Life Tables Life History Tables • • Time (x) = time interval used for separating age categories • nx = number alive at the beginning at age x • Lx = proportion of individuals alive at age x Dynamic (horizontal) cohort= cohort followed through time until all members have died Freq. • Static (vertical or current) = one census period (day, season, etc.); only equivalent to dynamic if population does not change age distribution; assumes constant survivorship. 20 40 60 80 100 Life History Tables • dx = proportion of original population dying during the age interval x to x+1 • Age (x) 0 1 2 3 4 5 6 70 60 50 40 30 20 10 0 qx = proportion of existing population dying during age interval x to x+1; qx = dx/lx nx lx dx qx 200 1.000 0.100 0.100 180 0.900 0.025 0.028 175 0.875 0.275 0.314 120 0.600 0.350 0.583 50 0.250 0.235 0.940 3 0.015 0 0.000 lx 1.00 180 0.90 175 0.88 120 0.60 50 0.25 3 0.02 0 0.00 Life expectancy • • • Age (x) 0 1 2 3 4 5 6 nx 200 Ex = Tx / lx Tx = average life expectancy from current time: e.g. how much living will be done by cohort from beginning of period x: Tx=Σ(Lx); summed from x to last x Age (x) 0 1 2 3 4 5 6 nx lx dx qx 200 1.000 0.100 0.100 Lx 0.950 Tx 3.130 ex 3.130 180 175 0.900 0.875 0.025 0.275 0.028 0.314 0.888 0.738 2.180 1.293 2.422 1.477 120 0.600 0.350 0.583 0.425 0.555 0.925 50 0.250 0.240 0.960 0.130 0.130 0.520 2 0.010 0 0.000 1 Natality Reproductive Rate •fx = total natality; number of fertilized eggs produced in a given year by individuals surviving to age x • • • •mx = age specific natality; average number of fertilized eggs produced per individual surviving to beginning of age x R0 = rate of change in the population. If below 1.0, population is shrinking R0=∑ ∑(lx m x) Sum of the number of fertilized eggs produced per original individual during each age Age (x) 0 1 2 3 4 5 6 •Lotka proved that any pair of unchanging lx and mx values will eventually give rise to a population with a stable age distribution nx lx dx qx mx fx lxmx 200 180 1.000 0.900 0.100 0.025 0.100 0.028 Lx 0.950 0.888 Tx 3.130 2.180 ex 3.130 2.422 2 360.00 1.80 175 0.875 0.275 0.314 0.738 1.293 1.477 3 525.00 120 0.600 0.350 0.583 0.425 0.555 0.925 4 480.00 2.40 50 2 0.250 0.010 0.240 0.960 0.130 0.130 0.520 5 250.00 1.25 0 0.000 2.63 R0 = 8.05 time time age fec und 0 1 2 3 sum pct 0 pct 1 pct 2 pct 3 0 5 15 0 Survive 1 0.3 0.25 0.2 1 50 0 0 0 2 0 15 0 0 3 75 0 4 0 4 56 23 0 1 5 113 17 6 0 6 169 34 4 1 age 7 232 51 8 1 8 380 70 13 2 9 538 114 17 3 10 831 161 28 3 11 1,234 249 40 6 fec und 0 1 2 3 12 1,851 370 62 8 50 15 79 80 135 208 292 464 672 1,024 1,529 2,292 100 0 95 71 83 81 79 82 80 81 81 81 0 100 0 28 13 16 17 15 17 16 16 16 0 0 5 0 4 2 3 3 3 3 3 3 0 0 5.25 0 1.01 1 1.70 0 1.54 1 1.40 0 1.59 0 1.45 0 1.52 0 