University of New Hampshire University of New Hampshire Scholars' Repository Earth Sciences Scholarship Earth Sciences 3-20-1999 Influence of biomass combustion emissions on the distribution of acidic trace gases over the southern Pacific basin during austral springtime R. Talbot University of New Hampshire, [email protected] Jack E. Dibb University of New Hampshire, [email protected] Eric Scheuer University of New Hampshire - Main Campus, [email protected] D R. Blake University of California, Irvine N J. Blake University of California, Irvine See next page for additional authors Follow this and additional works at: http://scholars.unh.edu/earthsci_facpub Part of the Atmospheric Sciences Commons Recommended Citation Talbot, R. W., J. E. Dibb, E. M. Scheuer, D. R. Blake, N. J. Blake, G. L. Gregory, G. W. Sachse, J. D. Bradshaw, S. T. Sandholm, and H. B. Singh (1999), Influence of biomass combustion emissions on the distribution of acidic trace gases over the southern Pacific basin during austral springtime, J. Geophys. Res., 104(D5), 5623–5634, doi:10.1029/98JD00879. This Article is brought to you for free and open access by the Earth Sciences at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Earth Sciences Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Authors R. Talbot, Jack E. Dibb, Eric Scheuer, D R. Blake, N J. Blake, G L. Gregory, G W. Sachse, J D. Bradshaw, S T. Sandholm, and H B. Singh This article is available at University of New Hampshire Scholars' Repository: http://scholars.unh.edu/earthsci_facpub/128 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. D5, PAGES 5623-5634,MARCH 20, 1999 Influence of biomass combustion emissions on the distribution of acidic trace gasesover the southern Pacific basin during austral springtime R. W. Talbot,• J. E. Dibb,• E. M. Scheuer, • D. R. Blake,2N.J. Blake,2G. L. Gregory, 3 G. W. Sachse, 3J. D. Bradshaw, 4,sS. T. Sandholm, 4andH. B. Singh6 Abstract. This paperdescribes the large-scaledistributions of HNO3,HCOOH, andCH3COOH overthe centraland SouthPacificbasinsduringthe PacificExploratoryMission-Tropics(PEMTropics)in australspringtime.Becauseof the remoteness of thisregionfrom continentalareas,low partper trillion by volume(pptv)mixingratiosof acidicgaseswereanticipatedto be pervasive overthe SouthPacific basin.However,at altitudesof 2-12 km over the SouthPacific,air parcels wereencountered frequentlywith significantlyenhancedmixingratios(up to 1200pptv) of acidic gases.Most of theseair parcelswerecenteredin the 3-7 km altituderangeandoccurredwithinthe 15ø-65øSlatitudinalband.The acidicgasesexhibitedan overallgeneralcorrelation with CH3C1, PAN, and03, suggestive of photochemical andbiomassburningsources.Therewasno correlation or trendof acidicgaseswith commonindustrialtracercompounds (e.g.,C2C14 or CH3CC13). The combustion emissions sampledoverthe SouthPacificbasinwererelativelyagedexhibiting C2H2/COratiosin the rangeof 0.2-2.2 pptv/ppbv.The relationships betweenacidicgasesandthis ratioweresimilarto whatwasobservedin agedair parcels(i.e., >3-5 dayssincetheywereovera continental area)overthewesternNorthPacificduringthePacificExploratoryMission-West Phases A andB (PEM-WestA andB). In the SouthPacificmarineboundarylayera median C2H2/COratioof 0.6 suggested thatthisregionwasgenerallynot influencedby directinputsof biomass combustion emissions. Herewe observed the lowestmixingratiosof acidicgases,with medianvaluesof 14 pptvfor HNO3, 19 pptvfor HCOOH, and 18 pptvfor CH3COOH.These valueswerecoincidentwith low mixingratiosof NOx(<10 pptv),CO (•50 pansper billion by volume(ppbv)),03 (< 20 ppbv),andlong-livedhydrocarbons (e.g.,C2H6<300 pptv).Overall,the PEM-Tropicsdatasuggest an importantinfluenceof agedbiomasscombustion emissions on the distributions of acidicgasesoverthe SouthPacificbasinin australspringtime. 1. Introduction Acidicgasesareimportantparticipants in tropospheric chemical processes. They are major end productsof oxidativecycles,with wet and dry removalof HNO3 and H2SO4 from the atmosphere principalsinksfor tropospheric NOx(NO + NO2) andSO2[Logan, 1983; Hales and Dana, 1979]. In remote regions the monocarboxylicacids HCOOH and CH3COOH are often the dominantacidicgasesandaciditycomponents of cloudwaterand precipitation[Keene et al., 1983; Andreae et al., 1988, 1990]. Formic acid is also a major sink for OH radicalsin cloudwater [Jacob,1986]. Formicacidmay be producedby aqueousphaseOH oxidation of hydratedformaldehyde(H2C(OH)2)in cloudwaterand subse- mInstitute fortheStudyof Earth,Oceans, andSpace,Universityof New Hampshire,Durham. 2Department of Chemistry,Universityof California,Irvine. '•NASALangleyResearch Center,Hampton, Virginia. 4Department of EarthandAtmospheric Science, GeorgiaInstituteof Technology,Atlanta. 5Deceased June16, 1997. 6NASAAmesResearchCenter,Moffett Field,California. Copyright1999by theAmericanGeophysical Union. quentlyprovidesan importantsourceof gasphaseHCOOH in the remotetroposphere[Chameidesand Davis, 1983;Jacob, 1986]. Aqueousphaseproductionmechanisms for CH3COOHappearto be quiteslowandprobablyarea negligiblesourceof thisspecies to the troposphere[Jacob and WoJ•y, 1988]. The major sourcesof HCOOH and CH3COOH to the globaltroposphere appearto be emissions from combustion[Kawamura et al., 1985; Talbot et al., 1988;Helaset al., 1992;Leferet al., 1994],vegetation[Keeneand Galloway, 1986; Talbot et al., 1988, 1990], and possiblysoils [Sanhuezaand Andreae, 1991; Talbot et al., 1995]. Permutation reactionsof peroxy radicalshave been proposedas potentially important sourcesof carboxylic acids [Madronich and Calvert, 1990; Madronich et al., 1990], but recent measurementsat a continental site indicate that this pathway may be relatively unimportant[Talbot et al., 1995]. There are potentially numerousproductionmechanismsfor HNO3 in the troposphereincluding, NO2 + OH, recycling of