9/5/2010 Online measurement of gaseous I2 and activated iodine compounds after selective uptake in lab-generated aerosols using time-of-flight aerosol mass spectrometry Kundel, Michael; Ries, Marco; Bosle, Janine; Müller, Ute; Huang, Ru-Jin; Schott, Mathias and Hoffmann, Thorsten International Aerosol Conference 2010, Helsinki, 03.09.2010 Environmental impact of molecular iodine in the marine boundary layer Clouds • ozone depletion • new particle formation • affects radiative forcing I New aerosol particles Iodine oxide polymers - - IO3 1 9/5/2010 Present analytical methods Limit of detection (I2) time resolution Spatiality Denuder (GC-MS) 0.17 ppt (500 mL / min) 30 min single-point DOAS 30 min several km ~ 20 ppt Long-Path DOAS Mace Head Atmospheric Research Station (53o20’ N, 9o54’ W) • What is needed – single point on-line method Schematic diagram of the Aerodyne ToF-AMS MCP detector ion reflector electronics hardmirror chemical analysis ToF-MS orthogonal extractor aerodynamic lens quadrupol aerosol aerosol vaporizer filament critical orifice chopper TP: turbo molecular pump ToF-AMS particle ToF measurement ng/m3 NO3- 3 SO42- 3 → direct measurement of gaseous I2 by ToF-AMS is not possible NH4+ 30 Cl- 20 → I2 has to be transferred from the gas phase to the particle phase Org 25 ~ 1 ppt → high sensitivity to measure particulate NO3-, SO42-, NH4+, Cland organics 2 9/5/2010 Experimental setup: Selective uptake of I2 into α-cyclodextrin / NH4Br rotameter water 0.75 L/min N2 thermostat 25 °C diffusion capillary N2 + I2 solid I2 vial dryer AMS 1.1 L/min Aerosol generator (pneumatic atomizer) N2 overflow aqueous / alcoholic α-cyclodextrin / NH4Br solution α-cyclodextrin molecular iodine water Data analysis Mass spectra and peak integration 7 intensity / a.u. 6 • mass spectrum of the lab-generated lab generated aerosol 60 mg α-CD + 6 mg NH4Br in 990 ml MeOH / 10 ml H2O 5 4 3 2 1 0 50 100 150 m/z 7 200 250 intensity / a.u. 6 5 4 m/z 254 3 2 • mass spectrum of the lab-generated aerosol after addition of 124 ppb I2 1 0 50 100 -3 1.6x10 1.4 150 m/z 200 I2+ msdiff fit msdiff 1.2 intensity / a.u. 250 1.0 0.8 org. signal 0.6 • peak integration at m/z 254 → m/z 253.8: I2 → m/z 254.05: org. signal 0.4 0.2 0.0 253.6 253.8 254.0 m/z 254.2 254.4 3 9/5/2010 Influence of NH4Br on the I2 signal ratio m/z 253.8 / m/z 69 4x10 -3 3 2 1 0 0.0 0.2 0.4 0.6 0.8 molar ratio NH4Br / α-CD 1.0 1.2 • addition of NH4Br to α-CD-solution, mixing ratio I2= 8 ppb → increasing signal intensity at m/z 253.8 due to the formation of I2 + Br- → I2Br→ maximum at molar ratio of ~ 1.0 Time resolved mass traces for the on-line measurement of molecular iodine 2.5 intensity / a.u. 2.0 • m/z 69.0 and m/z 60.0 are markers for α-CD, m/z 78.9 is a marker for Br→ output of lab-generated aerosol is stable m/z 69.0: org m/z 60.0: org m/z 78.9: 79Br- 1.5 1.0 0.5 0.0 0.0 0.2 0.4 0.6 time / hours -3 1.2x10 0.8 1.0 • opening the I2 test gas source → signal at m/z 253.8 (I2+) increases immediately inttensity m/z 253.8 / a.u. 1.0 0.8 addition of 1.0 ppb I2 0.6 0.4 0.2 • closing g the I2 test g gas source → signal at m/z 253.8 (I2+) decreases 0.0 0.0 ratio m/z 253.8 / m/z 69 / a.u. 5x10 0.2 0.4 0.6 time / hours 0.8 1.0 -4 4 3 • variation of the absolute signal can be reduced using the ratio between m/z 253.8 and m/z 69.0 addition of 1.0 ppb I2 2 1 0 0.0 0.2 0.4 0.6 time / hours 0.8 1.0 4 9/5/2010 Analytical performance I2 I (253.8 / 69) ppb a.u. 0,00 0,00007 0,70 0,00020 2,48 0,00092 5,03 0,00226 8,09 0,00374 12,71 0,00487 23,33 0,00757 46,90 0,02172 90,53 0,04200 124,01 0,05620 -3 3 R2=0.997 50 40 30 20 10 LOD = yB + 3sB LOQ = yB + 10sB 0 0 20 40 60 80 mixing ratio I2 / ppb 100 120 LOD LOQ I2 ppt 100 331 • a dilution chamber was used to obtain various I2 mixing ratios in the ppb- and ppt-range Comparison ToF-AMS vs Denuder GC-MS I2 / ppb (ToF-AMS) ra atio m/z 253.8 / m/z 69 / a.u. 60x10 RSD % 21,2 25,7 13,8 10,2 7,3 6,9 16,5 16,8 2,9 1,9 60 40 20 0 0 20 40 I2 / ppb (Denuder GC-MS) ToF-AMS I2 / ppb 0,45 3,25 72,25 RSD / % 7,2 2,1 0,8 Denuder GC-MS I2 / ppb 0,48 3,08 67,67 RSD / % 10,5 1,2 3,5 60 5 9/5/2010 Proof of principle: Time resolved emission of I2 from seaweed O3 analyzer overpressure Organoiodine compounds TD-GC-MS 3 L flow reactor synth. air + O3 4.5 L / min → residence time ~ 40s I2 ToF-AMS I2 denuder sampling followed by GC-MS Time resolved emission of I2 from freeze dried Laminaria digitata -1 em mission of I2 ng min gFW W -1 60 50 40 30 addition of Laminaria digitata ~ 20 ppb O3 20 10 increasing O3 to 100 ppb 0 0.0 0.5 O3 ppb 20 1.0 1.5 time / hours 2.0 2.5 I2 Max I2 I2 ng min-1 gDW-1 ng h-1 gDW-1 ng min-1 DW-1 57,82 2248,56 37,48 6 9/5/2010 Time resolved I2 emissions from living Laminaria saccharina 0.30 -1 emission of I2 ng min gFW W -1 100 ppb O3 50 pp ppb O3 0.25 0.20 0.15 0.10 addition of Laminaria saccharina 0.05 0.00 0.0 O3 ppb 100 50 ~3 0.1 0.2 0.3 0.4 time / hours 0.5 0.6 I2 max I2 I2 I2 ng min-1gFW-1 ng h-1 gFW -1 ng min-1 gFW -1 pmol min-1 gFW -1 this study 0,27 9,43 0,16 0,62 this study 0,21 8,48 0,14 0,56 0,55 Ball et al., 2009 (BBCEAS) Conclusions and outlook • selective uptake of gaseous I2 in lab-generated lab generated α α-cyclodextrin cyclodextrin / NH4Br Br-particles particles inside a 0 0.5 5 L flow tube enables the measurement of gaseous I2 by ToF-AMS with a time resolution of 3 min → LOD= 100 ppt, LOQ= 331 ppt (could still be improved by instrumental modifications by a factor 5-10) • time resolved emission of I2 from freeze dried Laminaria digitata and living Laminaria saccharina was investigated → time resolved I2 emission from different seaweed plants will be studied as well as the influence of ozone on the I2 emission • measurement of activated iodine compounds (e.g., ICl) after selective uptake in lab-generated 1,3,5-trihydroxybenzene particles OH OH → LOD= 800 ppt, LOQ= 2,6 ppb + HO OH I + Cl HO H Cl OH I 7 9/5/2010 Acknowledgement • Prof. Dr. Thorsten Hoffmann • Work group Hoffmann • Marine Integrated Algal Aquaculture Sylt • supported by the German Research Foundation (DFG) within the Research Training Group 826: Trace Analysis of Elemental Species: Development of Methods and Applications Thank you for your attention ! 8
© Copyright 2026 Paperzz