1.49 0 1.50 0 0.00 0 5 15 0 Survive 1 0.3 0.25 0.2 1 50 0 0 0 sum pct 0 pct 1 pct 2 pct 3 2 0 15 0 0 50 3 75 0 4 0 4 56 23 0 1 5 113 17 6 0 6 169 34 4 1 7 232 51 8 1 8 380 70 13 2 9 538 114 17 3 10 831 161 28 3 11 1,234 249 40 6 12 1,851 370 62 8 15 79 80 135 208 292 464 672 1,024 1,529 2,292 100 0 95 71 83 81 79 82 80 81 81 81 0 100 0 28 13 16 17 15 17 16 16 16 0 0 5 0 4 2 3 3 3 3 3 3 0 0 5.25 0 1.01 1 1.70 0 1.54 1 1.40 0 1.59 0 1.45 0 1.52 0 1.49 0 1.50 0 0.00 R=1.50 time age fec und 0 1 2 3 sum pct 0 pct 1 pct 2 pct 3 1 4 15 0 Survive 1 0.3 0.25 0.2 1 50 0 0 0 2 50 15 0 0 3 110 15 4 0 4 226 33 4 1 5 415 68 8 1 6 810 124 17 2 7 1,562 243 31 3 8 3,000 469 61 6 9 5,785 900 117 12 10 11,141 1,735 225 23 11 21,457 3,342 434 45 12 41,335 6,437 836 87 50 65 129 264 491 953 1,839 3,535 6,814 13,125 25,279 48,694 100 77 85 86 84 85 85 85 85 85 85 85 0 23 12 13 14 13 13 13 13 13 13 13 0 0 3 1 2 2 2 2 2 2 2 2 0 0 1.98 0 2.05 0 1.86 0 1.94 0 1.93 0 1.92 0 1.93 0 1.93 0 1.93 0 1.93 0 0.00 R=1.83 2 Reproductive Rates Defining R R0 is a multiplier allowing us to determine population size at future generation. If discrete generations, time in generations then t=T and R0 = net reproductive rate; Net number of offspring produced per individual. Also, a multiplier allowing us to determine population size in the next generation. For simplicity, assume discrete generations. N t +1 = N t * R0 R0=∑ ∑(lxmx) 120000 General formula for population size at time t is: 100000 N t = N 0 * R0 t 6 7 8 0 0 0 9 Ro 0 kx 0.04 0.01 0.16 0.37 1.22 Mx 0 2 3 4 5 0 0 0 0 0 fx 360.00 525.00 480.00 250.00 lxmx xlxmx 0.00 1.80 1.80 2.63 5.25 2.40 7.20 1.25 5.00 0.00 0.00 0.00 0.00 0.00 -rx 0.00 -0.88 -1.75 -2.63 -3.50 -4.38 -5.26 -6.13 -7.01 -7.89 e-rx 0.42 0.17 0.07 0.03 0.01 0.01 0.00 0.00 0.00 -rx lxmxe 0.00 0.75 0.46 0.17 0.04 0.00 0.00 0.00 0.00 0.00 Lx 0.95 0.89 0.74 0.43 0.13 Tx 3.13 2.18 1.29 0.56 0.13 0.00 ex 3.13 2.42 1.48 0.93 0.52 N 175 120 50 2 qx Log10 ax Log10lx 0.10 2.30 0.00 0.03 2.26 -0.05 0.31 2.24 -0.06 0.58 2.08 -0.22 0.96 1.70 -0.60 0.30 -2.00 40000 200 180 2 3 4 5 dx 0.10 0.03 0.28 0.35 0.24 20000 0 1 lx 1.00 0.90 0.88 0.60 0.25 0.01 0 ax ∑lxmxe-rx=1 ∑lxmx 8.075 ∑xlxmx 19.250 0 40 stage ax 0 1 200 180 2 3 175 120 4 5 50 2 6 7 0 0 8 9 0 0 lx 1.00 0.90 0.88 0.60 0.25 0.01 ∑lxmx 8.075 ∑xlxmx 19.250 Tc 2.384 r 0.876 Double 0.787 dx 0.10 0.03 0.28 0.35 0.24 qx Log 10ax 0.10 2.30 0.03 2.26 0.31 2.24 0.58 2.08 0.96 1.70 0.30 Log1 0lx 0.00 -0.05 -0.06 -0.22 -0.60 -2.00 60 80 100 Year Exponential Growth number of individuals r = intrinsic rate of increase; per capita rate of increase; also Malthusian Parameter. When r is >0 populations will increase, when it is <0 populations will decrease; a population that is not increasing or decreasing will have an r of 0. Units – number of new individuals per unit time. Ro 20 1.415 Reproductive Rates • 80000 Predicts exponential growth stage 60000 R – rate of population increase as a function of time. Unitless and dimensionless. 