reactivenitrogenreservoirspecies,and evaporationof NO3' in aerosol and aqueousphases[Roberts, 1995]. Many of these processes arethoughtto very slowin the uppertropicaltroposphere dueto low 03 mixing ratiosand cold temperatures retainingmost of the reactivenitrogenin the form of NO during the daytime [Folkinset al., 1995]. Measurements conducted in winter 1992 at 10-12 km altitude betweenTahiti and California showedan abruptdecreasein the Paper number98JD00879. mixingratiosof 03 andNOy(i.e., the sumof reactivenitrogen 0148-0227/99/98JD-00879509.00 species)at the southernedgeof the IntertropicalConvergence Zone 5623 5624 TALBOT ET AL.' ACIDIC GASES OVER THE SOUTHERN PACIFIC BASIN (ITCZ) [Folkinset al., 1995].Owingto theremoteness of the South Pacificbasinfrom continentalareas,the observedtrendin O3and NOyisnotsurprising. In fact,lowmixingratioswouldbeexpected to bepervasiveoverthe SouthPacificbasinfor mosttropospheric tracespecies,includingacidicgases. In this paperwe presentthe large-scaledistributions of HNO•, HCOOH, andCH•COOH overthecentralandSouthPacificbasins during the NASA Global Tropospheric Experiment/Pacific Exploratory Mission-Tropics(GTE/PEM-Tropics) in September/October1996.Objectivesof PEM-Tropicsincludedobtaining baselinedata for importanttroposphericgases,evaluatingthe oxidizingcapacityof thetroposphere andfactorsinfluencingit, and improvingour understanding of the naturalsulfurcycle over the South Pacific basin. The firstpartof thispaperfocuseson the distributions of acidic flow, a diffuserwasmountedover the end of the inlet pipeparallel to the DC-8 fuselage.This device provideda "shroud"effect, slowingtheflow of ambientair throughit slightlybelowthetrueair speedof the DC-8 andadding50-100 hPa of pressurization to the samplingmanifold.This effectivelyeliminatedthe reverseventuri effect(•40 hPa)on the samplingmanifold.An additionalfeatureof the diffuse was a curved step aroundthe manifold pipe which provided the streamlineeffects of a backwardfacing inlet. Its functionwasto facilitateexclusionof aerosolparticlesgreaterthan • 2 •m in diameterfrom the samplingmanifold.Aerosolssmaller thanthis were removedfrom the sampledair streamusinga 1 pore-sized Zefluorteflonfilter thatwasreadilychangeable every510 min to minimize aerosolloading on the filter and gas/aerosol phasepartitioningfrom ambientconditions. In addition to the features described above, the inlet manifold addition gases inthe2-12knit, altituderangewhichwereapparently heavily wasequippedwith the capabilityfor conductinga standard impactedby aged biomasscombustionemissions.Supporting evidencefor this sourceis providedby coincidentdistributionsof selected hydrocarbon compounds. The distributionof acidicgases is examinedin the marineboundarylayerandoverlyingtransition region in the secondpart of this paper. Here there was little evidence for a directinfluenceof biomass combustion inputsonthe chemistry,in starkcontrastto the middleanduppertroposphere. Overall,thePEM-Tropicsmeasurements provideuniqueinformationof thechemistry of thisextensiveremoteregionduringaustral springtime. 2. Experimental Methods 2.1. Study Area ThePEM-Tropicsairborneexpeditionwasconducted usingthe NASA Ames DC-8 research aircraft. Transit and intensive site sciencemissionscomposed18 flights, averaging8-10 hoursin durationandcoveringthealtituderangeof 0.3 to 12.5km. The base of operations for thesemissionsprogressed asfollows: (1) Tahiti (threemissions),(2) EasterIsland(two missions), (3) Tahiti (one mission),(4) New Zealand(one mission),and (5) Fiji (three missions). The datausedin thispaperwereobtainedin the geographicgrid approximatelyboundedby 60øN-75øSlatitudeand 165øE-105øWlongitude.Data obtainedon transitflights(eight missions) werealsoutilizedin thispaper.A geographic mapof the studyregionis shownin severalcompanion papers[e.g.,Gregory et al., thisissue;Hoell et al., this issue]. The overall scientificrationaleand descriptionof individual aircraftmissions is described in thePEM-Tropicsoverviewpaper [Hoellet al., thisissue].Thefeatures of thelarge-scale meteorological regimeand associated air masstrajectoryanalysesfor the September-October 1996timeperiodarepresented by Fuelberget al. [thisissue]. 2.2. Samplingand Analytical Methodology Acidicgasesweresubsampled from a high-volume(500-1500 standardlitersper minute(sLpm))flow of ambientair usingthe mist chambertechnique[Talbot et al., 1988, 1990, 1997a].The subsample flow ratewasalways<10% of theprimarymanifoldtotal flow. Samplecollectionintervalswere typically4 min in the of HNO• into the manifold ambientair stream.This spikewas added• 10 cm downstreaminsidethe manifoldpipethrougha 6.5 mm OD glasscoatedstainlesssteeltubemountedperpendicular to theair flow. Thistubewas •20 mm longandmaintainedat 40øCto facilitatepassingof calibrationgasthroughit. Througha tee, this injectionlengthof tubingwas connectedto about1.5 m of heated tubingthatwasdirectlylinkedto thepermovenoutput.Thisdesign effectivelytestedthe passingefficiency of the entire manifold system,whichwasindistinguishable from 100 + 15%. The calibration systemfor HNO• consisted of a permeationovenheldat 50øC anda dilutionflow of ultra zero air (1.5 sLpm)which sweptthe ovenoutflowto eithera nylonfilterforoutputquantification or the samplingmanifoldfor standardadditionon ambientair. The heated tubingthroughwhichthe HNO• streampassedwas kept equilibratedby a flow designthat allowedthe calibrationgasto constantlypassto nearthe point of injectioninto the manifoldflow beforebeingdumpedto wastethrougha retfirnline.The mixing ratio of HNO3 in the 1.5 sLpm flow was typically200 partsper billion by volume (ppbv). This spike was then dilutedseveral hundred timesby thehighflow rateof ambientair in thesampling manifold,producingstandardadditionsof 100-1200pptv.Previouslywe havestudiedthe passingefficiencyof carboxylicacids throughour