Purdue University Purdue e-Pubs Birck and NCN Publications Birck Nanotechnology Center 4-2011 Calculation of single chain cellulose elasticity using fully atomistic modeling Xiawa Wu Birck Nanotechnology Center, Purdue University, [email protected] Robert Moon Birck Nanotechnology Center, Purdue University, [email protected] Ashlie Martini Purdue University, [email protected] Follow this and additional works at: http://docs.lib.purdue.edu/nanopub Part of the Nanoscience and Nanotechnology Commons Wu, Xiawa; Moon, Robert; and Martini, Ashlie, "Calculation of single chain cellulose elasticity using fully atomistic modeling" (2011). Birck and NCN Publications. Paper 1029. http://docs.lib.purdue.edu/nanopub/1029 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. PEER-REVIEWED MOLECULAR MODELING Calculation of single chain cellulose elasticity using fully atomistic modeling XIAWA WU, ROBERT J. MOON, AND ASHLIE MARTINI ABSTRACT: Cellulose nanocrystals, a potential base material for green nanocomposites, are ordered bundles of cellulose chains. The properties of these chains have been studied for many years using atomic-scale modeling. However, model predictions are difficult to interpret because of the significant dependence of predicted properties on model details. The goal of this study is to begin to understand these dependencies. We focus on the investigation on model cellulose chains with different lengths and having both periodic and nonperiodic boundary conditions, and predict elasticity in the axial (chain) direction with three commonly used calculation methods. We find that chain length, boundary conditions, and calculation method affect the magnitude of the predicted axial modulus and the uncertainty associated with that value. Further, the axial modulus is affected by the degree to which the molecule is strained. This result is interpreted in terms of the bonded and nonbonded contributions to potential energy, with a focus on the breaking of hydrogen bonds during deformation. Application: This study lays the groundwork for understanding the predictions of atomistic models and to help transition their use from an investigative method to a predictive tool useful for cellulose-based application design. WRPLVWLF PRGHOLQJ RI FHOOXORVH KDV EHHQ XVHG WR FRPSOHPHQW H[SHULPHQWDO PHDVXUHPHQWV RI FHO OXORVH QDQRFU\VWDOV E\ SURYLGLQJ WKH DWRPLF OHYHO GHWDLO QHFHVVDU\ WR SUHGLFW VWUXFWXUDO HQHUJHWLF DQG PHFKDQLFDO FKDUDFWHULVWLFV DQG WR JDLQ D IXQGDPHQWDO XQGHUVWDQGLQJ RI WKH DWRPLFVFDOH RULJLQV RI WKHVH FKDUDFWHULVWLFV 6XFK PRGHOV IUHTXHQWO\ DUH XVHG WR SUHGLFW HODVWLF SURSHUWLHV EHFDXVH WKH VLPXODWLRQ PHWKRGV DUH UHODWLYHO\ VLPSOH DQG UHVXOWV FDQ EH FRPSDUHG WR H[SHULPHQWDO GDWD 3UHGLFWLRQV RI HODVWLFLW\ LQ WKH D[LDO FKDLQ GLUHFWLRQ IRU WKH OD RU , SRO\PRUSKV RI FU\VWDOOLQH FHOOXORVH KDYH EHHQ UHSRUWHG IURP DWRPLVWLF PRGHOEDVHG VWXGLHV IRU PRUH WKDQ \HDUV >O@ 8QIRUWXQDWHO\ TXDQWLWDWLYH FRPSDULVRQ RI HODVWLFLW\ UHVXOWV IURP PRGHOWRPRGHO RU WR H[SHULPHQWDO PHDVXUH PHQWV KDV EHHQ GLIILFXOW EHFDXVH RI WKH VLJQLILFDQW HIIHFW RI YDULDWLRQV LQ WKH VLPXODWLRQ PHWKRGV DWRPLF LQWHUDFWLRQ PRGHOV DQG FRQILJXUDWLRQ RI WKH PRGHOHG VWUXFWXUHV )RU H[DPSOH WKH D[LDO PRGXOXV SUHGLFWHG XVLQJ D PRGHO RI [[ , XQLW FHOOV ZDV a VPDOOHU WKDQ WKDW SUHGLFWHG XVLQJ D PRGHO RI [[ , XQLW FHOOV >@ ,Q DQRWKHU VWXG\ D GLIIHUHQFH LQ WKH LQLWLDO HTXLOLEULXP XQLW FHOO OHQJWK RI FDXVHG D YDULDWLRQ LQ WKH D[LDO PRGXOXV SUHGLF WLRQ >@ 7KH JRDO RI WKLV SDSHU LV WR FOHDUO\ LOOXVWUDWH VRPH RI WKHVH HIIHFWV VXFK WKDW WKH PHDQLQJ RI SUHGLFWLRQV PDGH XVLQJ DW RPLVWLF PRGHOV FDQ EH XQGHUVWRRG PRUH IXOO\ :H UHSRUW UH VXOWV RI D PROHFXODU G\QDPLFV DQG PROHFXODU PHFKDQLFV EDVHG VWXG\ IRFXVLQJ RQ WKH PRVW EDVLF VWUXFWXUH D VLQJOH FHOOXORVH PROHFXOH WR XQGHUVWDQG WKH HIIHFWV RI VRPH YDUL DEOHV RQ PRGHO SUHGLFWLRQV 0DQ\ FKDLQV RI GLIIHUHQW OHQJWKV FRH[LVW LQ D EXON SRO\PHU DQG VR WKH YDULDWLRQ RI VWUXFWXUH HQHUJHWLF DQG HODVWLF SURS A HUWLHV ZLWK FKDLQ OHQJWK LV LQVLJQLILFDQW +RZHYHU DW WKH QD QRVFDOH SURSHUWLHV DUH OLNHO\ WR EH LQIOXHQFHG E\ VRFDOOHG HQG HIIHFWV ZKHUH WKH PROHFXOH LV VKRUW HQRXJK WKDW WKH FRQWULEX WLRQ WKH HQGV RI WKH FKDLQV PDNH LV FRPSDUDEOH WR WKDW RI WKH PDLQ ERG\ RI WKH FKDLQ 7R FKDUDFWHUL]H WKLV HIIHFW ZH IR FXVHG WKLV VWXG\ RQ PRGHO FHOOXORVH FKDLQV ZLWK GLIIHUHQW OHQJWKV DQG KDYLQJ ERWK SHULRGLF DQG QRQSHULRGLF ERXQGDU\ FRQGLWLRQV 7KHVH PRGHOV DUH XVHG WR SUHGLFW HODVWLFLW\ LQ WKH D[LDO GLUHFWLRQ ZLWK WKUHH FRPPRQW\ XVHG FDOFXODWLRQ PHWK RGV 5HVXOWV DUH GLVFXVVHG LQ WHUPV RI WKH HIIHFWV RI FKDLQ OHQJWK ERXQGDU\ FRQGLWLRQV FDOFXODWLRQ PHWKRG DQG VWUDLQ RQ WKH PRGHOSUHGLFWHG D[LDO PRGXOXV DQG WKH XQFHUWDLQO\ DVVRFLDWHG ZLWK WKRVH SUHGLFWLRQV METHODS :H FUHDWHG VLQJOH FKDLQ FHOOXORVH PROHFXOHV ZLWK OHQJWKV IURP RQH WR UHSHDW XQLWV ZKHUH RQH XQLW FRQWDLQV WZR JOXFRVH ULQJV DQG KDV D OHQJWK RI L (Fig. 1). Figure 2 VKRZV DQ H[ DPSOH FRQVLVWLQJ RI IRXU UHSHDW XQLWV 7R FUHDWH FKDLQV RI ILQLWH OHQJWK D VLQJOH PROHFXOH ZDV SODFHG LQ WKH PLGGOH RI D VLPX ODWLRQ ER[ ZLWK GLPHQVLRQV ; ; n [ L c LQILQLWH 1. Schematic of single cellulose chain repeat unit, showing the directionally of the 1 4 linkage and intramolecule hydrogen bonding (dotted lines). APRIL 201 1 | TAPPI JOURNAL 37 MOLECULAR MODELING 2. Snapshots of a model cellulose chain at its equilibrium and strained lengths where n is the number of repeat units. Atoms represented as grey (carbon), red (oxygen), and white (hydrogen)spheres. OHQJWK PROHFXOHV ZHUH REWDLQHG E\ DGGLQJ D FRYDOHQW ERQG DFURVV WKH SHULRGLF ERXQGDU\ OLQNLQJ WKH KHDG FDUERQ DQG WDLO R[\JHQ DWRPV ,Q WKLV FDVH WKH PROHFXOH LV LQILQLWHO\ ORQJ LQ LWV D[LDO GLUHFWLRQ DQG LVRODWHG ,Q WKH RWKHU WZR GLUHFWLRQV VXFK WKDW WKH VLPXODWLRQ ER[ LV [[ n [ L c 7KH ODWHUDO GLPHQVLRQV RI WKH VLPXODWLRQ ER[ ZHUH FKRVHQ WR EH c WR HQVXUH WKDW WKH PROHFXOH GLG