10000 8000 6000 4000 2000 0 0 2 4 6 r = .1 8 10 12 14 16 time r = .2 r = .3 3 Determining r… Cohort Generation Time Tc is the average birth-to-birth time for a generation. If generation time (T) is known, can determine r from Lotka’s Equation: 1= ∑e − rx l x mx ∑ xl m x Tc = using iteration This is difficult, and the equation is not biologically meaningful… Recall that R0 = r can be estimated by: ln( R0 ) r= Tc Thus Tc = where Tc is generation time. R0 ∑lm x ∑ xl m ∑l m x x • Tc = (19.25/8.075) = 2.3839 ax 200 1 2 3 180 175 120 4 5 50 2 6 7 8 0 0 0 9 Ro lx 1.00 0.90 0.88 0.60 0.25 0.01 0 ∑lxmx 8.075 ∑xlxmx 19.250 Tc 2.384 r 0.876 Double 0.787 dx 0.10 0.03 0.28 0.35 0.24 qx Log 10 a x Log 10lx 0.10 2.30 0.00 0.03 2.26 -0.05 0.31 2.24 -0.06 0.58 2.08 -0.22 0.96 1.70 -0.60 0.30 -2.00 kx 0.04 0.01 0.16 0.37 1.22 Mx 0 2 3 4 5 0 0 0 0 0 fx 360.00 525.00 480.00 250.00 ax 0 1 200 180 2 3 175 120 4 5 50 2 6 7 0 0 8 9 0 0 x x Ro x lx 1.00 0.90 0.88 0.60 0.25 0.01 dx 0.10 0.03 0.28 0.35 0.24 qx Log 10ax 0.10 2.30 0.03 2.26 0.31 2.24 0.58 2.08 0.96 1.70 0.30 Log1 0lx 0.00 -0.05 -0.06 -0.22 -0.60 -2.00 ∑lxmx 8.075 ∑xlxmx 19.250 Tc 2.384 r 0.876 Double 0.787 1= True value of r difficult to get: r = ln(2.3839)/3.068 = 0.876 0 stage How good is our estimate of r? Lotka’s Solution to r, solve for Tc first, then r stage x lxmx xlxmx 0.00 1.80 1.80 2.63 5.25 2.40 7.20 1.25 5.00 0.00 0.00 0.00 0.00 0.00 -rx 0.00 -0.88 -1.75 -2.63 -3.50 -4.38 -5.26 -6.13 -7.01 -7.89 e-rx 0.42 0.17 0.07 0.03 0.01 0.01 0.00 0.00 0.00 lxmxe-rx 0.00 0.75 0.46 0.17 0.04 0.00 0.00 0.00 0.00 0.00 ∑lxmxe-rx=1 Lx 0.95 0.89 0.74 0.43 0.13 stage ax 0 200 1 2 3 180 175 120 4 5 50 2 6 7 8 0 0 0 9 Ro 1.415 lx 1.00 0.90 0.88 0.60 0.25 0.01 0 dx 0.10 0.03 0.28 0.35 0.24 qx Log 10 a x Log 10lx 0.10 2.30 0.00 0.03 2.26 -0.05 0.31 2.24 -0.06 0.58 2.08 -0.22 0.96 1.70 -0.60 0.30 -2.00 kx 0.04 0.01 0.16 0.37 1.22 Mx 0 2 3 4 5 0 0 0 0 0 fx 360.00 525.00 480.00 250.00 ∑e lxmx xlxmx 0.00 1.80 1.80 2.63 5.25 2.40 7.20 1.25 5.00 0.00 0.00 0.00 0.00 0.00 ∑lxmx 8.075 ∑xlxmx 19.250 Tc 2.384 r 0.876 Double 0.787 • Value > 1 means estimate of r is too small • Value < 1 means estimate is too large • In this case, actual r slightly greater than 0.876 − rx -rx 0.00 -0.88 -1.75 -2.63 -3.50 -4.38 -5.26 -6.13 -7.01 -7.89 l x mx e-rx 0.42 0.17 0.07 0.03 0.01 0.01 0.00 0.00 0.00 lxmxe-rx 0.00 0.75 0.46 0.17 0.04 0.00 0.00 0.00 0.00 0.00 Lx 0.95 0.89 0.74 0.43 0.13 ∑lxmxe-rx=1 1.415 4 How do we use this? • N t + 1 = N t * R0 N1 = R * N 0 dN = rN dt Nt = Rt * N0 However, r