inletmanifold,andfoundit to be >95% [Talbotet al., 1992]. Thus we focused our attention on HNO3 due to its importance to thereactivenitrogencycleandtropospheric chemistry. The permeationoven output of HNO3 was monitoredon the ground and in the air in near-realtime. We fabricateda new calibrationsystemfor PEM-Tropicswhich maintainedthe permeationtubeto 50.0 + 0.1øC and 1850+ 1 hPapressure at all altitudes. The permeationsourcewas constantto + 8.5% over the courseof theexpedition,with no equilibrationtime requiredat any altitude, evenwith rapidchangessuchasduringspiralmaneuvers. This new designutilized upstreampressurecontrol(i.e., beforethe permeation tube) so that therewere no fittings, valves,or flow/pressure controllersin-linebetweenthe tubeandthe injectionpoint into our samplingmanifold.The flow throughthe ovenvariedfrom 20-25 cm3min'• depending ontheambientpressure andwasdilutedinto the 1.5 sLpm flow describedabove. Standardadditionswere conducted with andwithouta teflon filter in-line to verify thatthe filter did not influencethe passingefficiency of the sampling boundarylayer, 6 min at 2-9 km altitude, and 8 min above9 km manifold. altitude, reflecting decreased pumpingratesin themiddleandupper troposphere. The inlet manifoldconsisted of a 0.9 m lengthof 41 mmID glasscoatedstainless steelpipe.Thepipeextended fromthe DC-8 fuselageto provide a 90ø orientationto the ambientair streamline flow.To facilitatepumpingof thehigh-volume manifold Computer controlledsyringepumpswereusedto movesample solutionsin andoutof the mistchambersamplers andoursample containers.This essentiallyprovideda closedsystemof liquid handling which greatly simplified contaminationcontrol.The concentrations of acidicgasesin our sampleswerequantifiedusing TALBOT ET AL.: ACIDIC GASES OVER THE SOUTHERN PACIFIC BASIN 5625 Asanexample of thedetailed verticalstructure overtheSouth selected datafroma slowspiral(80mmin4) conducted east computer interface fordataacquisition. Thesystem wascomposed Pacific combustion plumewas primarilyof Dionexcomponents withthedetectors andflowsystem of Fiji is shownin Figure4. An apparent thermostated to 40øC. Eluantswereconstantly purgedwith He gas. sampled near5 km,withcorresponding largeincreases in HNO3, andC2H2/CO butnotC2C14. Noticetheveryrapidvertical Nitric acid was measuredusinga fast anioncolumnwhile the C2H2, in themixingratiosandgenerally goodcorrespondence carboxylic acidsweredetermined usinganAS4 column.Concentra- changes HNO3andC2H2.Whiletheplumeswith largemixing tor columnsandelectronicsuppression wasusedin bothchroma- between a custombuiltdualion chromatography systemequipped with a tography systems. Calibration curvesgenerated onthegroundand ratiosof manytracegasesclearlystandout,the PEM-Tropicsdata column in the air agreedwithin ñ2%. We thuswere able to determine in generalsupportthe ideathat muchof the tropospheric from 2-10 km altitudewas fumigatedwith varying degreesof atmospheric mixingratiosof acidicgasesin near-real time. In additionto datafor acidicgases,we presentselectedinformationonseveralimportanttracegasesincludingozone(03), carbon monoxide(CO), ethyne(C2H2), perchloroethylene (C2C14) , and peroxyacetylnitrate (PAN). AerosolNO3' wasmeasured on bulk filter samplescollectedwith a forwardfacing isokinecticprobe housedin a shroudto ensureisoaxial flow [Dibb et al., 1996a]. Ninety millimeterdiameter2 •m pore-sizedZefluorteflonfilters wereusedasthe collectionsubstrate. Specificdetailsregardingthe measurementof various other speciesused in this paper are presented in companion papers[Blakeet al., thisissue;Dibb et al., this issue;Gregoryet al., this issue;Vay et al., this issue].The measurements of thesespecieswere averagedto providemean valuesthatcorresponded directlyto the acidicgassamplingtimes. Thismerged dataproductwasgenerated atHarvardUniversity, and it is usedexclusivelyin thispaper. combustionemissions.The smoothshapeof the verticaldistributionof C2C14 istypicalof whatwasobserved overtheSouthPacific (Figure1), andit suggests minimalinfluenceon thechemistryfrom industrial emissions.The distribution of CH3CC13and other halocarbonsalso supportsthis ascertain(N. Blake, personal communication,1998). To providea detaileddescriptionof the distributionof acidic gasesoverthecentraland SouthPacificbasins,this informationis presented in a regionalsummaryformat(Table 1) consistent with that usedin companionpapers[Gregoryet al., this issue;Dibb et al., thisissue].Informationon the distributionof many othertrace gasescanbe foundin thesepapers,soit is not duplicatedhere.The regionalbreakdownwasdevelopedto providedatasummaries that correspond to logical latitudinaland longitudinalareas(e.g., the ITCZ, andthe eastern,central,andwesternPacificbasins).In some regionsthesamplingwasquitesparse,sointerregional comparisons need to be conducted with caution. On the basis of the vertical 3. Results In the data presentedin this paper,obviousstratospherically impactedvalueshavebeenremovedbasedon coincidentmeasurements of 03, CO, dew point, and selectedhydrocarbonsand halocarbons. This amountedto removinga total of about25 data pointsobtainedon threedifferentflights. The large-scalelatitudinaldistributionof acidicgasesoverthe central and South Pacific basinsis presentedin Figure 1. It is evidentfrom thesedistributionsthat numerousair parcelswere encountered between15ø and 60øS latitudewhich containedlarge mixingratiosof acidicgases.The northernborderof theimpacted Pacifictroposphere appearsto be controlledby the presenceand locationof theSouthPacificConvergence Zone (SPCZ) [Gregory et al., this issue].Nitric acid mixing ratios,for example,typically decreased by a factorof 2-5 in crossing the SPCZregionfrom south to north.This trendwas alsoapparentin othertracegasessuchas CO, C2H2,C2H6,03, and PAN [Gregoryet al., this issue].Thus pollutedair parcelsappearedto