EDEXCEL CORE MATHEMATICS C1 (6663) – JUNE 2008 Question Number PROVISIONAL MARK SCHEME Scheme 5 2 x + x3 + c 3 1. Marks M1 A1 A1 (3) (3 marks) x( x 2 − 9) or ( x ± 0)( x 2 − 9) or ( x − 3)( x 2 + 3 x) or ( x + 3)( x 2 − 3 x) 2. x( x − 3)( x + 3) B1 M1 A1 (3) (3 marks) 3. (a) y 10 (7, 3) x B1 B1 B1 (3) y 7 x B1 B1 (2) (3.5, 0) (5 marks) 4. (a) f ′( x) = 3 + 3x 2 (b) 3 + 3x 2 = 15 M1 A1 (2) and start to try and simplify x2 = k → x = k x = 2 (ignore x = −2) (ignore + ) M1 M1 A1 (3) (8 marks) EDEXCEL CORE MATHEMATICS C1 (6663) – JUNE 2008 Question Number 5. (a) Scheme [ x2 Marks =]a −3 B1 (1) (b) [ x3 = ] ax2 − 3 or = a ( a − 3) − 3 ,5 = (c) PROVISIONAL MARK SCHEME a (a − 3) − 3 B1 a 2 − 3a − 3 (*) A1 cso (2) a 2 − 3a − 3 = 7 a 2 − 3a − 10 = 0 or a 2 − 3a = 10 M1 (a − 5)(a + 2) = 0 M1 a = 5 or − 2 A1 (3) (6 marks) 6. (a) y 5 B1 –2.5 M1 x A1 (3) (b) 2x + 5 = 3 x M1 2 x 2 + 5 x − 3 [= 0] or 2x2 + 5x = 3 A1 (2 x − 1)( x + 3) [= 0] M1 x = −3 or A1 y= 1 2 3 or 2 × (−3) + 5 −3 or y = Points are ( −3, −1) and ( 12 , 6) 3 1 2 or 2 × ( 12 ) + 5 M1 (correct pairings) A1 ft (6) (10 marks) EDEXCEL CORE MATHEMATICS C1 (6663) – JUNE 2008 Question Number 7. (a) PROVISIONAL MARK SCHEME Scheme Marks 5, 7, 9, 11 or 5 + 2 + 2 + 2 = 11 or 5 + 6 = 11 use a = 5, d = 2, n = 4 and t4 = 5 + 3 × 2 = 11 (b) tn = a + (n − 1)d with one of a = 5 or d = 2 correct = 5 + 2(n − 1) or 2n + 3 (c) B1 (1) Sn = or M1 1 + 2(n + 1) A1 (2) n n [ 2 × 5 + 2(n − 1)] or use of ( 5 + "their 2n + 3") 2 2 = {n(5 + n – 1)} = n(n + 4) M1 A1 A1 cso (3) (*) (d) 43 = 2n + 3 M1 [n] = 20 (e) A1 (2) S 20 = 20 × 24 , = 480 (km) M1 A1 (2) (12 marks) 8. (a) [No real roots implies b 2 − 4ac < 0 .] b 2 − 4ac = q 2 − 4 × 2q × ( −1) So q 2 − 4 × 2q × ( −1) < 0 i.e. q 2 + 8q < 0 (b) q(q + 8) = 0 or M1 A1 cso (2) (*) ( q ± 4 )2 ± 16 = 0 M1 (q) = 0 or −8 (2 cvs) −8 < q < 0 or q ∈ (–8, 0) or q < 0 and q > –8 A1 A1 ft (3) (5 marks) 9. (a) dy dx = 3kx 2 − 2 x + 1 M1 A1 (2) 7 2 B1 (b) Gradient of line is When x = − 12 : 3k × ( 14 ) − 2 × ( − 12 ) + 1, = (c) 7 2 M1 3k 3 = ⇒k =2 4 2 A1 A1 (4) x = − 12 ⇒ y = k × ( − 18 ) − ( 14 ) − 12 − 5, = −6 M1 A1 (2) (8 marks) EDEXCEL CORE MATHEMATICS C1 (6663) – JUNE 2008 Question Number 10. (a) PROVISIONAL MARK SCHEME Scheme Marks ( 7 − 1)2 + ( 0 − 3)2 QR = = 36 + 9 or M1 A1 45 = 3 5 or a = 3 A1 (3) (b) Gradient of QR (or l1 ) = Gradient of l2 is − (d) M1 A1 1 or 2 − 12 M1 y − 3 = 2 ( x − 1) or Equation for l2 is: (c) P is (0, 1) 3− 0 3 1 or ,= − 1− 7 −6 2 y −3 x −1 = 2 [or y = 2x + 1] (allow “x = 0, y = 1” but it must be clearly identifiable as P) (1 − xP )2 + ( 3 − yP )2 PQ = 1 QR × PQ 2 B1 (1) M1 PQ = 12 + 22 = 5 Area of triangle is M1 A1 ft (5) A1 = 12 3 5 × 5, = 15 or 7.5 2 M1 A1 (4) (13 marks) 11. (a) (x 2 (x 2 +3 +3 x y= ) 2 2 ) = x 4 + 3 x 2 + 3 x 2 + 32 2 = x4 + 6x2 + 9 = x 2 + 6 + 9 x −2 2 x x3 9 + 6 x + x −1 ( +c ) 3 −1 20 = M1 27 9 + 6×3 − + c 3 3 c = −4 x3 [ y =] + 6 x − 9 x −1 − 4 3 (*) A1 cso (2) M1 A1 A1 M1 A1 A1 ft (6) (8 marks)
© Copyright 2025 Paperzz