Math 280 B2 Exam 2 NAME: Solution Problem 1 Let x 2 y 2 z 2 . a) (7 pt) Calculate grad 1 . solution) 1 1 2 2 2 2 x y z 1 x 1 y 1 z 1 grad 3 xx 2 y 2 z 2 2 x3 3 y yx 2 y 2 z 2 2 3 3 zx 2 y 2 z 2 2 z3 y x3 i 3 j z3 k . b) (5 pt) Calculate curl grad 1 . solution) Using the property curl grad 0, curl grad 1 0 1 Problem 2(10 pt) Evaluate R xy 2 x 2 y 2 dxdy, where R xy is the region in the first quadrant bounded by x 2 y 2 1, x 2 y 9, xy 2, and xy 4 by using change of variables. solution) Let u x 2 y 2 and v xy. Then, 1 u 9, 2 v 4, 2x 2y u, v x, y x, y u, v R x 2 y 2 dxdy xy y x 1 u,v x,y 4 9 2x 2 2y 2 2x 2 y 2 , 1 , 2x 2 y 2 4 9 2 1 x 2 y 2 2x 2 1 y 2 dudv 2 1 1 dudv 8. 2 2 1 1 Problem 3(10 pt) Evaluate x 3 cos x 2 dx by differentiating x sin tx 2 dx with respect to t. 0 0 solution) 1 1 1 0 x 3 cos tx 2 dx 0 t x sin tx 2 dx dtd 0 x sin tx 2 dx x1 d 1 cos t 1 d 1 cos tx 2 2t 2t 2t dt dt x0 12 cos t 1 sin t 12 . 2t 2t 2t Put t 1. Then, 1 0 x 3 cos x 2 dx Problem 4(7 pt) Evaluate solution) 24,4 6 C, 3,2 3 ds 24,4 6 C, 3,2 3 1 cos 1 1 sin 1 1 . 2 2 2 yds yds, where C is the curve y 2 x . dx 2 dy 2 24 3 1 1 x 2 2 dx 1 x 1 dx, 2 x 1 x 1 dx 24 24 3 2 x 1 dx 2 2 x 1 2 3 3 3 3 4 25 2 4 2 4 125 8 156. 3 3 3 3 Problem 5 Consider 3,4 1,2 6xy 2 y 3 dx 6x 2 y 3xy 2 dy. a)(4 pt) Show that the integral is independent. solution) P y Q x So, P y Thus, the integral is path independent. 12xy 3y 2 , 12xy 3y 2 . Q . x b) (8 pt) Evaluate the integral. (hint: find F such that F 6xy 2 y 3 , 6x 2 y 3xy 2 . ) solution) Note that if F 3x 2 y 2 xy 3 , then F 6xy 2 y 3 , 6x 2 y 3xy 2 . Hence, dF 6xy 2 y 3 dx 6x 2 y 3xy 2 dy. 3,4 1,2 6xy 2 y 3 dx 6x 2 y 3xy 2 dy 3,4 1,2 d3x 2 y 2 xy 3 3x 2 y 2 xy 3 3,4 236. 1,2 4 Problem 6(9 pt) Evaluate x 2 ydxx 3 dy C 2 x 2 y 2 that P y around the square with vertices 1, 1, oriented Q counterclockwise. (hint: Note x . ) solution) Q x , we can use the unit circle with center 0, 0 instead of the given curve. Since P y x y 1 2 2 0 2 x 2 ydx x 3 dy 2 x 2 y 2 cos 2 t sin t sin tdt cos 3 t cos tdt, x cos t, y x sin t. 2 0 2 0 cos 2 tsin 2 t cos 2 tdt 2 0 cos 2 tdt 1 cos 2t dt . 2 5
© Copyright 2026 Paperzz