be presentsouthof the SPCZ with "clean" air north of it fed by an easterlyflow regimealongthe southernedgeof the ITCZ. Mixing ratios of acidic gasesover the South Pacific were generallylessthan200 pptvbutapproached or exceeded1000pptv in someair parcels.Theseair parcels(i.e., plumes)were observed mainlybetween2 and7 km altitude(Figures2a-2c).Becauseof the strongtradewind inversionoverthisregion,the marineboundary layer exhibitedvery small mixing ratios of acidic gases.The inversionappearedto be a very effectivebarrierto downward mixingof acidicgasesfrom aloft. Indeed,the mostprocessed (i.e., aging and mixing influences)air parcelswere sampledin the marineboundarylayer.This featureof the datais illustratedusing the ratio C2H2/COwhich had a medianvalue of 0.6 below 1 km altitudebut showedsignificantlylargervaluesin the restof the tropospheric column(Figure3). Valuesof this ratio lessthan 1.0 are typicalof photochemically agedand well mixed(diluted)air parcels[Smythet al., 1998; Talbotet al., 1997b]. measurement densityof acidicgases,thedatawerebrokenintofour altitude bins: (1) the marine boundarylayer (<1 km), (2) the transitionor cloudlayer(1-2 km), (3) the middle(2-8 km), and(4) upper(8-12 km) troposphere. As shownin the large-scaleverticaldistributions (Table 1 and Figure2), the smallestmixing ratiosof acidicgaseswere foundin themarineboundarylayer.Heremedianmixingratioswere14 pptv for HNO3, 19 pptv for HCOOH, and 18 pptv for CH3COOH.The verysmallmixingratiosof HNO3 areconsistent with the observed NOxvaluesof only a few or sub(i.e, <1) pptvin theboundarylayer (GeorgiaInstituteof TechnologyNO.•dataare availablefrom the DistributedActive Archive Center (DAAC) at NASA Langley ResearchCenter,Hampton,Virginia). There was no significant regional differencein the mixing ratio of HNO3 in the marine boundarylayer,but the carboxylicacidsexhibitedvalues2-3 times larger in the centralPacificregion.In the middletroposphere the mixing ratios of acidic gasesshowedthe largestvalues in the westernandcentralregions.This is consistent with the generally westerlyflow of air at thesealtitudesover the SouthPacificbasin, implying that the leastprocessedair parcelswould be found in theseregions[Fuelberget al., this issue].Most of the plumesthat we sampledwere,in fact,encountered overthe westernandcentral Pacific areas.The easternPacific regionswere dominatedby relatively"clean"air parcels.This longitudinaldifferenceseemingly reflectschemicaland physicallossesof acidicgasesas air parcelstransverse the Pacificbasinin a westerlyflow regime. The mixing ratios of the carboxylic acids HCOOH and CH3COOH are generallyfoundto be highly correlatedin the gas andliquidphasesin the troposphere [Keeneand Galloway,1986]. Over continentalareasthe ratio HCOOH/CH3COOH usuallyhasa value near 2.0 with a correlation coefficient between these two speciesnear0.9 [Keeneand Galloway, 1986; Talbot et al., 1988]. Although we observedlinear correlationsbetweenHCOOH and CH3COOHoverthe Pacificbasin(Figures5a and 5b), they were lessrobustthanwhat we observedduringthe PacificExploratory Mission-WestPhasesA andB (PEM-West A andB) [Talbot et al., 5626 TALBOT ET AL.' ACIDIC GASES OVER THE SOUTHERN PACIFIC BASIN ' I ' I ' I ' I ' I ' I ' 12oo 800 O 400 o -80 lOOO -60 ' I -40 ' -20 I ' 0 I ' I 20 ' 40 I ' I 60 ' 75O ß 5OO ß ß ß ee 250, . I . : . . •..,.. ;' ß :: :.•-::•.. • . ...' ß• ,, .. ,..-,y,,.•. ; - ß,. • . / ..:'. • o -80 1000 -60 , , -40 , -20 , , 0 , ' I 20 ' I 40 " I 60 ' 75O 5OO ß ß ß ß ß ß ß ß ß 250 • ß ß. • • e. '•'. 1;.' ' ~' '" •'•.•. ., ß .. / 20 60 ß . -. :,,.:'.:_,.,.•:•b'_•':•: :, , :.:.... :: 1 o -80 -60 -40 -20 0 40 Latitude Figure1. Latitudinal distribution of acidicgases at altitudes of 2-12kmoverthecentralandsouthern Pacific basins. 1997a]. In some oftheplumes, HCOOHwashighlyenhanced with regard toCH3COOH, andtheratioHCOOH/CH3COOH hadvalues as largeas5.0 (plumemedianequalto 1.6).Thissuggests the possibility of substantial photochemical production of HCOOH compared to CH3COOH (ormoreefficientlossof CH3COOH) in someof theplumesthatwe sampled overtheSouthPacific.This pointisfurtherexplored in latersections of thispaper. 4. Discussion 4.1. Altitude Range of 2-12 km Thelarge-scale impactof pollutionovermuchof thewesternand dataset.Backward trajectories indicate thatmanyof theairparcels we sampled hadnot beenovercontinental areasfor 10-20days [Fuelberget al., this issue].This is consistent with the chemical measurements whichsuggest thattheair parcelswerephotochemicallyagedandphysicallyprocessed for a weekor two sincethe last injection of combustion emissions. Manyof thetrajectories follow a paththatimplies thatthelastcontinental areasthattheair parcels passed overwereBrazilandAfrica.Sincebiomass burningoccurs onbothof thesecontinental areasduringaustralspring[Cahoonet al., 1992], this is likely to be a majorsourceof combustion emissions overthePacificbasinat thistimeof year. Methylchlorideis a reasonably goodchemical tracerof biomass centralPacificbasins is a significant featureof thePEM-Tropics burningemissions [Blakeet al., 1996].Therelationship between TALBOT ET AL.' ACIDIC GASES OVER THE SOUTHERN 12 PACIFIC BASIN 5627 12 (a.) e•e ß (b.) ß .•.-ooo 10 eee 10 ß eeme ß E ß ß e•, ß E ß ß ee ß ß • ß ß ß ß ee e ee ß •e • ß ß ß e• ß ß '•-'2'." ß ß ßß ee "' . e•eee • ßß ß ß ß ''• .'I... •. •.. ß ee ßß ß • •%-. 4 ßß ß ß eee• ß ß ee ß 2 ß g'' o 3oo 600 900 1200 1500 0 I , 300 HNO3, pptv 12 I 600 I 9OO I 1200 1500 HCOOH, pptv _ ß ß e•me--- ß ß (c.) ß ß 10 e.e ' -- I ß 'l,eV e- e•" I't .•eß ,•, ß .'.. .' .•;-_ ....... L :.;J ß . . ..... 