37 Article Subsidy or subtraction: how do terrestrial inputs Ěȱȱȱȱǵ Stuart E. Jones1*, Christopher T. Solomon2 and Brian C. Weidel3 1 Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.. Tel: 574-‐‑631-‐‑5703. Email: [email protected] 2 Department of Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, QC H9X 3V9, Canada 3 United States Geological Survey, Great Lakes Science Center, Lake Ontario Biological Station, Oswego, NY 13126, USA * Corresponding author Received 22 November 2011; accepted 17 January 2012; published 1 June 2012 Abstract Ȭ¢ȱ Ě¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ¡ȱ ȱ Ȭęȱ ěȱ ȱ ȱ ¢ǯȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱ¢ǰȱȱȱȱȱȱ¢ȱȱȱěȱ ȱ¢ȱȱ¢ǯȱȱȱȱȱȱȱȱȱȱȱ ȱǯȱȱȱȱȱȱȱȱȱȱ¡ȱȱǯȱȱȱȱ ȱȱȱ¢ȱȱȱȱȱȬȱȱȱ total phosphorus (TP) and dissolved organic carbon (DOC) concentration, and consumer-‐‑level ȱȱȱȱȱ ȱĜǯȱȱȱȱȱ ¢ȱȱȱȱȱȱ¢ȱȱȱ Ȭȱǰȱ¡ȱȱȬ-‐‑ ȱ¢ǯȱȱ ǰȱȱ¢Ȭȱȱȱ¡ȱȬęȱěǯȱ ȱȱȱ£ǰȱȱȱȱȱȱȱ ȱȱȱ£ȱ ȱ ȱ ȱ ȱ ¢ǯȱ ȱ ¢ǰȱ £ȱ ȱ ¢ȱ ȱ ȱ ȱǰȱȱȱȱ Ȭȱȱ¢ȱǯȱȱȱǰȱȱȱȱ £ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ěȱȱȱ¢ȱȱȱȱ¢ǯȱȱ¢ǰȱȱȱ ¢ȱ ȱ £ȱ ȱ ¡ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ¡ȱ ȱ Ȭęȱ ěȱ ȱ ȱ ȱ ¢ȱ ȱ ȱȱȱȱěȱȱȬȱĚ¡ȱȱȱȱȱȱȱȱ ǯȱ ¢ DZȱȱ¢DzȱDzȱDzȱDzȱ DOI: 10.1608/FRJ-‐‑5.1.475 Freshwater Reviews (2012) 5, pp. 37-‐‑49 © Freshwater Biological Association 2012 38 Jones, S.E., Solomon, C.T. & Weidel, B.C. Introduction ŘŖŖŗǼǰȱ Ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻ ǰȱ ŘŖŖŜǼǰȱ ȱ ¢ȱ Ěȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ĵȱ ȱ ǻǰȱ ŗşşśǼǯȱ ȱ ¢ǰȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ £ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ Ěȱ ȱ ȱ ¢ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻȱ ǭȱ ěǰȱ ŘŖŖśǼǯ ecology (Hensen, 1887; Reynolds, 2008). However, this In addition to the physical and chemical impacts ȱȱȱ¢ȱȱ ¢ȱȱȱȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ Ȭ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ǻǰȱ ŗşŚŘDzȱ ĵǰȱ ŗşşśǼǰȱ ȱ ǻȱ ȱ ȱȱ¡ȱȱȱȱ ȱǯǰȱŘŖŖŘDzȱȱȱǭȱǰȱŘŖŖŘǼǰȱȱ a biologically unavailable or recalcitrant nature, but terrestrial (Jones et al., 1998; Carpenter et al., 2005; Solomon ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱǯǰȱŘŖŗŗǼȱȱȱȱȱ ȱǻ¢ǰȱŘŖŖŞǼǯȱȱ ȱȱ ȱǻǰȱŗşŞŞDzȱĵȱȱǯǰȱŘŖŖŚDzȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱǯǰȱŘŖŗŖǼǯȱȱȱ¡ǰȱȱȱȱȱ ȱĚ ȱȱȱȱȱȱȱȱ carbon in enhancing microbial respiration and driving ȱ ǰȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱ ȱȱǻȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ et al., 1994; Lennon, 2004; Cole et al., 2007). In addition, perspectives (Marcarelli et al., 2011). In this review, ȱ ȱ ȱ řśȱ Ɩȱ ȱ ŝŖȱ Ɩȱ ȱ ȱ ȱ Ĵȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱǻĵȱȱ ¡ȱȱȱĚȱȱȱȱȱȱ ǯǰȱŘŖŖŚǼǯȱȱ£ȱǻŗŘȱƖȱȱŞŖȱƖǼȱȱ£ȱ ȱȱȱȱȱȱȱȱ ǯ ǻŘŘȱƖȱȱŞśȱƖǼȱȱȱȱȱęȱȱ ȱ ȱ ȱ ȱ ȱ Ěȱ ȱ ȱ ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŖśDzȱ ȱ ȱ ȱȱȱȱ¢ȱȱȱȱȱȱ ǯǰȱ ŘŖŖŞǰȱ ŘŖŗŗǼǯȱ ȱ ȱ ȱ ȱ ȱ ȱ¢ȱȱȱǰȱǯǯȱȱȱ¢Ȃȱ carbon is hypothesised to occur through consumption ęȱ ȱ ȱ ȱ ȱ ǻȬǼȱ ȱ ȱ ȬȬȱ ȱ ȱ ȱ ȱ allotrophic (nourished in other ways) (Birge & Juday, ǻǰȱ ŗşşŚDzȱ ȱ ǭȱ ǰȱ ŗşşŚDzȱ ȱ ǭȱ ǰȱ ŗşŘŜǼǯȱ ȱ ȱ ¢ȱ ȱ ȱ Ȭȱ ŘŖŖśǼǰȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱǻȱȱǯǰȱŘŖŖŘǰȱŘŖŖŜDzȱĴȱȱǯǰȱŘŖŖşǼǯȱȱȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ¢ȱ ¢ȱȱȱȱ ȱȱȱǰȱȱ and the pervasive impacts terrestrial carbon can have on ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ¢ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻǰȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ŗşşŘǼǯȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ produced comparable results (Bunn & Boon, 1993; Jones primarily as dissolved organic carbon (DOC), but also as ȱǯǰȱŗşşşDzȱ¢ȱȱǯǰȱŘŖŖŗDzȱȱȱǯǰȱŘŖŖşDzȱȱȱ ȱȱǻǼȱȱȱȱȱ ǯǰȱ ŘŖŖşǼǯȱ ȱȱ ȱ ȱ ȱ ȱ ȱ ȱ (Dillon & Molot, 1997a; Cole et al., 2006). Terrestrial ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱ¢ȱ¡ǰȱȱȱȱ¢ȱȱ ȱ¢ȱǻǯǯȱȱĴǰȱ ȱǰȱȱȱ substances (Jones, 1992). These high molecular weight colour:chlorophyll aȱǼȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ Ĵȱ ȱ (Pace et al., 2007; Weidel et al., 2008; Solomon et al., 2011). (Jones, 1992). Reduced light penetration can impose light The research described to this point has led many to limitation on primary producers (Carpenter et al., 1998; ȱȱȱȱȱȱ¡ȱȱȱȱ ȱ ȱ ǯǰȱ ŘŖŖşǼǰȱ ȱ ȱ ęȱ ȱ ȱ ȱ subsidy. However, to be considered a resource subsidy, ȱȱȱȱȱǻȱǭȱǰȱ Ĵȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ¢ȱ © Freshwater Biological Association 2012 DOI: 10.1608/FRJ-‐‑5.1.475 39 ȱȱȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ (donor-‐‑control), and enhance production in the recipient ȱȱ¢ȱȱ¢ȱȱȱȱȱ ¢ȱǻȱȱǯǰȱŗşşŝǼǯȱȱȱȱȱĴȱȱ ȱ¢ȱȱȱ ȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ¢ȱȱȱȱęȱǻȱȱǯǰȱŗşşŝǼǯȱȱȱȱ in a donor-‐‑controlled manner, and is incorporated into ȱ ȱȱȱȱȱȱDZȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ 1. ȱ ȱ ȱ ȱ ȱ ¢ȱ ¢ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ǯ terrestrial carbon supply? 2. ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱȱȱȱĚȱȱȱȱ how does basal carbon supply respond to elevated ȱ ¢ȱ ȱ £ȱ ȱ £ȱ ȱ ȱ subsidised? 3. where are the greatest uncertainties pertaining to carbon supply on consumer growth or production. The ȱ ȱ Ěȱ ȱ ȱ ¢ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ production? ¡¢ȱȱȱȱȱȱȱ ȱȱȱȱǰȱDaphnia magnaȱǻĴȱȱǯǰȱ Model description ŘŖŖşǼǯȱȱ ǰȱȱȱȱȱȱȱȱ ȱ ȱǻŗŖȮřŖȱƖȱȱȱǼǰȱDaphnia production ȱ ěȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱȱȱȱȱȱȱȱȱǻĴȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯǰȱŘŖŖşǼǯȱȱȱȱȱȱȱȱȂȱ ȱȱȱ¢ȱDZȱ ȱȱȱ ¢ȱȱȱȱȱĴȱǻȬǼȱȱ Ěȱȱ¢ȱȱę¡ȱȱȱȱȱȱ biomass does not ensure that terrestrial carbon will act as a Dzȱ ¢ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ¢ǯȱȱ ȱȱȱȱȱȱȱ ȱȱȱȱDzȱȱȱ ȱĜ¢ǰȱǯǯȱ ȱ£ǰȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱȱ ȱȱȱȱęȱȱȱȱȱȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱǻǯǯȱȱȱĴȦȱDzȱǰȱ ǻȱȱǯǰȱŘŖŗŗǼǯȱȱȱȱȱȱȱ¡ȱ ŗşŝŚǼǯȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ¢ȱȱȱȱȱȱȱȱȱ benthic studies is the widespread assertion that terrestrial consumer production to changes in terrestrial organic ȱȱȱȱȱ¢ȱ ȱ¢ȱǻǰȱ Ĵȱǯȱȱȱȱȱȱȱȱȱȱ ŗşŞŞDzȱ Ĵȱ ȱ ǯǰȱ ŘŖŖşDzȱ ȱ ȱ ǯǰȱ ŘŖŗŗǼǰȱ ȱ ȱȱȱȱȱȱȱȱ ȱ ȱ ¢ȱ ȱ ȱ ǻȱ ȱ ǯǰȱ ŘŖŗŖǼǯ ȱȱȱȱǰȱȱ¢ȱ ȱȱȱȱȱ ȱȱȬȱ ȱǻȱȱĴǰȱȱ¡ȱȱŗǰȱȱ ȱ ȬȬȱ ȱ ȱ ȱ ȱ ȱ¢ȱȱȱȱȱȱȱȱ ȱȱĚȱȱȱ ȱȱȱ paper at ĴDZȦȦ ǯĠǯǯȦȦ¡ǯȦȦ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ article/view/475). This does not preclude the application ȱ ȱ ȱ ȱ ȱ ȱ ǯȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ĵǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ǯȱȱǰȱȱǰȱȱȱȱȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ¢ȱ ȱȱȱȱȱȱȱŗȬřǯȱȱȱ is increasing (Roulet & Moore, 2006). To begin to address ȱȱȱȱ¡ȱȱȱTable 1. ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ęȱ ǰȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱ¢ȱȱę¡ȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ DZȱ ¢ȱ ¢ȱ ǰȱ ȱĚǯȱȱȱȱǰȱ ȱȱȱ¡ȱ periphyton primary production, terrestrial DOC load, and DOI: 10.1608/FRJ-‐‑5.1.475 Freshwater Reviews (2012) 5, pp. 37-‐‑49 40 Jones, S.E., Solomon, C.T. & Weidel, B.C. Table 1: ȱȱȱȱ ȱ¢ȱǯ 1 2 3 4 Model Output Phytoplankton chlorophyll a maximum phytoplankton productivity maximum periphyton productivity light-‐‑attenuation coefficient Unit mg m-‐‑3 Equation Chl 0.41TP 0 0.87 mg C m-‐‑3 h-‐‑1 PPmax 1.56Chl mg C m-‐‑2 h-‐‑1 BPmax 28.1TP0 0.24 m-‐‑1 KD 0.0213 0.0177Chl 0.0514 DOC § · ¸ © daylen ¹ t 5 surface light at time t µμmol m-‐‑2 s-‐‑1 I 0,t I 0,max sin ¨ S 6 light at depth z and time t µμmol m-‐‑2 s-‐‑1 I z ,t I 0,t e 7 whole-‐‑lake phytoplankton production mg C m-‐‑2 d-‐‑1 TPP § I z ,t sunset PP ¨ ¦ zzmax ¦ tanh max sunrise 0 ¨ I kp © · ¸V V / A ¸ z z 'z 0 ¹ 8 whole-‐‑lake periphyton production mg C m-‐‑2 d-‐‑1 TBP § I z ,t sunset ¨ ¦ zzmax 0 ¦ sunrise BPmax tanh ¨ © I kb · ¸ Az 'z Az / A0 ¸ ¹ 9 terrestrial DOC load mg C m-‐‑2 d-‐‑1 Q DOC 1000 DOCW / 365 10 terrestrial POC load mg C m-‐‑2 d-‐‑1 Q POC Q DOC Z mg C m-‐‑2 d-‐‑1 TPPBt TPP (1 RTPP )H mg C m-‐‑2 d-‐‑1 TPPZp TPP (1 RTPP )(1 H ) mg C m-‐‑2 d-‐‑1 TBPZb TBP (1 RTBP ) mg C m-‐‑2 d-‐‑1 tDOC Bt QDOC (1 I ) mg C m-‐‑2 d-‐‑1 tPOC Zp Q POC Q DOC I mg C m-‐‑2 d-‐‑1 PBt mg C m-‐‑2 d-‐‑1 Bt Zp mg C m-‐‑2 d-‐‑1 PPt Bt Pt GE Bt , Pt mg C m-‐‑2 d-‐‑1 PZp (TPPZp PPt ) CTPP , Zp GETPP , Zp tPOC Zp CtPOC , Zp GEtPOC , Zp Bt Zp GE Bt , Zp mg C m-‐‑2 d-‐‑1 PDt PZp S Zp (TPPZp PPt )(1 CTPP , Zp ) tPOC Zp (1 CtPOC , Zp ) TBPZb (1 CTBP PZb TBPZb CTBP , Zb GETBP , Zb PDt C Dt , Zb GE Dt , Zb 11 12 13 14 15 16 17 18 19 20 phytoplankton exudate zooplankton-‐‑available phytoplankton production zoobenthos-‐‑available periphyton production bacteria-‐‑available terrestrial DOC zooplankton-‐‑available terrestrial POC bacterial production heterotrophic protist and zooplankton available bacterial production heterotrophic protist production zooplankton production detritus production © Freshwater Biological Association 2012 zoobenthos production 21 mg C m-‐‑2 d-‐‑1 KDz TPPBt CTPP , Bt GETPP , Bt tDOC Bt CtDOC , Bt GEtDOC , Bt Bt Pt PBt (1 m Bt ) / 2 DOI: 10.1608/FRJ-‐‑5.1.475 41 ȱȱȱ Table 1 (cont.): ȱȱȱȱ ȱ¢ȱǯ 19 20 21 Model Output Zooplankton production Detritus production Zoobenthos production Unit Equation mg C m d PZp (TPPZp PPt )CTPP , Zp GETPP , Zp tPOC Zp CtPOC , Zp GEtPOC , Zp Bt Zp GE Bt , Zp mg C m-‐‑2 d-‐‑1 PDt PZp S Zp (TPPZp PPt )(1 CTPP , Zp ) tPOC Zp (1 CtPOC , Zp ) TBPZb (1 CTBP , Zb ) mg C m-‐‑2 d-‐‑1 PZb TBPZb CTBP , Zb GETBP , Zb PDt C Dt , Zb GE Dt , Zb -‐‑2 -‐‑1 terrestrial POC load (Fig. 1Ǽǯȱȱȱ¢ȱȱȱ ¢ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻǯȱ ŗŖǼǯ total phosphorus concentration, the DOC concentration, ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱȱ consumer secondary production, given the basal resource ȱ ȱ ȱ ȱ ȱ ȱ Ȭȱ ¢ȱ ȱ ȱ ȱ ȱ ęȱ ȱ ȱ ȱ ȱ ȱ ¢ȱȱ¢ȱ¢ȱȱǻȱ ȱ ǰȱ ǰȱ ȱ ȱ Ĝȱ ŝȱǭȱŞǼǰȱȱȱȱȱȱȱǯȱǻŘŖŖŞǼȱ ȱ ȱȱȱǻȱŗŜȬŘŗǼǯȱȱȱȱȱ¢ȱ ęȱȱȱȱěȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ £ȱ ȱ ǯȱȱę¢ǰȱȱęȱȱȱȱȱ ȱ£ǰȱȱȱȱȱȱ ȱěȱȱȱȱ ȱȱ¢ȱȱ ȱȱȱȱȱȱȱȱ ȱȱȱȱȱȱȱȱǻǯȱŚǼȱȱȱ the pelagic assemblage (Fig. 1). We assumed that consumer ȱȱȱěȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱĴȱȱ ȱȱ ǯȱȱȱȱ ȱȱȱDZȱ assumption that the terrestrial load is 2000:1 C:P by mass ȱ ȱ ȱ ȱ ǰȱ ȱ ¢ȱ ȱ ǻȱȱǯǰȱŗşşřDzȱȱǭȱǰȱŗşşŝDzȱȱǭȱěǰȱ autochthonous resources to allochthonous resources ŘŖŖśǼǯȱȱȱȱǰȱȱȱȱǰȱ ȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ¢ȱ important in determining consumer production. A change in load has a ȱ ěȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ¢ȱ also indirectly alter basal C supply because DOC shades