is much more useful as a continuous measure of population growth. Differential equation of logistic growth. Can only tell you the rate (dN/dt) of growth, can’t project population size. R = er N t = N 0 e rt ∑lm x x By extension… Assuming infinitely small time steps, switch from the discrete to continuous form. Integrate the first equation, and it is written in a form where you can project population size given a time period (t). r = ln( R) R0 = R is the finite rate of population increase. It represents the proportional change in a population from t to t+1. Is always positive. It is a ratio, dimensionless and with no units. R0 is the net reproductive rate, corrected for mortality. The units of R0 is number of offspring per individual per lifespan. If R0>1.0 population is increasing. 1= ∑e r is thus the natural log of R − rx l x mx True value of r, difficult to solve. The estimate from R0 is usually close enough. R – rate of population increase as a function of absolute time. Unitless, dimensionless. R0 – rate of population increase as a function of generation time. Thus R=R0 only if T=1 Estimating r: ln( R0 ) r= T However, this is only An estimation of r. 5 More about r Human Population Growth How long does it take a population to double in size?? N t = N 0 e rt Nt=2 and No=1 t=? Doubling Time for Population Nt = e rt N0 70 60 time 50 ln 2=rt 40 ye a r 1970 1991 2000 30 20 r 0.02 0.018 0.0125 doubling tim e 35 39 55 10 t=0.69/r 0 0.01 0.02 0.03 0.04 intrinsic rate of increase 0.05 Given current growth rates, what will the world population be in 30 years?? Nt=N0ert Nt=6,426,101,450 e0.0125(30) 9,349,922,439 Variability in r An example stage 0.025 0 1 2 3 4 5 0.02 r 0.015 0.01 0.005 45 35 25 40 20 20 20 20 15 30 20 20 20 00 10 20 20 95 90 85 75 05 20 20 19 19 19 70 65 60 55 80 19 19 19 19 19 19 19 50 0 •The maximum rate of increase obtainable by a population is rmax ax 1500 300 200 100 50 10 Mx 0 2 3 6 2 1 • Given these data answer the following – What proportion of individuals survive to age 2? (l2) – What proportion of 2 year olds die before reaching age 3? (q2) – What is the expected lifespan? (e0) – How many total offspring are produced by the third year class? (f3) – Is the population growing or shrinking? (R0) – What is the generation time? (T) – How large will the population be in 243 years? (r) – How long before the population doubles? (r) •Difference between rmax and r is due to environmental resistance • rmax - quality of food, space, etc. are optimum, no competition or predation. 