0 1•' , 0 I, , 250 I 500 I 750 , 1000 CHsCOOH,pptv Figure 2. Verticaldistribution of acidicgasesoverthecentralandsouthernPacificbasins.Thesedistributions showthat plumeencounters with enhancedmixing ratiosof acidicgasescommonlyoccurredin the 3-7 km altituderegion. themixingratiosof CH3CIandacidicgasesisdepictedin Figure6. plumesmay be due to photochemicalproductionsincethe last Theseplotsindicate a generalrelationship between acidicgases and scavengingevent.Evidencefor a photochemicalsourceof acidic CH3CI(r2= 0.4).Theenhancements of CH3CIin theplumes are gasesis provided in Figures 7 and 8, where the relationships smalldueto thesignificant dilutionthesewell agedairparcelshave undergone. Plotsof C2H2andC2H6versus CH3C1(notshown)show similarrelationships to thosein Figure6, againreflectingthe substantial processing of theair parcelsovertheIndianandPacific basins. One featureof the plumesis the absenceof enhancements in aerosol or aerosolassociated species [Dibbet al., thisissue],even for ammonium whichis releasedin largequantities frombiomass combustion [Lobertet al., 1991]. Thisindicates thattheair parcels overthePacificbasinhavebeeneffectivelyscavenged by clouds and precipitation. It also suggests, sincemostacidicgasesare highlywater-soluble, thattheirlargemixingratiosin someof the betweenthesespeciesand 03 and PAN are presented.As with CH3CI,thetrendsareonlygeneral(r2near0.4) butsuggestive of photochemicalproduction of acidic gases.The break in the relationshipsat <5 pptv of PAN is presumablydue to thermal decomposition of PAN to NOx at lower altitudes[Roberts,1995 ]. The datacorresponding to <5 pptvPAN wasobtainedin the2-4 km altitudebandwhereair temperatures were typically280-285øK. Plottingan individualspeciesasa functionof the ratio C2H2/CO gives insighton the effect of air parcelprocessingon its mixing ratio.Theserelationships for acidicgasesare shownin Figure9. It is evidentthat the relationshipis much tighter for the carboxylic acidscomparedto HNO3, but it is unclearasto why this is the case. 5628 TALBOT ET AL.' ACIDIC GASES OVER THE SOUTHERN PACIFIC BASIN 12 ß ß eeee e•ee ß• ß ee ß e•edl• ß ee ß ß -,,,.... ,•..,..•.,,. 10 ß . .- ß ' E • ee • e•---ß • ß ß ß e•eeeß ß ß ß •e •ee e'• ß 'q•,.&•,f-...• .,,'. e'•ee ee • ß ß ß ß ß ß ß '.l"l. ß"J'"•ß I ß .' eee4e ß 1,e e ,• eeeee ' .:..a...• . .. 4,'.•,= ß.. l. .*. ß 4 ß . . ß .:-•:.....'-n.'' A ß ß: . _ ß ß ß ß ß eele '... ßß -.-,,..x-, .4.' ee ß "ße ' ß eß e• • • .. ' '': ..- ,". eeee ß e ß ß ß •,e..' I..e ß ee eel.•.3,.. ß.&.• %' a. ß e• ß el' ß e•e,•e ee ee% ß ß 8 ß e• ee e• ßß .• ß ..e e ß ß ß ee ß e• • ßß ßße,e•e•e e•e •,. ß 4•.- ß e e ß ß ß ß ,. 0.5 1.0 , 1.5 I 2.5 2.0 3.0 overa minimumof a oneweektimeframe.Thisis basedlargelyon theabsence of reactivehydrocarbons (i.e., C4andhigher)in these air parcels.It appearsthat mixingprocesses (i.e., dilution)are responsible for muchof thevariationin individualspecies mixing ratiosandinter-relationships between variouscompounds. Thus,air parcelscanbe quitephotochemically agedwith significantmixing ratiosof secondary speciesbut still appearmuchyounger(e.g., C2H2/CO> 1) dueto lessmixingwith background air. To examinethe potentialcombustionsourceof HNO3, only mixingratiosgreaterthan100pptvareplottedversusCO andC2H2 (Figure10). Only in a few plumesdoesthereappearto be a direct relationshipbetweenHNO3 and CO or C2H2. The largestmixing ratiosof HNO3 occurredat relativelylow valuesof CO andC2H2 and correspond to a C2H2/COratio near I (Figure9). In general, therewasverysubstantial amountsof HNO3in air parcelswith CO of 50-100 ppbvand C2H2 <150 pptv. Togethertheseresultspoint to significantphotochemicalproductionof HNO3 (sincethe last scavenging event)duringlong-rangetransportof air parcelsover theSouthPacific.Similararguments canbe madefor photochemical generationof carboxylicacidsin theseair parcels,especially HCOOH. Previousmeasurements of the ratioHCOOH/CH3COOH in biomassburningplumestransported longdistances in the middle troposphere show values of 1.5-3 [Helas et al., 1992; Lefer et al., Figure 3. Vertical distributionof the ratio C2H2/COover the 1994; Dibb et al., 1996b]. central and southern Pacific basins. Additionalmodelingstudiesare neededto enhanceour understanding of photochemical processes occurringwithinplumesover Clearly,thelargestmixingratiosof acidicgaseswerecontained in theSouthPacificbasin.Limitedinsightasto whetherwe observed the leastprocessed air parcels(C2H2/CO>1). On the basisof the lossof CH3COOHin theseplumescanbe gleamedby examination correlationsshownin this paper,it followsthat thesesameair of the CH3COOHand CH3OOH data.Plottingvarioussubsetsof parcelsalsocontained the largestmixingratiosof CH3CI,03, and thesedataobtainedoverthe SouthPacific(not shown)revealedno PAN.It appears thatthechemicalcomposition of theseair parcels correspondence betweenthe two species,aswouldbe expectedif reflects photochemical activityof biomass burningemissions aged CH3COOHwerea significantdecomposition sourceof CH3OOH C2H2/ CO, pptv/ ppbv 12 I ' I ' I ' I ' I ' 12 I ' I ' I , I ' I , I ' I , I ' I , I ' E 10 -o 8 •: 6 = 4 a_ 2 ß I o 70 , I 80 , 90 I , 100 I • I 110 , 120 I 130 140 o 0.9 , 1.0 1.1 E I ' I , I ' I , I ' I , 1.3 I 1.4 1.5 C2H2/CO,pptv/ ppbv C2H2, pptv 12 1.2 I ' I , 12 I lO 'o 8 - •: 6 '-, 4 a. 2 0 , 0 100 200 300 400 HNO3, pptv I 500 , 0 600 0.5 , I 1.0 , I I 1.5 2.0 , 2.5 C2CI4, pptv Figure4. Verticaldistribution of selected tracegases duringa slowspiralconducted duringmission17justeast of Fiji. TALBOTET AL.' ACIDICGASESOVERTHESOUTHERN PACIFICBASIN 5629 Table1. Regional Summary ofAcidic Gases OvertheCentral and Pacific Basins Altitude, HNO3 HCOOH, km CH3COOH N pptv 15 ø-45øN, 120o-170øW < 1 1-2 2-8 8-12 13 q-8.5(10) 46 + 10(50) 87 + 43(83) 63 + 53(42) 45 +_18(50) 39 + 30(30) 72 + 49(55) 55 + 26(52) 55 q-23(60) 44 + 35(36) 72 + 45(59) 54 + 30(55) < 1 1-2 2-8 8-12 20 ___ 11(15) 52 q-14(49) 67 +_35(51) 150q- 107(107) <1 1-2 2-8 8-12 18 q-10(17) 32 q- 14(30) 139q- 145(84) 63 q-63(37) 66 q-216(23) 44 q-20(43) 124q- 181(49) 61 q-54(46) < 1 1-2 2-8 8-12 15 q-7.7(13) 40 q-3.0(40) 160q-124(97) 100q-61(81) 18 q-7.4(17) 50 q-5.0(50) 71 