QRW LQWHUDFW ZLWK SHULRGLF LP DJHV RI LWVHOI GXULQJ WKH VLPXODWLRQ WDNLQJ LQWR FRQVLGHUDWLRQ DOO SRVVLEOH EHQGLQJ URWDWLQJ DQG RWKHU PRYHPHQW RI WKH PRO HFXOH $WRPLF LQWHUDFWLRQV ZHUH GHVFULEHG E\ WKH &203$66 IRUFH ILHOG >@ ZLWK DOO LQWHUDFWLRQ FXWRII GLVWDQFH RI c 7KLV IRUFH ILHOG ZDV FKRVHQ EHFDXVH LW KDV EHHQ DSSOLHG VXFFHV IXOO\ WR PRGHO FHOOXORVLF PDWHULDOV SUHYLRXVO\ >@ ,QLWLDO SRVLWLRQV DQG FKDUJHV IRU HDFK DWRP ZHUH FRPSXWHG DQG WKHQ FRQYHUWHG WR D /$0036 ODUJHVFDOH DWRPLFPROHFX ODU PDVVLYHO\ SDUDOOHO VLPXODWRU LQSXW ILOH $OO VXEVHTXHQW VLP XODWLRQV ZHUH SHUIRUPHG XVLQJ /$0036 >@ (DFK LQLWLDO FRQ ILJXUDWLRQ ZDV HTXLOLEUDWHG XVLQJ PROHFXODU G\QDPLFV LQ WKH 197 HQVHPEOH FRQVWDQW QXPEHU RI DWRPV YROXPH DQG P SHUDWXUH DW D WHPSHUDWXUH RI . IRU SV EHIRUH SURGXF WLRQ UXQV XVLQJ PROHFXODU PHFKDQLFV 7R HYDOXDWH WKH VWDWLVWL FDO VLJQLILFDQFH RI FDOFXODWHG UHVXOWV HDFK VLPXODWLRQ FDVH FKDLQ OHQJWK DQG ERXQGDU\ FRQGLWLRQ ZDV UXQ WLPHV ZLWK VDPH LQLWLDO DWRPLF VWUXFWXUH EXW GLIIHUHQW LQLWLDO YHORFLWLHV UDQGRPL]HG PRPHQWD 7R HQDEOH FDOFXODWLRQ RI WKH D[LDO PRGXOXV HDFK PRGHO ZDV UHSHDWHGO\ GHIRUPHG LQ VPDOO LQFUHPHQWV LQ WKH FKDLQ GLUHF WLRQ DV LOOXVWUDWHG LQ )LJ 7KH HTXLOLEULXP OHQJWK L RI D UH SHDW XQLW DQG WKH FRUUHVSRQGLQJ PLQLPXP SRWHQWLDO HQHUJ\ U ZHUH FDOFXODWHG XVLQJ PROHFXODU PHFKDQLFV ZLWK WKH FRQ MXJDWH JUDGLHQW HQHUJ\ PLQLPL]DWLRQ DOJRULWKP 3DUDPHWHUV WKDW TXDQWLI\ FODVWLF SURSHUWLHV ZLWK DQG ZLWKRXW WKH DVVXPS WLRQ RI FRQVWDQW DUHD KDYH EHHQ GLIIHUHQWLDWHG DV ³FKDLQ VWLII QHVV´ DQG ³FKDLQ PRGXOXV´ UHVSHFWLYHO\ >@ +RZHYHU WKLV LV QRW D VLJQLILFDQW LVVXH IRU D VLQJOH FKDLQ LQ D PXFK ODUJHU VLPX ODWLRQ ER[ ZKHUH WKH FURVVVHFWLRQDO DUHD LV WDNHQ WR EH LWV RF 38 TAPPI JOURNAL | APRIL 2011 3. Equilibrium unit cell length (red circles) and potential energy (black squares) for finite and infinite chains as functions of chain length. Each data point represents the average value of 10 repeated simulations. FXSLHG DUHD LQ D XQLW FHOO D YDOXH WKDW FKDQJHV OLWWOH GXULQJ WKH GHIRUPDWLRQ 7KHUHIRUH ZH DSSOLHG VWUDLQV XS WR ,Q WKH FHOOXORVH , VWUXFWXUH RQH XQLW FHOO FRQVLVWLQJ RI WZR PROH FXOHV KDV D FURVVVHFWLRQDO DUHD RI c 7KXV DQ DSSUR[L PDWH DUHD IRU D VLQJOH PROHFXOH LV KDOI RI WKLV YDOXH RU c 7KLV LV WKH YDOXH XVHG LQ WKH HODVWLFLW\ FDOFXODWLRQV :H DOVR QRWH WKDW LQ WKH SK\VLFDO V\VWHP LQWUDPROHFXODU FRYDOHQW ERQGV ZRXOG EUHDN DW VRPH VWUDLQ +RZHYHU IHZ IRUFH ILHOGV LQFOXGLQJ WKH RQH XVHG KHUH FDQ DFFRXQW IRU EUHDNLQJ RI FR YDOHQW ERQGV ,QWURGXFLQJ WKLV FDSDELOLW\ LQWR WKH PRGHO LV DQ DFWLYH DUHD RI UHVHDUFK ,QLWLDOO\ DOO ILQLWH DQG LQILQLWH FKDLQV KDYH WKH VDPH XQLW FHOO OHQJWK c >@ +RZHYHU WKH HTXLOLEULXP OHQJWK FDO FXODWHG GXULQJ WKH GHIRUPDWLRQ SURFHVV ZDV IRXQG WR H[KLELW VRPH YDULDWLRQ EHWZHHQ c DQG c (Fig. 3). 