Approach 13 C NMR XPS XANES XPS Feature Aromatic C-O 13 R-S-R(H) Approach C NMR % Aromatic/ Aliphatic Carbon C NMR Feature Amide Pyrrolic Approach 15 N NMR XPS, XANES 15 N NMR XPS, XANES 15 N NMR XPS, XANES 15 N NMR XPS, XANES Feature N/C NO, NO2 Pyridinic (O-Environment) Quaternary (Amonium Salt) (Pyridinum ion) (Ar-Bridgehead) Approach Elemental Analysis XPS 15 N NMR XPS, XANES 15 N NMR XPS, XANES 15 N NMR XPS, XANES 5 Van Krevelen Diagram for Kerogen and Rock-Eval Data 180 Hydrogen (per 100 C) 160 Green River Type I Type II 120 100 Type III 80 60 40 Type I Type II Type IIIC 20 0 5 Kerogen Type Green River Rundle Duvernay (A) Duvernay (B) Duvernay (C) Duvernay (D) Oxford Clay Paradox Malm Draupne Bakken Monterey Gippsland (A) Gippsland (B) Proprietary (A) Proprietary (B) Proprietary (C) Fruitland I I II II II II II II II II II IIS IIIC IIIC IIIC IIIC IIIC IIIC Rundle 140 0 Sample 10 15 Organic Oxygen (per 100 C) XPS Rock-Eval Hydrogen Tmax (°C) Index (mg/g) 446 739 444 995 414 532 438 439 443 242 479 22 413 577 438 401 420 670 424 581 419 580 411 621 415 251 436 226 427 295 453 235 479 120 424 237 • Lacustrine source rocks from the Green 20 River and Rundle formations contain hydrogen-rich algal kerogen (Type I) derived primarily from cyanobacteria or various 6 Chlorophyta and dinoflagellates, respectively Complimentary XPS and 13C NMR Data for Aromatic Carbon Hydrogen (per 100 Carbon) 200 175 Rundle Green River 150 Type I (XPS) Type II (XPS) Type IIIC (XPS) Type I (NMR) Type II (NMR) Type IIIC (NMR) • The amount of aromatic carbon, measured by both 13C NMR and XPS, increases with decreasing H/C – Surface composition comparable to the bulk – XPS percent aromatic carbon from calibrated carbon (1s) π to π* Signal (1) 125 100 75 50 25 0 20 40 60 80 Aromatic Carbon (Percent) 100 • Green River and Rundle Kerogen (Type I) have less aromatic carbon than other organic matter types at comparable levels of maturity (1) S. R. Kelemen et.al. Applied Surf. Sci., 1993, 64,167 7 XPS Carbon (1s) Spectra of Kerogen and Curve Resolution into Different Components C Rundle Type I Kerogen C Duvernay (B) Type II Kerogen C-O C-O C=O O=C-O C=O O=C-O Binding Energy (eV) Binding Energy (eV) 8 Organic Oxygen Forms Quantified using XPS Org. Oxygen C-O (286.3 eV) Mole Percent C=O (287.5 eV) O-C=O 2x (289.0 eV) 5.1 11.1 9.7 5.9 5.0 4.7 13.7 3.9 10.0 4.1 8.6 14.9 15.4 10.6 11.1 6.6 4.0 9.3 3.8 4.6 5.0 4.2 3.5 4.7 8.7 2.2 6.8 3.3 6.5 10.1 9.5 8.3 6.8 6.6 4.0 7.1 0.5 1.7 3.4 0.8 0.8 0.0 2.4 0.6 2.8 0.6 1.8 2.0 2.8 1.6 2.2 0.0 0.0 1.9 0.8 4.7 1.3 0.8 0.7 0.0 2.6 1.1 0.4 0.3 0.3 2.8 3.1 0.7 2.1 0.0 0.0 0.3 Per 100 C Total Sample Green River Rundle Duvernay (A) Duvernay (B) Duvernay (C) Duvernay (D) Oxford Clay Paradox Malm Draupne Bakken Monterey Gippsland (A) Gippsland (B) Proprietary (A) Proprietary (B) Proprietary (C) Fruitland Low High 9 XPS Nitrogen (1s) Spectra of Kerogen and Curve Resolution into Different Components Draupne Type II Pyrrolic Pyrrolic Monterey Type IIS Amine Quaternary Quaternary Amine Pyridinic Pyridinic Binding Energy (eV) Gippsland (B) Type IIIC Pyrrolic Pyridinic Binding Energy (eV) Prop. (C) Type IIIC Pyrrolic Pyridinic Quaternary 10 Binding Energy (eV) Binding Energy (eV) XPS Nitrogen (1s) Spectra of Type I Kerogen and Curve Resolution into Different Components Green River Type I Kerogen Pyrrolic Rundle Type I Kerogen Pyrrolic Quaternary Pyridinic Quaternary Amine Amine Pyridinic Binding Energy (eV) Binding Energy (eV) 11 Nitrogen Forms Quantified using XPS Total Sample Green River Rundle Duvernay (A) Duvernay (B) Duvernay (C) Duvernay (D) Oxford Clay Paradox Malm Draupne