q-54(47) 66 q-32(52) < 1 1-2 2-8 8-12 13 q-7.1(14) 28 q-8.2(30) 43 q-37(31) 45 q-30(45) 17 6 42 29 0o-15 øN, 120o-170oW 35 ___ 30(27) 33 q-24(18) 31 +_14(33) 27 q-26(14) 34 q-23(20) 36 q-26(22) 33 +_14(35) 23 q- 19(13) 19 10 31 16 0o-35 øS,120o-170øW 84 q-293(27) 43 q-345(39) 84 q-81(54) 56 q-46(41) 40 21 192 122 17 q-8.1(15) 46 q-8.5(46) 84 q-70(53) 92 q-27(94) 12 2 46 19 16 q- 13(18) 67 q-47(47) 52 q-43(36) 42 q-26(43) 27 5 50 28 0o-35 øS, > 170 øW 0o-35 øS,80o-120øW 18 q-5.9(18) 33 q-8.5(32) 43 q-28(36) 54 q-41(39) 35 o-72øS, > 170 øW < 1 1-2 2-8 8-12 14 q-4.6(14) 25 q-9.9(28) 180q-262(80) 54 +_71(25) < 1 1-2 2-8 8-12 12 +_2.3 (11) 31 q-NA (31) 26 + 16(23) 38 q-60(9.0) 11 +__ 4.1(10) 13 q-3.9(12) 38 q-26(33) 29 q-16(26) 162q-176(90) 114q-12(57) 54 q-39(40) 45 q-25(37) 23 13 70 23 35 o-72 øS,80 ø-I20 øW 16 q-4.4(18) 22 +_NA (22) 35 q-19(36) 18 q-5.0(19) 18 q-4.6(19) 20 q-NA (20) 33 q-18(26) 16 q-4.8(17) 7 1 16 5 Valuesare statedasmean-4-onestandard deviation (median).N represents thenumberof datain altitude•in. NA meansnotapplicable. 1 ooo (a) <2 km altitude (b) 2 - 12 kmaltitude ß ,,.f.;, > , lOO lOO o o lO ß•//•!::: •COOH =0.88 xCH3COOH +3.1 ' ß I I I I • 10 r2= 0.61 , I I I I I I I • I lO I 100 CH3COOH, pptv CH3COOH, pptv Figure 5. Relationship between mixing ratios ofHCOOH and CH3COOH over thecentral and southern Pacific basins;(a) <2 kmand(b) 2-12kmaltitude. 5630 TALBOT ET AL.' ACIDIC GASES OVER THE SOUTHERN PACIFIC BASIN burningplumes,thereis clearlymuchuncertaintysurrounding the productionand decompositionof carboxylic acids in such air parcels. I 1 ooo ß * I. ßß• =* .:* . ßß ß I ** ,%.. ø* * .'. * * - ... ßa,...ßf .....•,q,l; • • ..... ß •,• , •'...<;. ".•,..*.. * ß* ß.ß •, •.••"•l,,j•&•_ '.,* .. lOO '. .... :..'. -..'.?.;i"g'--' •71.•.-.. ,. :. '.-*;:;,5:_'--':=_•:•:.'.:.'" / ß lO * ß' .. ** ß.. _ •*•.. ..... ,•***e,. •,,t .. ß ,•_,.•.... ** *. .... ß ß ..-.q, I.ß.ß ß . .:•.... ß ,.... :'?. .ß ßß 4.2 Altitude Range of 1-2 km ß ß The altitudeband<2 km was brokeninto the marineboundary layer (<1 km) and the transitionor cloud layer from 1-2 km. The mixing ratio of acidic gasesin thesetwo layersarc shownas a functionof latitudein Figures 11a-11c. Nitric acid mixing ratios wcrcsmallerat < 1 km comparedto 1-2 km altitude,exceptfor the mostsoutherlydatawherethey wcrc aboutequal.There doesnot *, ß . ß ß ß ß ß HNO3= 10.0x CH3CI-26 ' ß > • o o co ß . .;.'..._..,•.•.....: ' ' I ' ' ' ' ' " ' ß;,.•: <,.:.•..••,.' .. • ß" :•'_.....:•"••.37.•. ;%•: .':..' ';'": ß ' ß , ß ... I ß'. ß '. .. .;•,..: :•:'_••;C:.•, ,._:. <';• '.. ' • ;.,:'•'i•,•iK•t•' ß.' 100 ß O • ' ße ß > •.. 100 10 ' 1 ooo 1 ooo % ß 4'. - ß 10 : • ß ee ß ß ß ß ß ee ß ß ß HNO3 = 1.2 x 0 3 - 0.25 HCOOH= 12.0x CH3CI-31 : i i i i I i i i i i i i i lO I lOO 1 ooo 1 ooo > > • 100 lOO o o o o co 10 i HCOOH= 1.0x 03 + 0.02 CH3COOH= 9.0 x CH3Cl- 23 lO i lOO 6OO CH3CI, pptv 1 ooo Figure6. Relationships between mixingratiosof acidicgasesand CH3C1in the altituderange2-12 km. The r2 valuesfor these correlations were•0.35. Particularly for HCOOHandCH3COOH, ß . lOO thereis a general trendof enhanced mixingratiosat thelargest O . .., &4. ... ' •,._', ::_'.. '.I,•>.';'%--•d'• &.•v.•.•A._•; "'• J •'.•r;.._ ß•- ß .- , : '""-' ..,'"l '.IhT.,,t•Ji. llS•__"t•i•.'": .":[/ valuesof CH3CI. Thesecorrelations potentiallyindicatean ß important biomass burning source foracidicgases overtheSouth co ..v.r-r,• ß Pacificbasin.Notethattheabscissas arealsoa logarithmic scale, rangingfrom500 to 650 pptv. ...•..t'.',p..,•_:__t-;.,ß'_, '. . ß t'•;..' ' ß CH•COOH =0.84 x• +0.30 ... . : , , , , I '10 • , , • , • , , I '100 03, ppbv [Madronich andCalvert,1990].Thisresultappears to support a significant photochemical source ofHCOOHrather thana predominanceof decomposition of CH3COOH in agedbiomass burning Figure7. Relationships between mixingratiosof acidicgasesand plumesovertheSouthPacific.We cannotruleout,however,some O3in thealtituderange2-12 km. Ther2valuesfor thesecorrela- photochemical productionof CH3COOHas well. Becauseof tionswere•0.40. Thesegeneralcorrelations potentiallyindicatea potentiallycomplex(andunknown)chemistry in thesebiomass photochemical sourcefor HCOOH andCH3COOH. TALBOT ET AL.' ACIDIC GASES OVER THE SOUTHERN PACIFIC BASIN 5631 altitude.In both layers,aerosolNO3' mixing ratioswere abouta factor of 2 greaterthan those of HNO3 [Dibb et al., this issue], presumablydue to uptakeof HNO3 onto sea-saltparticlesin the marineboundarylayer[Huebert,1980] andpossiblyproductionof aerosol-NO3' from cloudprocessing in the transitionlayer. The mixing ratiosof carboxylicacidsin the marineboundary layeroverthe SouthPacificwere aboutan orderof magnitudeless thanthosepreviouslydeterminedfrom shipboardsamplingin the centralNorthPacificregion[Arianderet al., 1990].This probably 1 ooo lOO lO is due to the remoteness of the South Pacific basin from continental , , , , , , ,,1 , , i , , i ill 10 ' ' i areas and restricteddownward mixing acrossthe trade wind i i i iii 100 1000 inversion. Formic and acetic acid did not exhibit a difference in their mixing ratiosbetweenthe marine boundaryand transition layers.In the marineboundarylayer they had the largestmixing ratiosnoah of the ITCZ. This may reflectthe closerproximityof 1000 _ ß ß ß ee eeee el e els ß ßß ßß ße ß ß eßeel•L ß ß ß' .• .. ;2;.•;.}'."i':,. • 100 ß ' ß ß . •..•.-.-•.;.,..•.•a,.j., • 1 ooo i;. ..ß ._..: •.•.. ß,..'.... '••.,.3,,'•..,'. ß '' 10 '_.•.'7". ' .. 100 ß HCOOH = 0.39 x PAN + 1.1 lO : , 1 , , , ,,,,I , , , , ,,,,i 10 i 100 , i i i 1111 1000 i i i i i i i i I i 1 1 ooo ' lOO ' ' ' ' ' ' ' I ' ß 1 ooo .ß o o e.e ß .' (D ß*At' _•/I'1'•ßß ß ß lO .'..•g,qi.' ß ß.' ,,..'.:•.• lOO (D " o o ß '.