within-‐‑system ȱ ȱ ǻǼȱ ¢ȱ producers. We considered a range ȱ Ȭȱ ȱ ȱ ȱ relationship between terrestrial DOC load and DOC concentration, which ȱȱȱȁȱȱ¡Ȃǰȱ Θȱ(Table 2ǼǯȱȱȱęȱΘȱȱȱȱ Fig. 1. ȱ¡ȱȱ ȱȱȱȱȱȱ ȱǰȱ ȱȱȱǻȱ ȱ ȱ ȱ ȱ ȱ ȱ Ǽȱȱȱȱ ȱǯȱȱȱǻǼȱȱȱǻǼȱȱ rate (g C m-‐‑2 year-‐‑1) to the measured ȱȱȱȱǻȱ¡Ǽȱȱ ȱȱȱȱǯȱȱȱ ȱȱȱȱěȱǻȱ Ǽȱȱȱȱȱ¢ȱǰȱ DOC concentration (g C m-‐‑3). ¢ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ¢ǯȱ ȱ ȱ ȱ ȱ ǰȱ unconsumed production is returned to the detrital pool (some arrows not shown). DOI: 10.1608/FRJ-‐‑5.1.475 Freshwater Reviews (2012) 5, pp. 37-‐‑49 42 Jones, S.E., Solomon, C.T. & Weidel, B.C. Table 2. ȱȱ¢ǰȱȱȱȱȱȱȱ ȱ¢ȱǯ Parameter total phosphorus dissolved organic carbon ¡ȱȱ day length depth increment time increment ȱ¢ȱȱȱȱ ¢ȱ ȱ¢ȱȱȱȱ periphyton saturation ȱȱ¢ȱ and periphyton primary production respired ȱȱ¢ȱ ȱ¡ȱȱ DOC Symbol TP0 ǻǼ -‐‑3 2, 25, 50 mg m -‐‑3 Sources n.a. DOC I0,¡ daylen NJ NJ 2-‐‑24 1500 15 0.1 0.25 g m µμmol photons m-‐‑2 s-‐‑1 hr m hr n.a. ǻȱȱǯǰȱŘŖŖŞǼȱ ǻȱȱǯǰȱŘŖŖŞǼ ǻȱȱǯǰȱŘŖŖŞǼ ǻȱȱǯǰȱŘŖŖŞǼ I 180 µμmol photons m-‐‑2 s-‐‑1 ǻȱȱǯǰȱŘŖŖŞǼ I 300 µμmol photons m-‐‑2 s-‐‑1 ǻȱȱǯǰȱŘŖŖŞǼ RPP, RBP 0.3 unitless ǻ ȱȱǯǰȱŗşŞśDzȱȱȱǯǰȱ 1989; Turner et al., 1991) Ή 0.13 unitless (Baines and Pace, 1991) ȱȱ¡ Θ 7-‐‑50 [12.5] m year-‐‑1 POC:DOC in terrestrial load Ν 0.1-‐‑0.3 [0.2] (g POC)(g DOC)-‐‑1 ȱĚ Κ 0.005 unitless (Dillon and Molot, 1997a; Hanson et al., 2004; Cole et al., 2006) (Carpenter et al., 2005; Cole et al., ŘŖŖŜDzȱěȱȱǯǰȱŘŖŗŖǼ ǻȱ ȱ ȱ ǰȱ 2008) ȱȱȱ consumed ȱȱȱ ¡ȱ¢ȱ¢ · 0-‐‑1; See Table 4 unitless n.a. C¡ǰȱ¢ Ŗǯś·ǰȱ·ǰȱȱŘ·ǰȱ ȱȱ ¡ȱȱŗ unitless n.a. ȱĜ¢ȱȱ¢ȱȱ¡ GE¡ǰȱ¢ 0-‐‑1; See Table 3 (g consumer)(g consumed)-‐‑1 n.a. mB 0.5 unitless S 0.2 unitless non-‐‑grazing bacterial mortality (e.g. viral lysis) £ȱĴȱ (Fuhrman and Noble, 1995; Fischer ȱǰȱŘŖŖŘǼ Ȃȱ at a 4:1 ratio. Bacteria were assumed to have a constant ȱȱȱȱȱȱǻ ȱȱ ŘDZŗȱ ȱ ȱ ȱ ǯȱ ȱ ȱ al., 2003; Solomon et al., unpublished data). In addition, Ĝȱȱȱȱȱȱȱ ȱȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱȱȱǻTable 3Ǽǯȱȱȱȱȱ (·Dzȱ ě¢ǰȱ ȱ ȱ ȱ ȱ ȱ ¢ȱȱ ȱȱ ȱȱȱȱȱǯ Ǽȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻŘȬśŖȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ mg m-‐‑3) and DOC (2-‐‑24 g m-‐‑3Ǽȱ ¡¢ȱ ȱ and consumers in the northern temperate region. the range commonly observed in the northern temperate ǰȱ ȱ ȱ ȱ ¡ȱ Ȭęȱ landscape (see also Table 4). Calibrated secondary ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱ ȱ ȱȱȱȱȱȱ ŘǯŘŖȱ ȱ ȱ ȱ ȱ ǯȱ ǻŘŖŖŞǼȱ ȱ ȱ ŗǯśŜȱ ȱ production measures, but slightly overestimated ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱĴȱȱȱǯȱȱȱ © Freshwater Biological Association 2012 DOI: 10.1608/FRJ-‐‑5.1.475 43 ȱȱȱ Table 3:ȱ ȱĜȱǻǼȱȱȱȱȱȱ ȱȱȱ¢ȱȱȱ¢ȱǯ Consumer Resource ¢ȱ ¡ Terrestrial DOC ȱȱ ȱ Sources 0.3-‐‑0.8 0.6 (del Giorgio and Cole, 1998) 0.05-‐‑0.75 0.3 (del Giorgio and Cole, 1998) Bacteria -‐‑ 0.6 (Fenchel, 1982) Bacteria 0.05-‐‑0.55 0.4 ¢ 0.05-‐‑0.55 0.4 Terrestrial POC 0.05-‐‑0.55 0.2 Periphyton Detritus 0.15-‐‑0.55 0.15-‐‑0.55 0.35 0.35 Bacteria Bacteria Heterotrophic Protists (Le Borgne, 1982; Muller-‐‑Navarra ȱǯǰȱŘŖŖŖDzȱĴȱȱǯǰȱŘŖŖşǼ (Le Borgne, 1982; Muller-‐‑Navarra ȱǯǰȱŘŖŖŖDzȱĴȱȱǯǰȱŘŖŖşǼ (Le Borgne, 1982; Muller-‐‑Navarra ȱǯǰȱŘŖŖŖDzȱĴȱȱǯǰȱŘŖŖşǼ (Banse and Mosher, 1980) (Banse and Mosher, 1980) Table 4:ȱȱȱȱȱȱȱǰȱȱȱȱȱȱȱȱȱǯ Food web component Modeled Range (mg C m-‐‑2 day-‐‑1) Observed Range (mg C m-‐‑2 day-‐‑1) Citations Bacteria ·ȱƽȱŖ 23-‐‑290 1-‐‑1000 (del Giorgio et al., 1997; del Giorgio and Cole, 1998; Fouilland