7KLV LV FRQ VLVWHQW ZLWK D SUHYLRXV REVHUYDWLRQ WKDW DQ LVRODWHG VLQJOH FHO OXORVH PROHFXOH ZLOO KDYH D ODUJHU HTXLOLEULXP OHQJWK WKDQ WKDW RI D FHOOXORVH QDQRFU\VWDO >@ )LJXUH DOVR LOOXVWUDWHV WKDW WKH SRWHQWLDO HQHUJ\ RI ILQLWH DQG LQILQLWH PROHFXOHV LV NFDO PROJOXFRVH 7KXV ZH REVHUYH WKDW WKH HTXLOLEULXP XQLW FHOO OHQJWK DQG SRWHQWLDO HQHUJ\ DUH QRW VWURQJ IXQFWLRQV RI ERXQG DU\ FRQGLWLRQV RU WKH QXPEHU RI UHSHDW XQLWV ,Q DGGLWLRQ VLJ QLILFDQW YDULDWLRQ LQ WKH GDWD IRU VKRUW FKDLQV LQGLFDWH WKDW DW OHDVW VL[ UHSHDW XQLWV VKRXOG EH XVHG IRU FDOFXODWLRQV EDVHG RQ 4. A representative plot of potential energy (left y-axis; normalized by 6202 kcal/mol) and corresponding number of hydrogen bonds (right y-axis; normalized by 13) as functions of strain. Data from a simulation of an infinite chaing with eight repeat units. PRGHOSUHGLFWHG OHQJWK DQG HQHUJ\ ,Q WKH ILQLWH FKDLQ FDVH HUURU LQ VKRUW FKDLQ FDOFXODWLRQV LV WKH UHVXOW RI PROHFXOH HQG HIIHFWV >@ DQG WKH FRQILJXUDWLRQ EHLQJ GHSHQGHQW RQ IHZHU DWRPV 7KH ODWWHU HIIHFW LV WKH SULPDU\ VRXUFH RI HUURU RE VHUYHG IRU LQILQLWH FKDLQV ZLWK D VPDOO QXPEHU RI UHSHDW XQLWV IHFW RI K\GURJHQ ERQGV FDQ FDXVH SUHGLFWHG HODVWLF SURSHUWLHV WR GHFUHDVH E\ WR >@ $QRWKHU VWXG\ IRXQG WKDW UH PRYDO RI K\GURJHQ ERQGV UHVXOWHG LQ D GHFUHDVH RI EHWZHHQ DQG LQ ,Į FKDLQ VWLIIQHVV ZKLOH IRU , UHPRYDO FDXVHG HLWKHU D GHFUHDVH RU D LQFUHDVH LQ FKDLQ VWLIIQHVV GH SHQGLQJ RQ WKH LQLWLDO DWRPLF FRRUGLQDWHV >@ ,Q WKH ORZ VWUDLQ UHJLPH RXU REVHUYDWLRQV DUH FRQVLVWHQW ZLWK WKHVH ILQGLQJV +RZHYHU RXU UHVXOWV DOVR LQGLFDWH WKDW WKH GHSHQGHQFH RI HODVWLF EHKDYLRU RQ K\GURJHQ ERQGLQJ VKRXOG EH OHVV IRU HODV WLFLW\ FDOFXODWHG DW ODUJH VWUDLQ UDWHV 7KH D[LDO PRGXOXV XQLWV 3D FDQ EH REWDLQHG XVLQJ WKUHH PHWKRGV $OWKRXJK WKH IXQFWLRQDO IRUPV RI WKH PHWKRGV DUH HTXLYDOHQW ZKLFK SDUDPHWHUV DUH REWDLQHG IURP VLPXODWLRQ GLIIHUV DQG VR WKH VRXUFH RI FDOFXODWLRQ HUURU PD\ GLIIHU DV ZHOO 1RWH WKDW DOO WKUHH PHWKRGV DUH LQ VRPH ZD\ GHSHQGHQW RQ DQ HVWLPDWLRQ RI DUHD ZKLFK DV GLVFXVVHG SUHYLRXVO\ LV DQ DSSUR[LPDWLRQ 7KH ILUVW PHWKRG >@ FDQ EH H[SUHVVHG DV ZKHUH WKH IRUFH F XQLWV 1 DQG PROHFXOH HTXLOLEULXP OHQJWK L XQLWV P DUH REWDLQHG E\ ILWWLQJ D SRO\QRPLDO WR SRWHQWLDO HQHUJ\ U XQLWV - PROHFXOH OHQJWK L XQLWV P LV REWDLQHG IURP WKH VLPXODWLRQ DQG WKH FURVVVHFWLRQDO DUHD A XQLWV P IRU D VLQJOH PROHFXOH PXVW EH VSHFLILHG 7KH VHFRQG PHWKRG >@ FDQ EH H[SUHVVHG DV RESULTS Figure 4 VKRZV D UHSUHVHQWDWLYH SORW RI WKH FKDQJH LQ SRWHQ WLDO HQHUJ\ ZLWK VWUDLQ EODFN VTXDUHV $V H[SHFWHG HQHUJ\ LQFUHDVHV UDSLGO\ ZLWK VWUDLQ 7KH WRWDO SRWHQWLDO HQHUJ\ LV WKH UHVXOW RI WKH FRQWULEXWLRQV RI QRQERQGHG YDQ GHU :DDOV &RXORPE K\GURJHQ ERQGV LQWHUDFWLRQV DQG ERQGHG LQWHUDF WLRQV LH FRYDOHQW ERQGV )LJXUH VKRZV WKDW WKH HQHUJ\ DVVRFLDWHG ZLWK QRQERQGHG LQWHUDFWLRQV UHG FLUFOHV LV ODUJHU WKDQ WKDW RI WKH ERQGHG LQWHUDFWLRQV JUHHQ WULDQJOHV DW VPDOO VWUDLQV OHVV WKDQ a +RZHYHU WKH RSSRVLWH LV WUXH ZKHQ WKH VWUDLQ LV ODUJH 7KXV WKH WRWDO SRWHQWLDO HQHUJ\ LV GRPL QDWHG E\ QRQERQGHG LQWHUDFWLRQV DW ORZ VWUDLQ DQG ERQGHG LQWHUDFWLRQV DW KLJK VWUDLQ 0RGHO FKDLQV RI DOO OHQJWKV DQG ERXQGDU\ FRQGLWLRQV H[KLELWHG VLPLODU EHKDYLRU 7KH UROH RI K\GURJHQ ERQGLQJ ZDV HYDOXDWHG E\ FRXQWLQJ WKH QXPEHU RI K\GURJHQ ERQGV SUHVHQW GXULQJ GHIRUPDWLRQ $ K\GURJHQ ERQG LV LGHQWLILHG ZKHQ WKH K\GURJHQ ERQGLQJ GLVWDQFH LV OHVV WKDQ RU HTXDO WR QP DQG WKH GRQRUK\GUR JHQDFFHSWHU DQJOH LV OHVV WKDQ RU HTXDO WR $V VKRZQ LQ )LJ K\GURJHQ ERQGLQJ GHFUHDVHV UDSLGO\ ZLWKLQ WKH ILUVW VWUDLQ 7KH K\GURJHQ ERQG LV PRGHOHG E\ D FRPELQDWLRQ RI YDQ GHU :DDOV DQG &RXORPELF HQHUJLHV DQG VR FRQWULEXWHV WR WKH QRQERQGHG HQHUJ\ 7KH KLJKHU QRQERQGHG HQHUJ\ DW VPDOO VWUDLQ SULPDULO\ UHVXOWV IURP WKH H[LVWHQFH RI K\GURJHQ ERQGV DV VXJJHVWHG IURP WKH SORW $V WKH VWUDLQ LQFUHDVHV WKH K\GURJHQ ERQGV EUHDN YHU\ TXLFNO\ DQG FRQWULEXWH OHVV WR WKH UHVSRQVH RI WKH PROHFXOH )RU VPDOO VWUDLQV UHPRYLQJ WKH HI ZKHUH 8 DQG L DUH REWDLQHG IURP WKH VLPXODWLRQ DQG DQG PXVW EH VSHFLILHG 7KH HUURU DVVRFLDWHG ZLWK WKLV PHWKRG LV GHSHQ GHQW RQ WKH DFFXUDF\ RI WKH VSHFLILHG HTXLOLEULXP OHQJWK 7KH HTXLOLEULXP OHQJWK RI D VLQJOH FKDLQ LV OLNHO\ WR EH JUHDWHU WKDQ WKDW RI D FU\VWDO 7KHUHIRUH HUURU PLJKW EH LQWURGXFHG LQWR WKH SURFHVV LI WKHUH LV D GLVFRQQHFWLRQ EHWZHHQ WKH PRGHO DQG WKH VRXUFH RI LWV HTXLOLEULXP OHQJWK +RZHYHU LI WKH HTXLOLEULXP OHQJWK LV FDOFXODWHG XVLQJ D ILW WR WKH U DQG L GDWD REWDLQHG IURP WKH VLPXODWLRQ ZH ILQG WKDW WKLV PHWKRG \LHOGV WKH VDPH UHVXOW DV WKH ILUVW PHWKRG ZLWKLQ VWDWLVWLFDO VLJQLILFDQFH (Fig. 5). 7KH WKLUG PHWKRG >@ FDQ EH H[SUHVVHG ZKHUH VWUHVV R XQLWV 3D DQG OHQJWK L DUH REWDLQHG IURP WKH VLPXODWLRQ L DQG PXVW EH VSHFLILHG $W ILUVW JODQFH WKLV PHWK RG DSSHDUV WR EH WKH VLPSOHVW DQG VR ZRXOG SRWHQWLDOO\ KDYH WKH ODVW HUURU +RZHYHU WKH VWUHVV LV FDOFXODWHG IURP WKH VR FDOOHG SUHVVXUH YLULDO ZKLFK FRQWDLQV HUURU LQ LWVHOI )LUVW WKH SUHVVXUH YLULDO LV D IXQFWLRQ RI DUHD VR WKDW DSSUR[LPDWHG SD APRIL 2011| TAPPI JOURNAL 39 MOLECULAR MODELING 5. Comparison of three methods for calculating axial elasticity in large strain. Data normalized by 122 GPa. Methods 1 (blue) and 2 (green) yield the same result for molecules with different lengths and boundary conditions, while method 3 (red) predicts lower values. UDPHWHU LV EHLQJ VSHFLILHG LPSOLFLWO\ 6HFRQG WKH YLULDO H[SUHV VLRQ LV QRW HTXLYDOHQW WR WKH PHFKDQLFDO &DXFK\ VWUHVV >@ $V VKRZQ LQ )LJ ZH ILQG XVLQJ WKLV PHWKRG \LHOGV D[LDO PRGXOL WKDW GLIIHU IURP WKRVH SUHGLFWHG E\ WKH ILUVW WZR PHWK RGV E\ XS WR IRU LQILQLWH FKDLQV DQG IRU ILQLWH FKDLQV :H WKHUHIRUH GR QRW DGYRFDWH XVH RI WKLV PHWKRG DQG ZLOO QRW GLVFXVV LW IXUWKHU KHUH 7KH D[LDO PRGXOXV ZDV FDOFXODWHG IRU ERWK ILQLWH DQG LQIL QLWH FKDLQV ZLWK GLIIHUHQW QXPEHUV RI UHSHDW XQLWV IURP GDWD WDNHQ LQ WKH ODUJH DQG VPDOO VWUDLQ UHJLPHV Figures 6 DQG 7 VKRZ WKH UHVXOWV ZKHUH WKH SORWV RQ WKH WLJKW VKRZ WKH UDZ GDWD DQG SORWV RQ WKH OHIW SURYLGH D VWDWLVWLFDO UHSUHVHQWDWLRQ 7KH VWDWLVWLFDO SORWV LOOXVWUDWH WKH LQWHUTXDUWLOH UDQJH ODUJH