• .... lO ;• . • .... .' ,• •'.5 ,-.... e e PAN, pptv 1 I I I I I I I I o.1 I I 1 Figure8. Relationships betweenmixingratiosof acidicgasesand PAN in the altituderange2-12 km. The r2 valuesfor these correlations were •0.40. Thesegeneralcorrelations potentially indicatea photochemical sourcefor HCOOH and CH3COOH. Mixing ratiosof PAN below• 5 pptvwereobservedin the altitude range2-4 km,wherethermaldecomposition of PAN wasapparently 1 ooo significant. .lie ß ß ß . v . I,..:•;'•=: lOO o o appeartobeanysystematic variationof HNO3mixingratiosat <1 km altitudewithlatitude.Althoughthedataaresomewhat scattered, HNO3mixingratiosappear to increase in thetransition layergoing fromsouth tonorthlatitude. Thisapparent trendisdrivento a large extent by the low values near 60øS. At midlatitudesand in the ß ' .. l ;. "%". ' .... •'.': ß. o ß .'. '•' ,.e v' ... ' .•;2•:7,:.' '" •'½•,.• ß r•.'• ß ß ß ßß ß ß ß.'......'.•.•-• lO ' . ßß •,' . ,:. e• .i.e . • ' ß ß ß (D 1 i i i i i i i i I 1 i tropics therewas2-3 timesmoreHNO3in thetransition layerthan C2H2 / GO, pptv/ ppbv at<1 kmaltitude. Thisobservation couldberelatedto evaporation of clouddroplets releasing HNO3to thegasphasein thetransition layer.Thisprocess wouldbe mostactiveneartheITCZ, whichis Figure 9. Distributionof the mixing ratiosof acidicgasesas a wherethe largestmixing ratiosof HNO3 were observedat this functionof the ratio C2H2/CO. 5632 TALBOT ET AL.' ACIDIC GASES OVER THE SOUTHERN 1400 1400 1200 1200 PACIFIC , , BASIN , , , 1000 1000 > 8OO 05 0 o_ ee 6OO 800 ß ßß 6OO ß ee ß ß 4OO ß ee eel, ß ß ß • 400 ß ß ß ee• eee e• ß ß ß 200 '* ß½•o.•..,.... ß •ee • e•e•.•. • eß e e 2OO I ß ß ß ee ..•. •.' , I 50 , I , I 150 IO0 2( )0 I 0 , 100 I , I 2oo co, ppbv I , i 4OO 3oo 5OO C2H2,pptv Figure 10. Mixing ratio of HNO3 asa functionof CO andC2H2for HNO3 >100 pptv. lOO ' I ' I ' I ' I TransitionLayer (1-2 km) ' I I 15O ' (a.) . ' I ' I ' i I (b.) Transition Layer (1-2 km) 120 ' > ß •e ß ß ß ee'ß ß 0 60 c) -i- ß .? ß o -8o lOO , I , -60 ' I I , I -40 ' I , -20 ' I , 0 I ' I ' I I 20 40 i 60 o -8o 15o I , I , -60 ' I I , -40 ' I I , -20 ' I I , I 0 ' I , 20 ' I I 40 ' I ß Marine BoundaryLayer (<1 krn) Marine Boundary Layer (<1 km) 12o ß ß •e ß ß ß e, : ß eee• e ß e ee ß e•e ßI o -8o I , -60 I -40 , I , -20 Latitude I 0 , I 20 , I 40 0 -80 ' , -60 I -40 , I , -20 I 0 , I , 20 Latitude Figure 11. Latitudinaldistributionof acidicgasesin the marineboundarylayer(<1 kin) andthe overlying transitionlayer(1-2 km). The solidlinesrepresenta plot of the medianmixingratiovalueas a functionof latitude. I 40 TALBOT ET AL.' ACIDIC 150 ' I ' I ' el GASES OVER THE SOUTHERN I 5633 Acknowledgments: Wehonortheoutstanding unselfish contributions of ourcolleague andfriendJohnBradshaw (deceased) totheoverallsuccess and accomplishments of theGTE/PEM-Tropics airborne expedition. Excellent support wasprovided bytheground andflightcrewsoftheNASAAmesDC8 aircraftThisresearch wassupported by theNASA GlobalTropospheric ' (c.) Transition Layer (1-2 km) 120 PACIFIC BASIN Chemistryprogram. ' ß 4 References • ß 0 -80 150 , , I ß , -60 I , -40 I ß ß , -20 I Andteac,M. O., R. W. Talbot, T. W. Andteac,andR. C. Harriss,Formic and ß , 0 I , aceticacid over the centralAmazonregion,Brazil, 1, Dry season,J. Geophys.Res.,93, 1616-1624, 1988. Andreae, M. O., R. W. Talbot, H. Berresheim, and K. C. Beechef, Precipitationchemistryin central Amazonia,J. Geophys.Res., 95, I 20 40 , ' I ' I ' I ' I ' I ' I 16,987-16,999, 1990. Ariander, D. W., D. R. Cronn, J. C. Farmer, F. A. Menzia, and H. H. Westberg,Gaseousoxygenatedhydrocarbonsin the remote marine Marine BoundaryLayer (< 1 km) 120 troposphere, J. Geophys.Res.,95, 16,391-16,403,1990. Blake, N.J., D. R. Blake, B.C. Sire, T.-Y. Chen, and F. S. Rowland, Biomassburningemissionsand vertical distributionof atmospheric methyl halidesand otherreducedcarbongasesin the SouthAtlantic region,J. Geophys.Res., 101, 24,151-24,164, 1996. 60 Cahoon, D. R., Jr., B. J. Stocks,J. S. Levine, W. R. Cofer III, and K. P. O'Neill, Seasonaldistributionof African savannarites,Nature, 359, 812815, 1992. 30 0 I -80 40 Chameides, W. L., andD. D. Davis,Aqueous-phase sourceof formicacidin , 60 Latitude Figure 11. (continued) continentalareasto this region leadingto enhancedprimaryor secondary production of thesespecies.One differencebetweenthe verticaldistributionof HNO3 andthe carboxylicacidsin the two surfacelayersisthesimilarity'ofthe mixingratiosof HCOOH and CH3COOHin thesetwo altitudebandsbutnotthoseof HNO3.This observation maybe explainedby moreextensiveuptakeof HNO3 ontoseasaltaerosols comparedto thecarboxylicacids.Detailedgas phase,clouddroplet,and aerosolmeasurements over the remote clouds,Nature, 304, 427-429, 1983. Dibb, J. E., R. W. Talbot,K. I. Kleinre,G. L. Gregory,H. B. Singh,J. D. Bradshaw,and S. T. Sandholm,Asian influenceover the westernNorth Pacificduringthe fall season:Inferencesfrom lead-210,solubleionic species,andozone,J. Geophys.Res.,101, 1779-1792, 1996a. Dibb, J. E., R. W. Talbot, S. I. Whitlow, M. C. Shipham,J. Winterle, J. McConnell,andR. Bales,Biomassbumingsignatures in the atmosphere andsnowat Summit,Greenland:An eventon 5 August1994,Atmos. Environ., 30, 553-561, 1996b. Dibb, J. E., R. W. Talbot, E. M. Scheuer,D. R. Blake, N.J. Blake, G. L. Gregory, G. W. Sachse, and D.C. Thornton, Aerosol chemical characteristics anddistribution duringthe PacificExploratoryMission, Tropics,J. Geophys.Res.,this issue. Folkins,I. A., A. J. Weinheimer,B. A. Ridley, J. G. Walega,B. Anderson, J.E.Collins, G. Sachse, R. F. Pueschel, andD. R. Blake,03,NOy,and NOx/NOy intheupper troposphere oftheequatorial Pacific, J. Geophys. Res., 100, 20,913-20,926, 1995. Fuelberg,H. E., R. E. Newell, S. Longmore,Y. Zhu, D. J. Westberg,E. V. Browell,D. R. Blake,G. R. Gregory,andG. W. Sachse, A meteorological overviewof the PEM-Tropicsexperiment,J. Geophys.Res.,this issue. Gregory,G. L., et al., Chemicalcharacteristics of Pacifictropospheric air in 5. Conclusion theregionof theITCZ andSPCZ, J. Geophys.Res.,thisissue. Hales,J. M., andM. T. Dana,Wet removalof