Multiplying and Dividing Algebraic Fractions Y10 To multiply algebraic fractions, multiply the numerator by themselves and the denominator by themselves. Examples. 3ac 10 = 2v 2a + 2b × (a + b) 4uv 6p 10c × 5 2pq 3a c × 5 2 = 6p1 210c × 1 15 1 2pq 3 = 6c q = 1 1 2v1 (a + b) × 1 2(a + b) 1 2 1 4uv 1 u = A. Simplify the following. 1). 2a b × 5 3 2). 2u v × 3 4 3). y 3x × 6 2y 4). 8a 2b × 3 12 5). 6). 10 3p × 5 2pq 7). 8c 9c × 4 3cd 8). 5v 18u2 × 6 3uv 9). 6p2 10q × q 20p 10). 5b × 14a 2 7a2b 12x y × 5 2x 11). 2v 3u + 3v × 6(u + v) 4uv 12). 6r 5s + 5t × 3s + 3t 2rt 13). 2 (2u + 1) × 4u + 2 u2 14). 15a2 4a + 2b × 2a + b 10a 15). 2wx 2u + 2v × 2 2 u ‒v 4w 16). 2a a2 ‒ b2 × a‒b 6ab To divide algebraic fractions multiply by the reciprocal of the divisor. Examples = 3 2a ÷ 7 c 3p 2pq ÷ 4 12c 2v 8v ÷ 3 (a ‒ b) 6a ‒ 6b 2a c × 7 3 3p 12c × 4 2pq 2v 6a ‒ 6b × 3(a ‒ b) 8v 2ac 21 = = 3p1 312c × 1 2pq 14 = 9c 2q 2v 1 1 2 6(a ‒ b) 1 × 24 1 1 3(a ‒ b) 1 8v 1 = 1 2 B. Simplify the following. 1). 2a a ÷ 7 14 2). 4 2x ÷ 3 y 3). 2 6 ÷ 2 a a 4). uv v ÷ 5 15 5). 6). 3p 6pq ÷ 4 12q 7). 2s 8s2 ÷ t 5t 8). 2p p2q ÷ 5 10q 9). bd 2bd2 ÷ 4c 12c2 10). 9g2 6gh ÷ 8f 12f 2a2 ab ÷ 8 4 11). 8a 6a ÷ (a ‒ b) 3a ‒ 3b 12). 3x 6x ÷ 4(p + 2) 3p + 6 13). 2p ‒ 4 7p ‒ 14 ÷ 3p ‒ 9 5p ‒ 15 14). 6x x ‒ y 12x2 x2 ‒ y2 15). 2p2 12pq ÷ 2 2 p ‒q 6p + 6q 16). 5 2x ‒ 1 ÷ 2x + 1 4x2 ‒ 1 ÷ Licensed to Cranbourne East Secondary College valid until 03/05/2013 Note: After this date go to www.10ticks.com.au/tandc www.10ticks.com.au Page 62 of 100
© Copyright 2026 Paperzz