Review Solutions - UC Davis Mathematics

Math 16B - Short Calculus
Final Review Solutions
My answers may not be the same as yours. As with most problems in math, there are multiple ways to do
each problem. By doing the problem a different way we my end up with solution that is the same but looks
different. You may need to simplify your answers or mine to make them look the same. You can also check
your work with wolfram or some other online symbolic evaluation tool.
52·2
.05
1. 10, 000 1 +
52
2. t =
1
ln(2)
.08
3. r =
1
ln(1.5)
3
4. y = 80e 10,000 ln( 2 )·150000 ≈ .002g
1
13
50
5. y =
· e 18 ln( 10 )·100 ≈ 208
13
1
ln(
)
e 9 10
1
6.
1
1 + e−2
2 − e−2
2
x −6x
x2 −6x 1
7. (a) sec e
ln(x) · e
(2x − 6) ln(x) + e
x
1
(b) − sin(log6 (x8 − 4x7 + 3x − π)) ·
· (8x7 − 28x6 + 3)
ln(6) · (x8 − 4x7 + 3x − π)
1
1
6
2 ln(x)
6
2
5
ln(x + 3x ) + ln(x) 6
· (6x − 6x)
(c) (x + 3x )
·
x
x + 3x2
2
(d) 2x
3
−πx
x2 −6x
· ln(2) · (3x2 − π) + 4x−2/3
8. Compute the following integrals:
(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)
(l)
−1
1
(x + 1)−2 + (x + 1)−3 + C
2
3
− log7 (x)
1 1
−
+C
x
ln(7) x
1
x
sin4 ( ) + C
2
2
1 3 1 2
x − x − 2x − 2 ln |x − 2| + C
3
2
−x cos(x) + 2 sin(x) + C
−1
cos(x2 ) + C
2
3
1 3 x3
x e − ex + C
3
3 1
3 1
ln(x) +
−
+C
2x+3 2x−3
(x2 + x)ex − (2x + 1)ex + 2ex + C
or
1
2
1
− (1 − x)4 − (1 − x)5 + (1 − x)6 + C
4
5
6
ln | sec(x) + tan(x)| + C
√
√
√
−2 x cos( x) + 2 sin( x) + C
1
x2 ex − xex + ex + C
(m)
(n)
(o)
(p)
(q)
(r)
−1
1
1
ln |x| + ln |x + 1| + ln |x − 2| + C
2
3
6
2
x ln(x + x ) − 2x + ln |x + 1| + C
1 3 4x
3
6
6 4x
x e − x2 e4x + xe4x −
e +C
4
16
64
256
−1
1
1
ln |x − 1| − ln |x + 2| + ln |x − 2| + C
3
6
2
−1
3
cos (x) + C
3
−e1/x + C
(s) −(x − 1)2 e−x − 2(x − 1)e−x − 2e−x + C
34
1
1
+C
−
(t) 6 ln |x + 2| + 29
x+2
2 (x + 2)2
or
− x2 e−x − e−x + C
9. Determine the particular solution that satisfies the given conditions.
4 5 4 3
1
x − x +x+
5
3
15
2 3x
(b) f (x) = e + 1
3
(a) f (x) =
10. Compute the following definite integrals:
p
p
(a) ln(16) − ln(2)
(b) ∞ - Diverge
√
−1
(c) √ − e1/ 3 + 1 + e
3
2
(d) 6 +
3
10
(e)
3
4
4
(f) − (−3)3/4 + (12)3/4
3
3
(g) 1 − ln(3)
(h) 0
1
(i)
24
(j) 3
1
1
(k) ln(5) + ln(9)
2
4
11.
128
15
12. π − 1
13.
14.
7
6
• 1
•
15.
π
2
•
•
•
•
3
4
1
4
1
4
2
16.
17. k = 1
18. b =
1
3
• Show f is a pdf
19.
• 10
• V (x) = 100, σ = 10
• m = −10 ln(1/2)
• Show f is a pdf
20.
•
1
2
• V (x) =
• m=
21.
4
16
22.
10
52
3
10
− 14 , σ =
q
1
20
1
2
3