sulphurcompounds fromthe The distributionof acidicgasesover the SouthPacificbasinin atmosphere, Atrnos.Environ., 12, 389-400, 1979. australspringtimeappearsto be stronglyinfluencedby emissions Helas,G., H. Bingemet,andM. O. Andreae,Organicacidsoverequatorial frombiomassburning,mostlikely occurringin Africa andBrazil. Africa: Resultsfrom DECAFE 88, J. Geophys.Res.,97, 6187-6193, oceans are needed to better understand this issue. Owing to the generallywesterlyflow of air over this areain the middle and uppertroposphere,elevatedmixing ratiosof acidic gasesandthepresence of pollutionplumeswereconcentrated in the western and central South Pacific. The eastern Pacific basin was relatively"clean"presumablydueto chemicalandphysicalremoval of thesespeciesduringthe longtransitacrossthe SouthPacific. The enhanced mixingratiosof acidicgasesin pollutionplumes werecoincident with relativelylow mixingratiosof thecombustion tracersCO and C2H2. This observationand their generalcorrelationswith 03 andPAN suggest thatthemixingratiosof acidicgases may have been sustainedby photochemicalproductionin the pollutionplumes.Most likely this generationof acidic gases occurredafterthe lastscavenging eventthe air parcelsencountered sinceothersolublespeciessuchas aerosolswere not enhancedin these same plumes. The PEM-Tropics data document the hemispheric-scale pollutionof the southemtroposphere by biomass bumingin australspringtime.The impactof theseemissionson the chemistryof the southernhemispheretroposphereappearsto be muchgreaterthanpreviouslyrecognized. 1992. Hoell, J. M., Jr, et al., PacificExploratoryMissionin the tropicalPacific: PEM-TropicsA, August-September 1996,J. Geophys.Res.,this issue. Huebert, B. J.,Nitricacidandaerosol nitratemeasurements in theequatorial Pacificregion,Geophys.Res.Lett., 7, 325-328, 1980. Jacob,D. J.,Chemistry of OH in remotecloudsanditsrolein theproduction of formicacidandperoxymonosulfate, J. Geophys. Res.,91, 9807-9826, 1986. Jacob,D. J.,andS.C. Wofsy,Photochemical production of carboxylicacids in a remotecontinental atmosphere, inAcidDeposition Processes at High ElevationSites,editedby M. H. Unsworth,pp.73-92,D. Reidel,Norwell, Mass., 1988. Kawamura,K., L.-L. Ng, andI. R. Kaplan,Determinationof organicacids (C,-C,0)in theatmosphere, motorexhausts, andengineoils,Envrion.Sci. Technol., 19, 1082-1086, 1985. Keene,W. C., andJ. N. Galloway,Considerations regardingsourcesfor formicandaceticacidsin thetroposphere, J. Geophys. Res.,91, 14,46614,474, 1986. Keene,W. C., J. N. Galloway,andJ. D. HoldenJr.,Measurements of weak organicacidityin precipitationfrom remoteareasof the world,J. Geophys.Res.,88, 5122-5130, 1983. Lefer,B. L., et al.,Enhancement of acidicgasesin biomass bumingimpacted air massesoverCanada,J. Geophys.Res.,99, 1721-1737, 1994. 5634 TALBOT ET AL.: ACIDIC GASES OVER THE SOUTHERN PACIFIC BASIN ruralcontinentalatmosphere overthe easternUnited Statesduringthe Shenandoah CloudandPhotochemistry Experiment,J. Geophys.Res., Wameck,andP.J.Crutzen,Experimental evaluation of biomass burning 100, 9335-9343, 1995. emissions:Nitrogen and carboncontainingcompounds,in Global distribution of tropospheric nitric,formic, BiomassBurning-Atmospheric,Climatic,and Biospheric Implications, Talbot,R. W., et al., Large-scale and aceticacidsover the westernPacificbasinduringwintertime,J. editedby J. S. Levine,289-304, MIT Press,Cambridge,Mass.,1991. Geophys.Res.,102,28,303-28,313,1997a. Logan,J.A., Nitrogenoxidesinthetroposphere: Globalandregionalbudgets, Talbot, R. W., et al., Continental outflow over the western Pacific basin J. Geophys.Res.,88, 10,785-10,807,1983. duringFebruary-March1994: Resultsfrom PEM-West B, d. Geophys. Madronich,S., andJ. G. Calvert,Permutationreactionsof organicperoxy Res., 102, 28,255-28,274, 1997b. radicalsin the troposphere, J. Geophys.Res.,95, 5697-5717, 1990. T. J. Conway,S. W. Sachse, J. E. Collins,d. R. Madronich,S., R. B. Chatfield,J. G. Calvert,G. K. Moortgat,B. Veyret,and Vay, S. A., B. E. Anderson, Blake,andD. J.Westberg, Airborneobservations ofthetropospheric CO2 R. Lesclaux,A photochemical origin of aceticacid in the troposphere, distributionand its controllingfactorsoverthe SouthPacificbasin,J. Geophys.Res.,Lett., 17, 2361-2364, 1990. Geophys.Res.,this issue. Roberts,J. M., Reactiveodd-nitrogen (NO•) in the atmosphere, in Composition, Chemistry, andClimateof theAtmosphere, editedby H. B. Singh,pp. 176-215,Van NostrandReinhold,New York, 1995. Loberr,J. M., D. H. Scharffe,W.-M. Hao, T. A. Kuhibusch,R. Seuwen,P. Sanhueza,E., and M. O. Andreae, Emission of formic and acetic acidsfrom tropicalsavannasoils,Geophys.Res.Lett., 18, 1707-1710,1991. D. R. BlakeandN.J. Blake,Departmentof Chemistry,Universityof Smyth,S.,et al.,Comparison of thechemicalsignatures betweenair mass California, Irvine, CA 92717. J. E. Dibb, E. M. Scheuer,andR. W. Talbot, Institutefor the Studyof classes fromthePEMexperiments overthewestern Pacific,J. Geophys. Res., in press,1998. Earth, Oceans,and Space,Universityof New Hampshire,Durham,NH Talbot, R. W., K. M. Beecher,R. C. Harriss, and W. R. Cofer, Ill, 03824.(e-mail:rwt•christa.unh.edu) Atmosphericgeochemistry of formic and aceticacidsat a midlatitude G. L. Gregoryand G. W. Sachse,NASA LangleyResearchCenter, temperatesite,J. Geophys. Res.,93, 1638-1652,1988. Hampton,VA. Talbot, R. W., M. O. Andreae, H. Berresheim,D. J. Jacob,and K. M. S. T. Sundholm, GeorgiaInstituteof Technology, Atlanta,GA 30332. Beecher,Sourcesandsinksof formic,acetic,andpyruvicacidsover H. B. Singh,NASA AmesResearch Center,Moffett Field,CA 94035. centralAmazonia,2, Wet season, d. Geophys. Res.,95, 16,799-16,811, 1990. Talbot,R. W., B. W. Mosher,B. G. Heikes.D. J.Jacob, J.W. Munger,B.C. Daube,W. C. Keene,J.R. Maben,andR. S.Artz,Carboxylicacidsin the (Received October 10, 1997; revised March 2, 1998; acceptedMarch 10, 1998.)
© Copyright 2026 Paperzz