6 An example • An example What proportion of individuals survive to age 2? (l2) – lx= ax/a0 = 200/1500 =13.3% ax stage 0 1 2 3 4 5 1500 300 200 100 50 10 lx 1.00 0.20 0.13 0.07 0.03 0.01 stage 0 1 2 3 4 5 An example • Lx= (ax+ax+1)/2 • ex=Sum(Lx)/ax • e0=(900+150+150+75+30)/1500 = 1405/1500 = 0.94 0 1 2 3 4 5 ax 1500 300 200 100 50 10 lx 1.00 0.20 0.13 0.07 0.03 0.01 dx 0.80 0.07 0.07 0.03 0.03 qx 0.80 0.33 0.50 0.50 0.80 An example – What is the expected lifespan? (e0) stage – What proportion of 2 year olds die before reaching age 3? (q2) – qx= ax+1/ax = 100/200 =50% ax 1500 300 200 100 50 10 lx 1.00 0.20 0.13 0.07 0.03 0.01 dx 0.80 0.07 0.07 0.03 0.03 qx 0.80 0.33 0.50 0.50 0.80 Lx 900.00 250.00 150.00 75.00 30.00 ex 0.94 1.68 1.28 1.05 0.60 – How many total offspring are produced by the third year class? (f3) – fx= mx*ax – f3=m3*a3 = 6*100 = 600 stage 0 1 2 3 4 5 ax 1500 300 200 100 50 10 lx 1.00 0.20 0.13 0.07 0.03 0.01 dx 0.80 0.07 0.07 0.03 0.03 qx 0.80 0.33 0.50 0.50 0.80 Mx 0 2 3 6 2 1 fx 600.00 600.00 600.00 100.00 10.00 7 An example An example – Is the population growing or shrinking? (R0) – R0=Sum(lxmx) – R0=0+0.4+0.4+0.4+0.07+0.01 = 1.28 stage 0 1 2 3 4 5 ax 1500 300 200 100 50 10 lx 1.00 0.20 0.13 0.07 0.03 0.01 dx 0.80 0.07 0.07 0.03 0.03 qx Log10a x Log10lx 0.80 3.18 0.00 0.33 2.48 -0.70 0.50 2.30 -0.88 0.50 2.00 -1.18 0.80 1.70 -1.48 1.00 -2.18 kx 0.70 0.17 0.30 0.29 0.66 – What is the generation time? (T) – T=sum(xlxmx)/sum(l xmx) – T=2.7/1.27 = 2.12 Mx 0 2 3 6 2 1 fx 600.00 600.00 600.00 100.00 10.00 lxmx xlxmx 0.00 0.40 0.40 0.40 0.80 0.40 1.20 0.07 0.27 0.01 0.03 An example – – – – – – – stage 0 1 2 3 4 5 ax 0 1 2 3 4 5 ax 1500 300 200 100 50 10 lx 1.00 0.20 0.13 0.07 0.03 0.01 dx 0.80 0.07 0.07 0.03 0.03 qx Log10a x Log10lx 0.80 3.18 0.00 0.33 2.48 -0.70 0.50 2.30 -0.88 0.50 2.00 -1.18 0.80 1.70 -1.48 1.00 -2.18 kx 0.70 0.17 0.30 0.29 0.66 Mx 0 2 3 6 2 1 fx 600.00 600.00 600.00 100.00 10.00 lxmx xlxmx 0.00 0.40 0.40 0.40 0.80 0.40 1.20 0.07 0.27 0.01 0.03 An example How large will the population be in 243 years? (r) r=lnR0/T r=ln(1.27)/2.12 = 0.114 Nt=N0ert N243=1500 e114*243 N243 = 1500 e27.07 8.56 x 1014 1500 300 200 100 50 10 stage lx 1.00 0.20 0.13 0.07 0.03 0.01 dx 0.80 0.07 0.07 0.03 0.03 qx Log10a x Log10lx 0.80 3.18 0.00 0.33 2.48 -0.70 0.50 2.30 -0.88 0.50 2.00 -1.18 0.80 1.70 -1.48 1.00 -2.18 kx 0.70 0.17 0.30 0.29 0.66 Mx 0 2 3 6 2 1 – How long before the population doubles? (r) – Double time = 0.69/r = 0.69/0.114 = 6.05 years fx 600.00 600.00 600.00 100.00 10.00 lxmx xlxmx 0.00 0.40 0.40 0.40 0.80 0.40 1.20 0.07 0.27 0.01 0.03 stage 0 1 2 3 4 5 ax 1500 300 200 100 50 10 lx 1.00 0.20 0.13 0.07 0.03 0.01 dx 0.80 0.07 0.07 0.03 0.03 qx Log10a x Log10lx 0.80 3.18 0.00 0.33 2.48 -0.70 0.50 2.30 -0.88 0.50 2.00 -1.18 0.80 1.70 -1.48 1.00 -2.18 kx 0.70 0.17 0.30 0.29 0.66 Mx 0 2 3 6 2 1 fx 600.00 600.00 600.00 100.00 10.00 lxmx xlxmx 0.00 0.40 0.40 0.40 0.80 0.40 1.20 0.07 0.27 0.01 0.03 8
© Copyright 2025 Paperzz