and Mostajir, 2010) ·ȱƽȱŖǯŗ 9-‐‑162 0.5-‐‑160 ǻ¢ȱȱǯǰȱŗşŝŝDzȱ ǰȱŗşŞřDzȱ¢ȱȱǰȱŗşŞŜǼ ·ȱƽȱŖǯŖř 11-‐‑63 0.1-‐‑60 ǻ¢ȱȱǰȱŗşŞŜDzȱȱȱǯǰȱŘŖŖŞǼȱȱȱ therein Model results ȱȱȱȱȱȱĴȱȱ ȱ ěȱ ȱ ȱ ȱ ȱ £ȱ ȱ Increased terrestrial inputs generally reduced zoobenthos production to elevated terrestrial organic ¢ȱ ȱ ¢ȱ ¢ȱ ȱ ȱ Ĵȱ ¢ȱ ǻFig. 3Ǽǯȱ ȱ ȱ ȱ ȱ total basal resource availability (Fig. 2). Only in the lowest ȱ ȱ ȱ ȱ ȱ ȱ ȱ -‐‑3 productivity system (TP0=2 mg m ) did we observe an productivity (TP) gradient that we considered. Because increase in basal resource supply with elevated DOC; in ȱȱȱȱěȱȱȱ¢ȱȱ ȱȱȱ¢ǰȱȱȱȱȱȱȱȱ £ȱ ȱȱȱȱȱěǰȱ ȱȱȱȱȱȱȱȱȱȱȱȱ ȱȱěȱȱȱΘǰȱȱȱȱȱȱ ȱěȱȱ¢ǯȱȱȱȱȱȱ ȱ ȱ ȱ ǯȱ ȱ ę¢ǰȱ ȱ concentration, benthic primary production was on average ȱȱ£ȱȱȱ¢ȱȱȱ ŚŖȱ Ɩȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ Θȱȱȱ ȱȱǰȱȱΘȱǁȱŘŖȱȱȱȱȱǰȱȱ primary production at the highest DOC concentration ȱΘȱǁȱŚśȱȱȱȱȱǯȱȱȱȱȱȱȱȱ ȱ ¡¢ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱȱȱ ¡ȱȱȱȱěȱȱȱȱ ȱ ĚȱȱȱĴȱǻȱ¡ȱǯȱŘȱǭȱřǼǯ -‐‑3 productivity simulations (TP0=2 mg m ). Terrestrial (POC ȱ ȱ ȱ ȱ ȱ ȱ and DOC) contributions to basal resource supply ranged ȱ ȱ ȱ ȱ ¢ȱ ȱ ¢ȱ ȱŘȱƖȱǻȱȱ¢ȱ ȱ ȱǼȱȱ level, and did not vary in response to changes in Θ 53 % (least productive system with highest loading). (Fig. 3Ǽǯȱ ȱ ǰȱ ¢ȱ ȱ ¡ȱ ȱ ȱ DOI: 10.1608/FRJ-‐‑5.1.475 Freshwater Reviews (2012) 5, pp. 37-‐‑49 44 Jones, S.E., Solomon, C.T. & Weidel, B.C. ȱ ȱ ȱ ȱ ¢ȱ ȱ £ȱ simulation where zoobenthos production remained nearly production in our model. Both ecosystem-‐‑scale (Θ) and constant with greater terrestrial carbon loading (Fig. 4, organismal parameters had to be manipulated to create ȱǼǯȱȱȱȱȱ£ȱȱ a subsidy (Fig. 4Ǽǯȱ ȱ ȱ ȱ £ȱ ȱ (Fig. 4, lower right) the above unrealistic parameterisation ȱ ¢ȱ ȱ ȱ ȱ ȱ £ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ǻΘǼȱ ȱ ŗŖŖȱ ȱ ǯ Ĝ¢ȱ ȱ ȱ ¢ȱ ȱ ŖǯŖŗȱ ȱ ȱ ȱ ȱ ǰȱ Ȭȱ ȱ ȱ Ĵȱ Ěȱ ȱ ¢ȱ ȱ ¢ȱ ǯȱ ȱ ȱ Ĝ¢ȱȱȱȱȱȱ¢ȱ ȱ ěȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ £ȱȱ£ȱȱǻǯȱŚȱȱ¡ȱǯȱŚȮŜǼǯȱȱ ȱĜȱȱȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǰȱ Fig. 2. Basal carbon supply (within-‐‑system primary production ȱȱȱǼȱȱȱȱȱȱ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǻȱ ȱ ǰȱ Ǽǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ within-‐‑system productivity (TP0 = 2, 25, 50 mg m-‐‑3). © Freshwater Biological Association 2012 Fig. 3.ȱȱȱǻȱǼȱȱ£ȱǻȱǼȱ production in our model simulations. Within system primary productivity varies with panel rows (TP0 = 2, 25, 50 mg m-‐‑3). Each ȱȱȱȱȱȱȱȱ ȱȱǻǼȱȱȱȱȱȱȱ ȱ ¡ȱ ȱ ǻΘǼȱ ȱ ȱ ǯȱ ȱ Θȱ ȱ ȱ ȱȱȱȱȱȱȱȱȱ¢Ȭȱȱ concentration. DOI: 10.1608/FRJ-‐‑5.1.475 ȱȱȱ 45 ȱ ǰȱ ¢ȱ Ěȱ ȱ ȱ ȱ ȱ consumer productivity to terrestrial carbon enrichment. Discussion ȱ ęȱ ȱ ȱ ȱ ȱ ěȱ ȱ ȱ ȱ whether elevated terrestrial carbon loading would increase ȱȱȱȱȱȱ¢ǰȱȱȱ ȱȱ¢ǯȱȱȱĚ¡ȱȱȱȱȱȱ directly acts to increase basal resources, but important indirect mechanisms were also included in our model. Our ȱȱǰȱ¡ȱȱȱȱȱ ¢ǰȱ ȱ ȱ Ěȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ¡ȱ ȱ ȱ ěȱȱȱȱȱ¢ȱȱȱ¢ȱ ȱ ę¡ȱ ȱ ȱ ȱ ȱ ȱ ȱ production (Fig. 2Ǽǯȱȱȱȱ¢ȱȱęȱ ȱȱ ȱȱȱȱȱȱȱęǯȱȱȱ ȱǯȱǻŘŖŖşǼȱ¡ȱȱȱ ȱȱȱ ȱ ȱ ȱ ¢ȱ ȱ ǻǰȱ ǰȱȱ ȬǼǯȱȱȱȱęȱ¢ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ and terrestrial-‐‑supported bacterial production, a measure that should be strongly and positively correlated with our ȱȱȱ¢ǯȱȱ¢ȱȱȱęȱ ȱ ȱ Ȭȱ ¢ȱ ȱ ȱ ȱ ȱȱȱǯȱȱȱǰȱȱ¢ȱ Fig. 4.ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ organic carbon (DOC) concentrations and zoobenthos growth Ĝǰȱȱ ȱ¢ȱȱǻ0 = 2 mg m-‐‑3). Results in ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ȭȱ DZȱȱȘȱȱȱ¢ȱ ȱ¡¢ȱ Ĝȱ ǻǰȱ ƽȱ ŖǯŖŗǼȱ ȱ £ȱ ȱ ȱ ȱ ȱ¢ǯȱȱȘȘȱȱȱ¢ȱ ȱ¡¢ȱ Ĝȱ ǻǰȱ ƽȱ ŖǯŖŗǼǰȱ £ȱ ȱ ȱ ȱ ȱ ¢ǰȱȱȱȱȱ¡ȱǻΘǼȱ ȱŗŖŖǰȱ ȱ Θȱȱ ȱȱȱȱȱȱȱȱȱȱ steady-‐‑state DOC concentration. Ěȱȱ¢ȱǰȱȱȱ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ £ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ęȱ ¢ȱ ȱ ȱȱȱȱȱȱ¢ȱĚȱȱǰȱȱ with our model results. ȱĚ¡ȱȱȱȱȱȱȱę¢ȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ £ȱ ǻȱ ¡ȱ ǯȱ with increasing terrestrial organic carbon supply provided řǼǯȱȱȱȱȱȱȱȱěȱȱȱȱ ȱȱȱ¢ȱȱ£ǯȱȱȱ£ǰȱ ȱȱȱ¢ȱȱȱȱ Ȭȱ in contrast, our modeling suggests that subsidy by ȱȱȱȱȱȱ¢ȱȱŗŘȱ ȱ ȱ ȱ ȱ ¢Dzȱ ȱ ȱ ȱ ȱ ¢ȱ ȱǻȱȱǯǰȱŘŖŖşǼǰȱȱ¢ȱȱȱȱȱȱ ȱ £ȱ ¢ȱ ȱ ¡ȱ ǯȱȱ ȱ¢ǯȱȱǰȱěȱĴȱȱȱ This contrast occurred because terrestrial carbon inputs ȱȱȱęȱȱDzȱȱǰȱȱ Ȭȱ ȱȱȱȱ£ȱȱȱ£ǯȱȱ POC:DOC loading ratios that we used might not accurately ȱǰȱȱȱȱȱȱȱȱ ĚȱȱȱȱȱȱȱȱĴȱ ȱȱ£ȱȱȱȱǰȱȱȱ ǰȱ ȱȱȱȱȱȱȱȱȱ particulate portion is accessible via direct consumption. ȱȱȱǻȱȱǯǰȱŘŖŖŞǼǯȱȱȱȱȱ DOI: 10.1608/FRJ-‐‑5.1.475 Freshwater Reviews (2012) 5, pp. 37-‐‑49 46 Jones, S.E., Solomon, C.T. & Weidel, B.C. ȱȱȱȱȱěȱȱȱ£ȱ al., 2007), which predicts resource subsidies where subsidy ȱ ȱ ȱ ȱ ȱ ěȱ ȱ £ȱ ȱ supply is high relative to within system resource production. ȱ Ȭȱ ǯȱ ȱ ¢ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ǻΘ) £ȱ ȱ ȱ ȱ ȱ ȱ ȱ £ȱ ȱ in our model is matched by our uncertainty about this detritus over periphyton as a resource. Further modeling parameter. We estimated Θȱȱȱȱ ȱ ȱ¡ȱ ȱȱȱȱȱȱǯ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱ¡ȱȱ ȱ terrestrial DOC, based on two modeling studies (Hanson terrestrial inputs subsidise consumers is not necessarily ȱǯǰȱŘŖŖŚDzȱȱȱǯǰȱŘŖŖŜǼȱȱȱȱ¢ȱǻȱǭȱ ȱ ȱȱȱȱ¡ȱȱ ȱȱ ǰȱŗşşŝǼǯȱȱĴȱȱȱȱ ȱ utilise terrestrial inputs across that gradient. Previous ȱȱȱȱȱȱȱȱȱ research using stable isotope tracers has demonstrated ¢ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ £ȱ ȱ £ȱ ȱ ȱ ȱ robust ecosystem models and enhance our understanding ȱĴȱȱȱǰȱȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ǯȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱǰȱ ȱ¡ǰȱȱȱȱȱ concentrations (Karlsson et al. 2003, Carpenter et al. 2005, ¡ǰȱȱȱȱȱȱȱȱĴȱ ȱȱǯȱŘŖŗŗǼǯȱȱȱȱĴȱȱȱȱǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ because utilisation is driven by resource supply (given ęȱȱǰȱ¡ȱȱ¢ȱȱ¢ǰȱȱ ę¡ȱ ȱ ȱ ȱ ȱ Ǽǯȱȱ ȱȱĚȱȱȱȱȱ Ȭ¢ȱ Yet consumer production may increase or decrease across ¢ȱ ȱ ȱ ȱ ¢ȱ ¡ȱ ¢ȱ ȱȱȱȱȱǰȱȱȱȱ ȱȱę¡ȱȱȱ¢ȱȱȱȱȱ ȱ ¢ȱ ȱ ¢ȱ ȱ ěȱ ȱ ǻFig. 2). ǯȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ¢ȱ ¡ȱ ȱ £ȱ ȱ ¢ȱ ȱ ǰȱ ȱ ȱ ȱ ¢ȱ ȱ a similar point about the distinction between resource terrestrial carbon to zoobenthos means that this component ȱȱ¢ȱǻĴȱȱǯȱŘŖŖşǼǯȱȱȱ ȱ¢ȱȱȱǯȱȱȱȱȱȱȱ ȱ Ȭ¢ȱ ȱ ȱ ȱ ęȱ Ĵȱ ȱȱȱȱȱȱ ȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯ terrestrial carbon supply, but uncertainty in essentially all ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱ¢ȱȱ £ȱ ȱ £ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ ȱ ǰȱ ȱ ȱȱȱęȱȱȱȱȱ¢ȱ ȱ ¢ȱ ȱ ¡ȱ ǰȱ ȱ ȱ Ȭ¢ǯȱȱ£ȱȱǯȱǻŘŖŖŝǼȱęȱȱȃȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ¢ȱȱȱȱȱȱȱȱ responses to increases in terrestrial carbon loading. Ȅȱȱȱȱȱȱȱȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ȃȱ Acknowledgements resources” is directly applicable to the contrast in the ȱ ȱ £ȱ ȱ £ȱ ¡ȱ ȱȱ ȱȱȱ ȱȱȱ terrestrial DOC and POC in our model. In addition, ȱǯǯȱǯȱȱȱȱȱȱŗŜŞŜȱȱȱ ȱ ȱ ȱ ǻǼǰȱ ȱ ȱ ȱ ǯǯȱȱ¢ȱȱȱȱǯ ¢ȱ ȱ ȱ ȱ ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ £ȱ¢ȱȱȱǯȱȱȱȱȱ the