c Mathematical Techniques in Finance, Solution of Exercise 9.2, °2003 Aleš Černý 1 9.2 (a) The coefficient of relative risk aversion of the log-utility is − V (ln V )00 V × V −2 = = 1, (ln V )0 V −1 whereas the square root utility has coefficient of relative risk aversion equal to ¡ ¢ √ 3 V × 12 × − 12 × V − 2 1 V ( V )00 √ =− = . − 1 − 12 0 2 ( V) 2V Consequently a log-utility investor is more risk averse than a square root utility investor. (b) Let us find the unconditional objective and risk-neutral probabilities for each path in the tree. Since the one-step objective probabilities are 12 each, the uncondional probabilities will be puu pud pdu pdd 1 2 1 = pu × pd = 2 1 = pu × pd = 2 1 = pd × pd = 2 = pu × pu = 1 2 1 × 2 1 × 2 1 × 2 × 1 , 4 1 = , 4 1 = , 4 1 = . 4 = The one-step risk-neutral probabilities are qu = qd = Rf − Rd 1.005 − 0.98 5 = = Ru − Rd 1.04 − 0.98 12 7 , 12 therefore 25 , 144 quu = qu × qu = qud = qdu = qu × qd = qdd = qd × qd = 35 , 144 49 . 144 Hence the unconditional change of measure is m2 (uu) = m2 (ud) = m2 (du) = m2 (dd) = quu puu qud pud qdu pdu qdd pdd 25 1 / 144 4 35 1 = / 144 4 35 1 = / 144 4 49 1 = / 144 4 = 25 , 36 35 = , 36 35 = , 36 49 = . 36 = 2 c Mathematical Techniques in Finance, Solution of Exercise 9.2, °2003 Aleš Černý (c) The budget constraint of our investor is · ¸ V2 EQ = V0 , 0 Rf2 which means that the unique time t = 0 no-arbitrage value of the final period wealth has to be V0 . With our specific numbers this is 25 144 35 49 × V2 (ud) + 144 × V2 (du) + 144 × V2 (dd) = 1000. 2 1.005 Using the change of measure one can write this as follows: · ¸ V2 m EP 2 2 = V0 . 0 Rf × V2 (uu) + 35 144 (1) (d) We are maximizing: EP 0 [ln V2 ] = 1 (ln V2 (uu) + ln V2 (ud) + ln V2 (du) + ln V2 (dd)) 4 with respect to V2 (uu), V2 (ud), V2 (du), V2 (dd) and subject to the linear constraint (1). We can rewrite this as an unconstrained optimization using the Lagrangean function 1 1 1 1 max L = ln V2 (uu) + ln V2 (ud) + ln V2 (du) + ln V2 (dd)− V2 4 4 4 4 ¶ µ 25 35 35 49 × V2 (uu) + 144 × V2 (ud) + 144 × V2 (du) + 144 × V2 (dd) − 1000 . − λ 144 1.0052 (e) The first order conditions yield 0 = 0 = 0 = 0 = ∂L ∂V2 (uu) ∂L ∂V2 (ud) ∂L ∂V2 (du) ∂L ∂V2 (dd) 1 1 4 V2 (uu) 1 1 = 4 V2 (ud) 1 1 = 4 V2 (du) 1 1 = 4 V2 (dd) = 1 25 , 144 1.0052 35 1 , −λ 144 1.0052 1 35 , −λ 144 1.0052 49 1 . −λ 144 1.0052 −λ Solving for the wealth gives us V2 (uu) = V2 (ud) = V2 (du) = V2 (dd) = 36 × 1.0052 25λ 36 × 1.0052 35λ 36 × 1.0052 35λ 36 × 1.0052 . 49λ (2) (3) (4) (5) 3 c Mathematical Techniques in Finance, Solution of Exercise 9.2, °2003 Aleš Černý Note that the right hand side takes the form Rf2 / (m2 λ), which means the change of measure determines the optimal level of wealth. (f ) Substitute the optimal values of V2 from (2)-(5) back into te budget constraint (1) to obtain the value of λ 25 144 × 36×1.0052 25λ + 35 144 × 36×1.0052 35λ 35 + 144 × 1.0052 36×1.0052 35λ + 49 144 × 36×1.0052 49λ = 1000. Log utility is a very special case when the left hand side simplifies enormously and one ends up simply with 1 = 1000. λ (g) Now take this value of λ and substitute it back into (2)-(5) to obtain the final expressions for optimal wealth 36 25 36 V2 (ud) = 1000 × 35 36 V2 (du) = 1000 × 35 36 V2 (dd) = 1000 × 49 V2 (uu) = 1000 × × 1.0052 = 1454.44, × 1.0052 = 1038.88, × 1.0052 = 1038.88, × 1.0052 = 742.06. (h) This procedure will remind the reader of option pricing, except that the terminal cash flow of the option is given, whereas here terminal wealth has been determined optimally. The fastest way to perform the required calculations is to find the value of self-financing portfolio by risk-neutral pricing, then compute delta from (5.9) and finally evaluate the bank balance as the difference between the portfolio value and the wealth invested in stock: V1 (u) = V1 (d) = V0 = 5 7 1454.44 + 12 1038.88 qu V2 (uu) + qd V2 (ud) = 12 = 1206.00 Rf 1.005 5 7 1038.88 + 12 742.06 qu V2 (uu) + qd V2 (ud) = 12 = 861.43 Rf 1.005 5 7 1206.00 + 12 861.43 qu V1 (u) + qd V1 (d) = 12 = 1000.00 Rf 1.005 Note that we must get V0 = 1000, otherwise there is an error in the calculation. d Now we can compute the number of stocks from the formula θ = SVuu −V −Sd : θ1 (u) = θ1 (d) = θ0 = V2 (uu) − V2 (ud) 1454.44 − 1038.88 = = 666.0, S2 (uu) − S2 (ud) 10.816 − 10.192 V2 (du) − V2 (dd) 1038.88 − 742.06 = = 504.6, S2 (du) − S2 (dd) 10.192 − 9.604 V1 (u) − V1 (d) 1206.00 − 861.43 = = 574.3. S1 (u) − S1 (d) 10.4 − 9.8 4 c Mathematical Techniques in Finance, Solution of Exercise 9.2, °2003 Aleš Černý Finally, we will find the bank statement by calculating V −θS at every node. The self-financing strategy is summarized in Figure 1. stock price optimal wealth 0.5 10.816 10.4 0.5 0.5 10.192 10 0.417 0.5 10.192 0.583 9.8 0.583 1038.9 0.417 1038.9 0.583 742.1 861.4 0.5 t=1 9.604 t=2 Bank account t=0 t=1 t=2 Number of shares 1454.4 0 -5719.9 666.0 1038.9 -4742.9 0 574.3 1038.9 0 -4085.6 504.8 742.1 t=0 1454.4 1000.0 0.5 t=0 0.417 1206.0 t=1 t=2 0 t=0 t=1 t=2 Figure 1: Optimal investment strategy maximizing EP 0 [ln V2 ] with V0 = 1000. (i) Because Vud = Vdu in this particular example we can express Vt as a function of S and t. In general, even if stock returns are IID, optimal Vt cannot be expressed as a function of St and t (this happens when Rf is time-dependent), in which case Vt becomes an additional state variable.
© Copyright 2026 Paperzz