Freecalc Homework on Lecture 6 Will be quizzed: time to be announced in class 1. Integrate. Z 1 (a) dx. 3 + cos x x ! 1 +C √ tan 2 2 1 dx. 3 + sin x Z 1 dx. (Hint: this integral can be done simply with the substitution x = arctan t.) 2 + tan x 1 answer: √ arctan 2 Z (b) 3 tan x + 1 1 2 answer: √ arctan √ 2 2 2 5 answer: 5 ln (sin x + 2 cos x) + 1 (c) x+C 2 Solution. 1.a This integral is of none of the forms that can be integrated quickly. Therefore we have to use the standard rationalizing substitution x = 2 arctan t, t = tan x2 . We recall that from the double angle formulas it follows that cos2 (arctan t) − sin2 (2 arctan t) 1 − t2 cos(2 arctan t) = = . 1 + t2 cos2 (arctan t) + sin2 (arctan t) Therefore we can solve the integral as follows. Z Z 1 1 dx = d (2 arctan t) 3 + cos x 3 + cos(2 arctan t) Z 1 2 = dt 1−t2 (1 + t2 ) 3 + 1+t2 Z 2 = dt Z 4 + 2t2 1 = dt 2 + t2 √ √ ! 2 2 = arctan t +C 2 2 ! √ √ x 2 2 = arctan tan +C . 2 2 2 Substitute x = 2 arctan t Solution. 1.c This integral is of none of the forms that can be integrated quickly. Therefore we can solve it using the standard rationalizing substitution x = 2 arctan t, t = tan x2 . This results in somewhat long computations and we invite the reader to try it. 1 However, as proposed in the hint, the substitution x = arctan t works much Z Z 1 1 dx = d (arctan t) 2 + tan x 2 + tan(arctan t) Z 1 1 = dt (2 + t) (1 + t2 ) Z 1 − 5t + 25 5 = + dt (t + 2) (t2 + 1) 1 1 2 = ln(t + 2) − ln(t2 + 1) + arctan t + C 5 10 5 1 1 2 = ln(tan x + 2) − ln(tan2 x + 1) + x + C 5 10 5 1 1 2 = ln(tan x + 2) + ln(cos x) + x + C 5 5 5 1 2 = ln ((tan x + 2) cos x) + x + C 5 5 1 2 = ln (sin x + 2 cos x) + x + C. 5 5 faster: Substitute x = arctan t Decompose into partial fractions Substitute back t = tan x 2. Integrate. The answer key has not been proofread, use with caution. Z (a) sin(3x) cos(2x)dx. answer: − 1 cos(5x) − 1 cos x + C 10 2 Z (b) sin x cos(5x)dx. answer: − 1 cos(6x) + 1 cos(4x) + C 12 8 Z (c) cos(3x) sin(2x)dx. answer: − 1 cos(5x) + 1 cos x + C 10 2 Z (d) sin(5x) sin(3x)dx. answer: 1 sin(2x) − 1 sin(8x) + C 4 16 Z (e) cos(x) cos(3x)dx. answer: 1 sin(4x) + 1 sin(2x) + C 8 4 3. Integrate. Z (a) sin2 x cos xdx. answer: 1 sin3 x + C 3 Z (b) sin2 xdx. answer: x − 1 sin(2x) + C 2 4 Z (c) cos3 xdx. answer: sin x − 1 sin3 x + C 3 4. Integrate Z (a) sec3 xdx. answer: 1 (sec x tan x + ln | sec x + tan x|) + C 2 Z (b) tan3 xdx. answer: 1 tan2 x − ln | sec x| + C 2 sec2 x tan2 xdx. 3 answer: tan x + C 3 Z (c) 2
© Copyright 2026 Paperzz