UHFWDQJOH PHDQ SRLQW LQVLGH WKH UHFWDQJOH PHGLDQ OLQH LQVLGH WKH UHFWDQJOH DQG PD[LPXP DQG PLQLPXP YDOXHV KLJKHVW DQG ORZHVW SRLQW UHVSHFWLYHO\ 7KH GDWD DUH QRUPDO L]HG LQ WKHVH ILJXUHV WR KLJKOLJKW WKH IDFW WKDW WKH WUHQGV DWH QRW VSHFLILF WR WKH IRUFH ILHOG XVHG )LJXUH LOOXVWUDWHV WKH UHVXOWV REWDLQHG IURP WKH ODUJH VWUDLQ ! UHJLPH )RU ERWK ILQLWH DQG LQILQLWH FKDLQV WKH XQFHUWDLQO\ LQ WKH GDWD GHFUHDVHV DV WKH FKDLQ OHQJWK LQFUHDV HV )RU H[DPSOH WKH VWDQGDUG GHYLDWLRQ LQ WKH ILQLWH PROHFXOH GDWD LV ZLWK VL[ UHSHDW XQLWV DQG ZLWK UHSHDW XQLWV IRU LQILQLWH PROHFXOHV WKH VWDQGDUG GHYLDWLRQ LV ZLWK VL[ UHSHDW XQLWV ZKLOH WKDW ZLWK UHSHDW XQLWV LV FDOFXOD WLRQV EDVHG RQ QRUPDOL]HG GDWD ,Q DGGLWLRQ WKH GDWD GR QRW DSSHDU WR WUHQG LQ DQ\ SDUWLFXODU ZD\ IRU WKH LQILQLWH FKDLQV ZKLOH WKH D[LDO PRGXOXV RI WKH ILQLWH FKDLQV LQFUHDVHV ZLWK FKDLQ OHQJWK DQG DV\PSWRWHV WR WKH VDPH YDOXH DV WKDW SUH 6. Finite (top) and infinite (bottom) molecules at large strain; axial modulus normalized by 177 GPa (the highest value from calculation). The plots on the right show the raw data with a solid line indicating convergence, and left ones provide a statistical representation. Ten independent simulations were run for each case. 40 TAPPI JOURNAL| APRIL 2011 MOLECULAR MODELING 7. Finite (top) and infinite (bottom) molecules at small strain; axial modulus normalized by 802 GPa (the highest value from calculation). The plots on the right showe the raw data with a solid line indicating convergence and left ones provide a statistical representation. Ten independent simulations were run for each case. GLFWHG IRU WKH LQILQLWH FKDLQ )LJXUH VKRZV WKH UHVXOWV REWDLQHG IURP WKH VPDOO VWUDLQ UHJLPH $V ZLWK WKH ODUJH VWUDLQ UHJLPH WKH GDWD XQFHU WDLQO\ GHFUHDVHV ZLWK LQFUHDVLQJ FKDLQ OHQJWK +RZHYHU HYHQ ZLWK WKH ORQJHVW FKDLQ WKH XQFHUWDLQW\ LV VL[ WLPHV WKDW RE WDLQHG IURP WKH VDPH PRGHO LQ WKH ODUJH VWUDLQ UHJLPH ,Q DG GLWLRQ WKH PDJQLWXGH RI WKH D[LDO PRGXOXV LV PXFK ODUJHU LQ WKH VPDOO VWUDLQ UHJLPH FRQYHUJLQJ WR D YDOXH WZR WR WKUHH WLPHV WKDW RI ODUJH VWUDLQ LQ ERWK ILQLWH DQG LQILQLWH FDVHV 7KHVH REVHUYDWLRQV FDQ EH XQGHUVWRRG LQ WHUPV RI WKH UROH RI SRWHQWLDO HQHUJ\ DQG K\GURJHQ ERQGV $V VKRZQ LQ )LJ WKH HQHUJHWLFV RI WKH ORZ VWUDLQ UHJLPH LV GRPLQDWHG E\ QRQ ERQGHG LQWHUDFWLRQV DVVRFLDWHG ZLWK WKH SUHVHQFH RI K\GURJHQ ERQGV 7KHVH K\GURJHQ ERQGV DUH H[WUHPHO\ VWURQJ DQG VR FRQWULEXWH WR D KLJK D[LDO PRGXOXV ,Q WKH KLJK VWUDLQ UHJLPH ZKHUH PRVW K\GURJHQ ERQGV KDYH EURNHQ WKH HQHUJHWLFV LV GRPLQDWHG E\ WKH UROH RI ERQGHG LQWHUDFWLRQV DQG ZH REVHUYH D FRUUHVSRQGLQJO\ ORZHU D[LDO PRGXOXV &RPSDULVRQ RI WKH D[LDO PRGXOL UHSRUWHG KHUH WR WKRVH LQ WKH OLWHUDWXUH SRVHV D FKDOOHQJH EHFDXVH DV VKRZQ KHUH UH VXOWV RI D PROHFXODU VLPXODWLRQ GLIIHU VLJQLILFDQWO\ ZLWK PRGHO SDUDPHWHUV DQG FDQ EH H[SHFWHG WR YDU\ HYHQ IRU D IL[HG VHW RI FRQGLWLRQV 7KH D[LDO PRGXOXV SUHGLFWLRQV LQ )LJV ODUJH VWUDLQ DQG VPDOO