agreement between simulations produced by our model ȱȱȱ¢ȱǻȱȱǯǰȱŗşşŝDzȱ£ȱȱ © Freshwater Biological Association 2012 DOI: 10.1608/FRJ-‐‑5.1.475 ȱȱȱ References ǰȱ ǯȱǭȱǰȱǯȱǻŘŖŖśǼǯȱȱȱȱȱ£ȱ ȱȱȱ¢ȱȱ ȱ ȱȱDZȱ ȱȱȱ ȱĚȱǯȱJournal of Plankton Research 27, 1155-‐‑1174. ǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱǰȱǯǰȱ¢ǰȱǯȱǭȱǰȱǯȱ ǻŘŖŖşǼǯȱȱȱȱĴȱȱȱDZȱěȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ǯȱ Limnology and Oceanography 54, 2034-‐‑2040. Berggren, M., Strom, L., Laudon, H., Karlsson, J., Jonsson, ǯǰȱ ǰȱ ǯǰȱ ǰȱ ǯǯȱ ǭȱ ǰȱ ǯȱ ǻŘŖŗŖǼǯȱ ȱ ȱ ¢ȱȱȱ¢ȱȱȱȱ ȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ consumers. ¢ȱĴ 13, 870-‐‑880. ǰȱǯǯȱǭȱ¢ǰȱǯȱǻŗşŘŜǼǯȱȱȱȱȱȱȱ ǯȱ Proceedings of the National Academy of Sciences USA 12, 515-‐‑519. Ĵǰȱ ǯǯǰȱ £ǰȱ ǯǯǰȱ ǰȱ ǯǯȱ ǭȱ ǰȱ ǯȱ ǻŘŖŖşǼǯȱȱ ¢ǰȱȱȱǰȱȱȱ £ȱǯ Proceedings of the National Academy of Sciences USA 106, 21197-‐‑21201. ǰȱǯǯȱǭȱǰȱǯǯȱǻŗşşřǼǯȱȱȱȱȱȬȱ ȱȱ ȱȱȱȬȱȱ¢ȱȱȱȬȱ analysis. Oecologia 96, 85-‐‑94. Carpenter, S.R., Cole, J.J., Kitchell, J.F. & Pace, M.L. (1998). Impact ȱ ȱ ȱ ǰȱ ǰȱ ȱ £ȱ ȱ ¢ȱȱȱȱȱ¡ȱǯȱ Limnology and Oceanography 43, 73-‐‑80. ǰȱ ǯǯǰȱ ǰȱ ǯǯǰȱ ǰȱ ǯǯǰȱ ȱ ȱ ǰȱ ǯǰȱ ǰȱ ǯǯǰȱǰȱǯǰȱǰȱǯǯǰȱ ǰȱǯǯǰȱǰȱǯǯȱǭȱ ĵǰȱǯǯȱǻŘŖŖśǼǯȱȱ¢ȱDZȱȱȱ ȱȱȱ ȱȱȬŗřȱȱȱȱǯȱ Ecology 86, 2737-‐‑2750. ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱĵǰȱǯǯȱǻŗşşŚǼǯȱȱȱ ¡ȱȱȱȱȱ ȱȱǯȱScience 265, 1568-‐‑1570. Cole, J.J., Carpenter, S.R., Kitchell, J.F. & Pace, M.L. (2002). ¢ȱ ȱ ȱ ȱ £ȱ ȱ ȱ DZȱ ȱ ȱȱ ȬȱȬŗřȱȱȱȱǯȱLimnology and Oceanography 47, 1664-‐‑1675. ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯǰȱȱȱǰȱǯǯǰȱǰȱ ǯǯȱǭȱ ǰȱǯǯȱǻŘŖŖŜǼǯȱȱěȱȱȱȱȱ DOI: 10.1608/FRJ-‐‑5.1.475 47 ȱ¢ȱȱ¢ȱȱȱȱǯȱ¢ȱĴ 9, 558-‐‑568. ǰȱ ǯǯǰȱ ǰȱ ǯǯǰȱ ǰȱ ǯǯǰȱ ǰȱ ǯ ǯǰȱ ǰȱ L.J., Striegl, R.G., Duarte, C.M., Kortelainen, P., Downing, J.A., ȱǯǯȱǭȱǰȱǯȱǻŘŖŖŝǼǯȱȱȱȱȱ cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 171-‐‑184. ǰȱ ǯǯȱ ǻŗşŝŚǼǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ecosystems. BioScience 24, 631-‐‑641. Dillon, P.J. & Molot, L.A. (1997a). Dissolved organic and inorganic ȱȱȱȱȱȱǯȱBiogeochemistry 36, 29-‐‑42. ǰȱ ǯǯȱ ǭȱ ǰȱ ǯǯȱ ǻŗşşŝǼǯȱ ȱ ěȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ȱ ȱ ǰȱ ǰȱ ȱ ȱ ȱȱȱǯȱWater Resources Research 33, 2591-‐‑2600. Donald, R.G., Anderson, D.W. & Stewart, J.W.B. (1993). Potential ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱǯȱSoil Science Society of America Journal 57, 1611-‐‑1618. Grey, J., Jones, R.I. & Sleep, D. (2001). Seasonal changes in the ȱ ȱ ȱ ȱ ȱ ȱ Ĵȱ ȱ ȱ ȱ ȱ £ȱ ȱ ȱ ǰȱ ȱ ȱ ¢ȱ ȱ ȱ analysis. Limnology and Oceanography 46, 505-‐‑513. ǰȱǯǯǰȱǰȱǯǯǰȱǰȱǯǯȱǭȱĵǰȱǯǯȱǻŘŖŖřǼǯȱȱȱ metabolism: relationships with dissolved organic carbon and phosphorus. Limnology and Oceanography 48, 1112-‐‑1119. ǰȱǯȱǻŗŞŞŝǼǯȱȱtȱȱȱȱȱȱȱ ȱȱȱȱȱĚ£ȱȱǯȱȱBericht ȱȱĚȱȱûȱ 5, 1-‐‑107. ǰȱǯǯȱǻŘŖŖŜǼǯȱȱȱȱěȱȱęǰȱȱ ǰȱȱǰȱȱȱȱȱȱ ȱǯȱȱCanadian Journal of Fisheries and Aquatic Sciences 63, 2447-‐‑2455. ǰȱǯǯȱǻŗşşŘǼǯȱȱȱĚȱȱȱȱȱȱ ȱȬǯȱ Hydrobiologia 229, 73-‐‑91. Jones, R.I., Grey, J., Quarmby, C. & Sleep, D. (1998). An assessment ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱȱȱȱȱȱȱ ȱȱȱǯȱȱ Proceedings of the Royal Society of London B 265, 105-‐‑111. Jones, R.I., Grey, J., Sleep, D. & Arvola, L. (1999). Stable isotope ¢ȱȱ£ȱȱȱȱȱǯȱȱOikos 86, 97-‐‑104. ǰȱǯȱǻŗşşŚǼǯȱȱȱȱDaphniaȱȱȱȱȱ webs -‐‑ a review. Marine Microbial Food Webs 8 (1 & 2), 295-‐‑324. ǰȱǯǰȱǰȱǯǰȱǰȱǯȱǭȱǰȱǯȱǻŘŖŖřǼǯȱȱȱȱ £ȱȱȱȱȱȱȱ ȱȱȬ ȱȱȱȱ ǯȱȱLimnology and Oceanography 48, 269-‐‑276. Freshwater Reviews (2012) 5, pp. 37-‐‑49 48 ǰȱ ǯǰȱ ¢ǰȱ ǯǰȱǰȱ ǯǰȱǰȱ ǯǰȱ ǰȱ ǯȱ ǭȱ ǰȱ ǯȱ ǻŘŖŖşǼǯȱ ȱ ȱ ȱ ȱ Ȭȱ ȱ ¢ǯȱȱ Nature 460, 506-‐‑509. ĵǰȱ ǯǯǰȱ ǰȱ ǯǯǰȱ ǰȱ ǯǯǰȱ ǰȱ ǯȱ ǭȱ ǰȱ ǯǯȱ (2004). Autochthonous versus allochthonous carbon sources ȱDZȱȱȱ ȬȱȬŗřȱȱ¡ǯȱ Limnology and Oceanography 49, 588-‐‑596. ǰȱǯǯȱǻŘŖŖŚǼǯȱȱ¡ȱȱȱȱȱ subsidies increase CO2ȱ Ě¡ȱ ȱ ȱ ¢ǯȱ ȱ Oecologia 138, 584-‐‑591. ǰȱǯǯȱǭȱěǰȱǯǯȱǻŘŖŖśǼǯȱȱȱȱ¢ȱȱȱ ȱ Ĵȱ ěȱ ȱ ȱ ǯȱ ȱ Aquatic Microbial Ecology 39, 107-‐‑119. ǰȱ ǯȱ ǻŗşŚŘǼǯȱ ȱ ȱ Ȭ¢ȱ ȱ ȱ ¢ǯȱȱ Ecology 23, 399-‐‑418. ǰȱ ǯǯǰȱ ¡ǰȱ ǯǯǰȱ ǰȱ ǯǯȱ ǭȱ ȱ ǯǰȱ ǯǯȱ ǻŘŖŗŗǼǯȱȱ¢ȱȱ¢DZȱ¢ȱȱ ȱȱ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ǯȱȱ Ecology 92, 1215-‐‑1225. £ǰȱ ǯǯǰȱ ǰȱ ǯǯȱ ǭȱ ǰȱ ǯǯȱ ǻŘŖŖŝǼǯȱȱ Meta-‐‑analysis: trophic level, habitat, and productivity shape the ȱ ȱěȱȱȱǯȱȱEcology 88, 140-‐‑148. ǰȱǯǯȱǻŗşşśǼǯȱȱ¢ȱ¡ȱȱǯȱLimnology and Oceanography 40, 1100-‐‑1111. Pace, M.L., Carpenter, S.R., Cole, J.J., Coloso, J.J., Kitchell, J.F., Hodgson, J.R., Middelburg, J.J., Preston, N.D., Solomon, C.T. & Weidel, B.C. (2007). Does terrestrial organic carbon subsidize ȱȱȱ ȱȱȱȬ ȱǵȱLimnology and Oceanography 52, 2177-‐‑2189. ǰȱ ǯǯǰȱ ǭȱ ǰȱ ǯȱ ǻŗşşŚǼǯȱ ȱ ȱ ȱ ȱ Daphnia in ȱ¢Ȭȱȱ£ȱȱȱȱǯȱ Limnology and Oceanography 39, 985-‐‑996. Polis, G.A., Anderson, W.B. & Holt, R.D. (1997). Toward an ȱȱȱȱȱ ȱ¢DZȱȱ¢ȱ Jones, S.E., Solomon, C.T. & Weidel, B.C. ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ DZȱ ȱ ȱ ȱ ȬȱȬŗřȱǯȱȱFreshwater Biology 53, 42-‐‑54. ǰȱǯǯȱǻŗşŞŞǼǯȱȱ¢ȱȱȱȬȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ěȱ ȱ content. Microbial Ecology 16, 311-‐‑322. ǰȱ ǯǰȱ ȱ ǰȱ ǯǯȱ ǭȱ ǰȱ ǯǯȱ ǻŘŖŖŘǼǯȱȱ ĴȱȱȱȱDZȱȱȱ ¢ȱ ȱȱȱ ȱǯȱȱBioScience 52, 44-‐‑54. ǰȱ ǯǰȱ ǰȱ ǯǰȱ ȱ ǰȱ ǯǯȱ ǭȱ ěǰȱ ǯȱ ǻŘŖŖŞǼǯȱ ȱ ȱ ȱ ȱ ȱ ȱ £ȱ DZȱ interactions among morphometry, nutrients, and light. Ecology 89, 2542-‐‑2552. ȱ ǰȱ ǯǯȱ ǭȱ ǰȱ ǯȱ ǻŘŖŖŘǼǯȱ ȱ ȱ ȱ ȱȱȱȱȱȱ ȱȱǯȱȱEcology 83, 2152-‐‑2161. Weidel, B.C., Carpenter, S.R., Cole, J.J., Hodgson, J.R., Kitchell, J.F., Pace, M.L. & Solomon, C.T. (2008). Carbon sources supporting ęȱ ȱ ȱ ȱ ȱ ȱ ǯȱ ȱ Aquatic Sciences 70, 446-‐‑458. ĵǰȱǯǯȱǻŗşşśǼǯȱȱǰȱǰȱȱ¢ȬĚ ȱȱȱ ecosystems. Freshwater Biology 33, 83-‐‑89. ǰȱ ǯǯȱ ǭȱ ǰȱ ǯǯȱ ǻŘŖŖŗǼǯȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¡ȱ ȱ ęȱ ȱ ęǯȱ ȱ Fish and Fisheries 2, 250-‐‑260. ȱ¢ȱ£ȱȱ ǯȱȱAnnual Review of Ecology and Systematics 28, 289-‐‑316. Preston, N.D., Carpenter, S.R., Cole, J.J. & Pace, M.L. (2008). ȱȱȱȱȱȱȱǯȱȱAquatic Sciences 70, 213-‐‑224. ¢ǰȱǯǯȱǻŘŖŖŞǼǯȱȱȱȱȱȱȱȱ ǯȱȱ International Review of Hydrobiology 93, 517-‐‑531. Roulet, N. & Moore, T.R. (2006). Environmental chemistry -‐‑ browning the waters. Nature 444, 283-‐‑284. Solomon, C.T., Carpenter, S.R., Clayton, M.K., Cole, J.J., Coloso, ǯǯǰȱ ǰȱ ǯǯǰȱ ȱ ǰȱ ǯǯȱ ǭȱ ǰȱ ǯǯȱ ǻŘŖŗŗǼǯȱȱ ǰȱ ǰȱ ȱ ȱ ȱ ȱ ȱ DZȱ ȱ ȱ ȱ Ȭȱ ¢ȱ ¡ȱ ǯȱ ȱ Ecology 92, 1115-‐‑1125. Solomon, C.T., Carpenter, S.R., Cole, J.J. & Pace, M.L. (2008). © Freshwater Biological Association 2012 DOI: 10.1608/FRJ-‐‑5.1.475 49 ȱȱȱ ȱę Stuart Jones ȱȱȱȱȱȱ¢ȱ ȱ ȱ ǯȱ ȱ ȱ ȱ ¡ȱ ȱ Ěȱ ȱ ȱ ¢ȱ ǰȱ ¢ȱ those mediated by microorganisms. Stuart completed his PhD in Limnology and Marine Sciences at the ¢ȱȱȬȱȱ ȱȱȱ ȱȱȱȱȱ¢Ȃȱ W.K. Kellogg Biological Station. ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ǯȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ǯȱ ȱ ȱȱȱȱȱȱȱ¢ȱȱȱ ¢ȱȱǰȱȱ ȱȱȱȱ ȱ ȱ ȱ ȱ ȱ ȱ ¢ȱ ȱ ǻǼǯȱ ¢ǰȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ ȱ Ĵȱ ȱ Ȭ ȱ ȱ Ȭȱ ȱ ěȱ ȱ cycling and population dynamics in north-‐‑temperate ǯ ȱȱȱȱȱǯǯȱȱ¢ǰȱBrian Weidelȱȱ¢ȱęȱȱ ȱȱȱȱ ȱȱȱȱ¢ȱ ȱȱȱ ȱ ǯȱ ȱ ȱ ȱ ȱ ęȱ ȱ ¢ȱȱȱ¢ȱ¢ȱȱȱȱȱ ȱȱȱȱȱ¢ȱȱȱ¢ȱ ȱȱȬȱǯ DOI: 10.1608/FRJ-‐‑5.1.475 Freshwater Reviews (2012) 5, pp. 37-‐‑49
© Copyright 2026 Paperzz