Bakken Monterey Gippsland (A) Gippsland (B) Proprietary (A) Proprietary (B) Proprietary (C) Fruitland Per 100 C Pyridinic 398.6 eV 2.2 1.8 2.9 2.0 2.1 2.1 2.4 3.1 2.3 2.3 3.5 3.3 0.8 1.9 1.7 1.1 1.1 1.7 20 5 27 19 18 15 17 23 15 10 20 16 18 34 31 35 36 30 High Low Mole Percent (XPS) Amine Pyrrolic 399.4 eV 400.2 eV 9 9 4 4 0 0 15 5 9 8 7 5 0 0 0 0 0 0 57 52 52 59 65 62 53 59 54 65 52 62 62 56 57 57 64 57 Quaternary 401.4 eV 13 35 18 18 17 23 15 13 22 17 21 17 20 10 11 7 0 13 12 Plot of Relative Amounts of Nitrogen Forms for Kerogen 80 398.6 eV + 401.4 eV 399.4 eV 400.2 eV Pyrrolic (400.2 eV) 60 Mole Percent Green River Rundle 40 Pyridinic (398.6 eV) + Quaternary (401.4 eV) Amine (399.4 eV) 20 0 0 20 40 60 Percent Aromatic Carbon (XPS) 80 13 XPS Sulfur (2p) Spectra of Kerogen and Curve Resolution into Different Components SO4 2P 3/2 Duvernay (C) Type II Oxford Type II Aliphatic 2P 1/2 Aliphatic Aromatic Aromatic FeS2 Binding Energy (eV) SO4 FeS2 Binding Energy (eV) 14 Sulfur Forms Quantified using XPS Sample Green River Rundle Duvernay (A) Duvernay (B) Duvernay (C) Duvernay (D) Oxford Clay Paradox Malm Draupne Bakken Monterey Gippsland (A) Gippsland (B) Proprietary (A) Proprietary (B) Proprietary (C) Fruitland Total Org. S Aliphatic Sulfide Aromatic (Thiophenic) Sulfoxide Sulfate Pyrite 0.5 0.6 1.4 1.2 0.6 1.0 3.2 1.4 1.9 2.1 2.2 2.7 2.7 0.5 0.2 0.2 0.1 0.4 17 15 33 16 11 5 37 16 22 19 25 39 36 31 24 22 8 37 10 9 28 20 13 20 23 22 16 20 32 21 44 58 33 58 56 51 9 4 13 5 0 5 10 2 7 8 10 4 8 0 0 0 0 0 50 66 25 46 69 66 17 45 45 52 30 16 10 11 42 20 36 12 14 6 2 13 7 4 13 15 10 1 2 20 2 0 0 0 0 0 High Low 15 Aromatic FeS2 Aliphatic 2465 2470 2475 Absorbance Energy (eV) 2465 2470 2475 Energy (eV) Spectrum Fit Spectrum Fit 2480Aliphatic Aromatic Sulfoxide Sulfite Pyrite 2480 Third Derivative Absorban Oxford Type II 2485 Spectrum Fit Duvernay (A) Type II Aromatic FeS2 Aliphatic 2485 Spectrum 2465 2470 2475 2480Fit 2485 2465 2470 2475 2480 2485 Absorbance Third Derivative Absorbance S-XANES Absorbance and Third Derivative Absorbance Spectra of Kerogen Energy (eV) Aliphatic Arom atic Sulfite Sulfoxide Sulfate Pyrite 16 Combined S-XANES and XPS Results for Sulfur Forms . Aliphatic/(Aromatic + Aliphatic) Mole % Aromatic S (Non Ox. Org. Basis) 100 80 60 40 20 S-XANES 3rd Der. Abs. S-XANES Abs. XPS 0 1.0 Type I Type II Type IIIC Type II (Mat. Seq.) Type IIIC (Mat. Seq.) 0.8 Rundle 0.6 Green River 0.4 0.2 0.0 0 20 40 60 80 Percent Aromatic Carbon 100 0 20 40 60 80 Percent Aromatic Carbon17 100 Summary • A direct characterization strategy is used to quantify the average chemical structure of kerogen (mitigates indirect approach uncertainties) – Solid-state 13C NMR, XPS and S-XANES – Wide range of organic matter types and maturities – Basis for developing specific chemical structural models of kerogen linked to reactivity models • Total amounts of organic nitrogen and sulfur vary among kerogen, however, patterns emerge for the relative abundances of nitrogen and sulfur forms – The relative amount of aliphatic sulfur decreases with increasing aromatic carbon + High aliphatic sulfur levels for Green River and Rundle kerogen – The majority of nitrogen exists as pyrrolic nitrogen in all kerogens + Pyridinic, amine and quaternary found in Green River and Rundle kerogen • Green River and Rundle Kerogen (Type I) have more hydrogen than other kerogen organic matter types (at equivalent levels of maturity) – Both 13C NMR and XPS show aromatic carbon increases with decreasing H/C 18 – Carbon structural features from solid-state 13C NMR appear in a companion poster
© Copyright 2026 Paperzz