VWUDLQ DSSURDFK *SD DQG *3D UHVSHFWLYHO\ 0ROHFXODU VLPXODWLRQEDVHG SUHGLFWLRQV RI WKH D[LDO PRGXOXV RI FHOOXORVH , DUH W\SLFDOO\ LQ WKH UDQJH RI *3D >@ 6R DOWKRXJK WKHUH LV FHUWDLQO\ RYHUODS EHWZHHQ RXU UHVXOWV DQG WKRVH UHSRUWHG HOVHZKHUH LW LV GLIILFXOW WR UHDFK GHILQLWLYH FRQFOXVLRQV ,Q WHUPV RI H[SHULPHQWDO UHVXOWV WKH FRPSDULVRQ LV HYHQ PRUH GLIILFXOW WR PDNH )RU H[DPSOH WKH D[LDO PRGXOXV IRU FHOOXORVH , REWDLQHG IURP [UD\ VFDWWHU LQJ ZDV UHSRUWHG WR EH *3D >@ )XUWKHU WKH HODVWLF LW\ RI D VLQJOH FKDLQ ZLOO OLNHO\ GLIIHU IURP WKDW RI D FU\VWDO EH FDXVH RI WKH UROH RI LQWHUFKDLQ K\GURJHQ ERQGLQJ )RU H[DPSOH ZH KDYH IRXQG WKH PHDQ D[LDO HODVWLFLW\ IRU D [[ FHOOXORVH FU\VWDO WR EH *3D ZKHUHDV WKDW RI WKH FRUUH VSRQGLQJ HLJKW XQLW VLQJOH FKDLQ LV *3D &RPSOLFDWLQJ WKH LVVXH IXUWKHU LV WKH FRRSHUDWLYH K\GURJHQ ERQGLQJ VXFK WKDW RPLWWLQJ LQWHUFKDLQ K\GURJHQ ERQGLQJ DV LV QHFHVVDULO\ WKH FDVH IRU D VLQJOH FKDLQ ZLOO DIIHFW LQWUDFKDLQ K\GURJHQ ERQG LQJ >@ +RZHYHU ZKLOH WKH UHVXOWV VKRZQ LQ WKLV SDSHU FDQ QRW EH GLUHFWO\ H[WUDSRODWHG WR FHOOXORVH QDQRFU\VWDOV WKH WUHQGV REVHUYHG ERWK LQ WKH PDJQLWXGH DQG WKH XQFHUWDLQW\ RI D PRGHOSUHGLFWHG D[LDO PRGXOXV DUH JHQHUDOO\ DSSOLFDEOH CONCLUSION 7KLV VWXG\ KLJKOLJKWV WKH HIIHFWV RI FKDLQ OHQJWK VWUDLQ UH JLPH DQG FDOFXODWLRQ PHWKRG RQ D[LDO PRGXOXV SUHGLFWLRQ XVLQJ DWRPLVWLF VLPXODWLRQ DQG WKH XQFHUWDLQO\ DVVRFLDWHG ZLWK WKDW SUHGLFWLRQ $OO WKUHH RI WKHVH FRQVLGHUDWLRQV DIIHFW WKH PRGHO SUHGLFWLRQV DQG QHHG WR EH WDNHQ LQWR FDUHIXO FRQVLGHU DWLRQ ZKHQ XVLQJ DWRPLVWLF PRGHOLQJ RU LQWHUSUHWLQJ GDWD RE APRIL 201 1 | TAPPI JOURNAL 41 MOLECULAR MODELING WDLQHG IURP LW 7KH OLPLWDWLRQ RI WKLV VWXG\ LV WKDW LW ZDV SHU IRUPHG ZLWK VLQJOH FKDLQV PRGHOHG XVLQJ RQO\ RQH IRUFH ILHOG &203$66 +RZHYHU D FRPSUHKHQVLYH VWXG\ WKDW LQFOXGHV FKDUDFWHUL]DWLRQ RI PXOWLSOH IRUFH ILHOGV DQG WKH HIIHFW RI PRGHO VL]H LQFOXGLQJ FU\VWDO VWUXFWXUH LV XQGHUZD\ 7KHVH W\SHV RI VWXGLHV DUH FULWLFDOO\ QHFHVVDU\ WR HQDEOLQJ LQWHUSUHWD WLRQ RI PRGHO GDWD 2QO\ E\ XQGHUVWDQGLQJ KRZ ³ZKDW JRHV LQ´ DIIHFWV ³:KDW FRPHV RXW´ FDQ DWRPLVWLF VLPXODWLRQV WUDQVL WLRQ IURP DQ LQYHVWLJDWLYH PHWKRG WR D SUHGLFWLYH WRRO XVHIXO IRU FHOOXORVHEDVHG DSSOLFDWLRQ GHVLJQ TJ 7. Nishiyama, Y., Langan, P., and Chanzy, H., J. Am. Chem. Soc. 124(31): 9074(2002) 8. Mazeau, K. and Heux, L., J. Phys. Chem. B 107(10): 2394(2003). 9. Bergenstråhle, M., Berglund, L.A., and Mazeau, K., J. Phys. Chem. B 111(30): 9138(2007). 10. Zhou, M., Proc. R. Soc. Lond. A 459(2037): 2347(2003). 11. Diddens, I., Murphy, B., Krisch, M., et al.. Macromolecules 41(24): 9755(2008). 12. Qian, X., Mol. Simul. 34(2): 183(2008). LITERATURE CITED 1. Moon, R., Martini, A., Nairn, J.A., et al., Chem. Soc. Rev., in press, 2011, DOI:10.1039/C0CS00108B,. 2. Tanaka, F. and Iwata, T., Cellulose 13(5): 509(2006). 3. Eichhorn, S.J. and Davies, G.R., Cellulose 13(3): 291(2006). 4. Sun, H., Ren, P., and Fried, J.R., Comput Theor. Polym. Sci. 8(1-2): 229(1998). 