Math 16B - Short Calculus Final Review Solutions My answers may not be the same as yours. As with most problems in math, there are multiple ways to do each problem. By doing the problem a different way we my end up with solution that is the same but looks different. You may need to simplify your answers or mine to make them look the same. You can also check your work with wolfram or some other online symbolic evaluation tool. 52·2 .05 1. 10, 000 1 + 52 2. t = 1 ln(2) .08 3. r = 1 ln(1.5) 3 4. y = 80e 10,000 ln( 2 )·150000 ≈ .002g 1 13 50 5. y = · e 18 ln( 10 )·100 ≈ 208 13 1 ln( ) e 9 10 1 6. 1 1 + e−2 2 − e−2 2 x −6x x2 −6x 1 7. (a) sec e ln(x) · e (2x − 6) ln(x) + e x 1 (b) − sin(log6 (x8 − 4x7 + 3x − π)) · · (8x7 − 28x6 + 3) ln(6) · (x8 − 4x7 + 3x − π) 1 1 6 2 ln(x) 6 2 5 ln(x + 3x ) + ln(x) 6 · (6x − 6x) (c) (x + 3x ) · x x + 3x2 2 (d) 2x 3 −πx x2 −6x · ln(2) · (3x2 − π) + 4x−2/3 8. Compute the following integrals: (a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) −1 1 (x + 1)−2 + (x + 1)−3 + C 2 3 − log7 (x) 1 1 − +C x ln(7) x 1 x sin4 ( ) + C 2 2 1 3 1 2 x − x − 2x − 2 ln |x − 2| + C 3 2 −x cos(x) + 2 sin(x) + C −1 cos(x2 ) + C 2 3 1 3 x3 x e − ex + C 3 3 1 3 1 ln(x) + − +C 2x+3 2x−3 (x2 + x)ex − (2x + 1)ex + 2ex + C or 1 2 1 − (1 − x)4 − (1 − x)5 + (1 − x)6 + C 4 5 6 ln | sec(x) + tan(x)| + C √ √ √ −2 x cos( x) + 2 sin( x) + C 1 x2 ex − xex + ex + C (m) (n) (o) (p) (q) (r) −1 1 1 ln |x| + ln |x + 1| + ln |x − 2| + C 2 3 6 2 x ln(x + x ) − 2x + ln |x + 1| + C 1 3 4x 3 6 6 4x x e − x2 e4x + xe4x − e +C 4 16 64 256 −1 1 1 ln |x − 1| − ln |x + 2| + ln |x − 2| + C 3 6 2 −1 3 cos (x) + C 3 −e1/x + C (s) −(x − 1)2 e−x − 2(x − 1)e−x − 2e−x + C 34 1 1 +C − (t) 6 ln |x + 2| + 29 x+2 2 (x + 2)2 or − x2 e−x − e−x + C 9. Determine the particular solution that satisfies the given conditions. 4 5 4 3 1 x − x +x+ 5 3 15 2 3x (b) f (x) = e + 1 3 (a) f (x) = 10. Compute the following definite integrals: p p (a) ln(16) − ln(2) (b) ∞ - Diverge √ −1 (c) √ − e1/ 3 + 1 + e 3 2 (d) 6 + 3 10 (e) 3 4 4 (f) − (−3)3/4 + (12)3/4 3 3 (g) 1 − ln(3) (h) 0 1 (i) 24 (j) 3 1 1 (k) ln(5) + ln(9) 2 4 11. 128 15 12. π − 1 13. 14. 7 6 • 1 • 15. π 2 • • • • 3 4 1 4 1 4 2 16. 17. k = 1 18. b = 1 3 • Show f is a pdf 19. • 10 • V (x) = 100, σ = 10 • m = −10 ln(1/2) • Show f is a pdf 20. • 1 2 • V (x) = • m= 21. 4 16 22. 10 52 3 10 − 14 , σ = q 1 20 1 2 3
© Copyright 2026 Paperzz