5. Miyamoto, H., Umemura, M., Aoyagi, T., et al., Carbohydr. Res. 344(9): 1085(2009). 6. Plimpton, S., J. Comput Phys. 117(1): 1(1995). ABOUT THE AUTHORS With the increasing availability and use of atomistic simulations to characterize organic materials, we felt it was important to step back and consider, for the very simple system of a single cellulose chain, how parameters that define a model affect its predictions. Significant work in studying cellulose using atomistic simulation has been conducted since the mid-1480s. and the models have progressed in complexity, size, and accuracy. However, results are typically reported without considering variations due to small changes in model parameters or simply because of the statistical nature of the models themselves. Therefore, this work complements previous studies by providing a reference point and hopefully setting a precedentfor future research to report the subtle, yet important, model details that affect predictions and the uncertainty in those predictions. The most significant challenge in this study was isolating individual model parameters to determine their effects independently. Atomistic models are extremely complex and we could only hope to make quantitative statements about the roles of model parameters by defining a problem simple enough that individual effects could be identified, yet complex enough to approach something experimentally measurable. We chose to focus on the axial modulus of individual cellulose chains with which we could explicitly control characteristics such as chain length and strain, and where there is complementary (albeit not directly comparable) experimental data available for cellulose nanocrystals. We were very surprised to discover just how much variation was inherent in these 42 TAPPl JOURNAL | APRIL 2011 models, even when all input parameters were constant. However, along with the realization that uncertainty exists, came the understanding that we could quantify it and so take its effect into account when reporting atomistic predictions. The critical analyses of model predictions in this study are an important first step, and will form the basis for more comprehensive characterizations, including multiple force fields and various crystal sizes and structures. This work will help support future research in developing new engineered nonwoven materials and composites that are based on cellulose nanoparticles. Wu is a graduate research assistant and Martini is assistant professor with the School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA. Moon is a materials research engineer with the U.S. Forest Service, Forest Products Laboratories, and adjunct assistant professor with the School of Materials Engineering, Purdue University, Birck Nanotechnology Center, West Lafayette, IN, USA. Email Martini at [email protected].
© Copyright 2025 Paperzz