THE ISLAMIC UNIVERSITY OF GAZA ENGINEERING FACULTY DEPARTMENT OF COMPUTER ENGINEERING DISCRETE MATHMATICS DISCUSSION – ECOM 2011 Eng. Huda M. Dawoud November, 2015 DISCRETE MATHMATICS ECOM 2012 Section 1: Divisibility and Modular Arithmetic q= ⌊𝑎/𝑑⌋ 9. What are the quotient and remainder when a) 19 is divided by 7? b) −111 is divided by 11? c) 789 is divided by 23? d) 1001 is divided by 13? e) 0 is divided by 19? f ) 3 is divided by 5? g) −1 is divided by 3? h) 4 is divided by 1? Answer: ENG. HUDA M. DAWOUD DISCRETE MATHMATICS ECOM 2012 ENG. HUDA M. DAWOUD a) q = ⌊19/7⌋ = 2 r= 19 – (2 . 7) = 5 b) q = ⌊−111/11⌋ = -11 r= -111 – (-11 . 11) = 10 c) q = ⌊789/23⌋ = 34 r= 789 – (34 . 23) = 7 d) q = ⌊1001/13⌋ = 77 r= 1001 – (77 . 13) = 0 e) q = ⌊0/19⌋ = 0 r= 0 – (0 . 0) = 0 f) q = ⌊3/5⌋ = 0 r= 3 – (0 . 5) = 3 g) q = ⌊−1/3⌋ = -1 r= -1 – (-1 . 3) = 2 h) q = ⌊4/1⌋ = 4 r= 4 – (4 . 1) = 0 11. What time does a 12-hour clock read a) 80 hours after it reads 11:00? Answer: (80 + 11) mod 12 = 7, the clock reads 07:00 12. What time does a 24-hour clock read a) 100 hours after it reads 2:00? Answer: (100 + 2) mod 24 = 6, the clock reads 06:00 DISCRETE MATHMATICS ECOM 2012 ENG. HUDA M. DAWOUD 13. Suppose that a and b are integers, a ≡ 4 (mod 13), and b ≡ 9 (mod 13). Find the integer c with 0 ≤ c ≤ 12 such that a) c ≡ 9a (mod 13). :مالحظة مهمة جدا يجب أن ننتبه جيدا إلى أن التعبير b) c ≡ 11b (mod 13). a ≡ 4(mod 13) c) c ≡ a + b (mod 13). d) c ≡ 2a + 3b (mod 13). e) c ≡ a2 + b2 (mod 13). f ) c ≡ a3 − b3 (mod 13). يختلف عن التعبير a = 4(mod 13) a أما في الحالة األولى، فقط4 قيمتهاa ففي الحالة الثانية إلخ.. 30 أو17 أو4 تحتمل أكثر من قيمة حيث قد تساوي a mod 13 = 4 mod 13 بحيث 9و4 على أنهاbو a وفي السؤال التالي نحن ال نعوض بقيمة راجع الخواص من الكتاب،modولكن نستخدم خواص ال Answer: والحظ الحل a) (9 mod 13) · (a mod 13) mod 13 = (9.4) mod 13 = 36 mod 13 = 10 b) (11 mod 13) · (b mod 13) mod 13 = 99 mod 13 = 8 c) (a mod 13) + (b mod 13) mod 13 = (4 + 9) mod 13 = 0 d) 2 · 4 + 3 · 9 mod 13 = 35 mod 13 = 9 e) (a mod 13)2 + (b mod 13)2 mod 13 = (42 + 92) mod 13 = 97 mod 13= 6 f) (a mod 13)3 - (b mod 13)3 mod 13 = -665 mod 13 = -665 – (-52*13) = 11 DISCRETE MATHMATICS ECOM 2012 ENG. HUDA M. DAWOUD 21. Evaluate these quantities. a) 13 mod 3 b) −97 mod 11 c) 155 mod 19 d) −221 mod 23 Answer: :تذكير a) 13 = 4∙3 + 1, r= 1 𝑎 𝑚𝑜𝑑 𝑏 = 𝑎 − ⌊𝑎/𝑏⌋ ∗ 𝑏 b) -97 = -9∙11 + 3, r = -2 𝑎 = ⌊𝑎/𝑏⌋ ∗ 𝑏 + 𝑎 𝑚𝑜𝑑 𝑏 c) 155 = 8∙19 + 3, r = 3 d) -221 = -10∙23 + 9, r = 9 28. Decide whether each of these integers is congruent to 3 modulo 7. a) 37 b) 66 c) −17 d) −67 Answer: 3 mod 7 = 3 a) 37 mod 7 = 2, thus 37 is not congruent to 3 mod 7 37 ≢ 3 mod 7 b) 66 ≡ 3 mod 7 c) -17 mod 7 = 4 -17 ≢ 3 mod 7 DISCRETE MATHMATICS ECOM 2012 ENG. HUDA M. DAWOUD d) -67 ≡ 3 mod 7 33. Find each of these values. a) (992 mod 32)3 mod 15 Answer: a) (9801 mod 32)3 mod 15 = (9)3 mod 15 = (729)3 mod 15 = 9 ENG. HUDA M. DAWOUD DISCRETE MATHMATICS ECOM 2012 Section 3: Primes and Greatest Common Divisors 1. Determine whether each of these integers is prime. a) 21 b) 29 توضيح: c) 71 في النظرية رقم ،2مذكور أن الرقم الcomposite دائما يوجد رقم primeيقبل القسمة عليه في Answer: المدى من 2إلى جذر هذا الرقم. فحتى نثبت أن الرقم primeوليس composite نقوم بايجاد كل األرقام ال primeمن 2إلى جذر الرقم فان كان الرقم ال يقبل القسمة على أي منها ،إذن هو ليس composite ∤ ويكون في هذه الحالة .prime تعني ال تقبل القسمة a) √21 = 4.58 2 ∤ 21 ∴ 21 is prime b) √29 = 5.28 2 ∤ 29, 3 ∤ 29, 5 ∤ 29 ∴ 29 is prime c) √71 = 8.42 2 ∤ 71, 3 ∤ 71, 5 ∤ 71, 7 ∤ 71 ∴ 71 is prime DISCRETE MATHMATICS ECOM 2012 ENG. HUDA M. DAWOUD 3. Find the prime factorization of each of these integers. a) 88 b) 126 c) 729 d) 1001 Answer: a) 88 = 2 ∙44 = 2 ∙2∙22 = 2∙2∙2∙11 b) 126 = 2∙63 = 2∙3∙21 = 2∙3∙3∙ 7 c) 729 = 3∙243 = 3∙3∙81 = 3∙3∙3∙27 = 3∙3∙3 ∙3∙9 = 3∙3∙3∙3∙3∙3 d) 1001 = 7∙143 = 7∙11∙13 25. What are the greatest common divisor and the least common multiple of these pairs of integers? a) 37 · 53 · 73, 211 · 35 · 59 b) 11 · 13 · 17, 29 · 37 · 55 · 73 Answer: a) GCD = 2min(0,11) ∙3min(7,5) ∙5min(3,9) ∙7min(3,0) = 20∙35∙53 ∙70 = 35∙53 LCM = 2max(0,11) ∙3max(7,5) ∙5max(3,9) ∙7max(3,0) = 211 ∙37 ∙ 59∙73 b) GCD = 2min(0,9) ∙3min(0,7) ∙5min(0,5) ∙7min(0,3) ∙11min(1,0) ∙13min(1,0) ∙17min(1,0) = 20∙30∙ 50∙ 70∙110∙130∙170 = 1 DISCRETE MATHMATICS ECOM 2012 ENG. HUDA M. DAWOUD LCM = 2max(0,9) . 3 max (0,7) . 5 max (0,5) . 7 max (0,3) . 11 max (1,0) . 13 max (1,0) . 17 max(1,0) = 29. 37. 55. 73. 111. 131. 171 33. Use the Euclidean algorithm to find a) gcd(12, 18). b) gcd(111, 201). Answer: a) gcd(12, 18) = gcd(12, 18 mod 12) = gcd(12, 6) = gcd(6, 12 mod 6) = gcd(6, 0) = 6. b) gcd(111,201) = gcd(111,90) = gcd(90,21) = gcd(21,6) = gcd(6,3) = gcd(3,0) = 3 DISCRETE MATHMATICS ECOM 2012 ENG. HUDA M. DAWOUD 39. Using the method followed in Example 17, express the greatest common divisor of each of these pairs of integers as a linear combination of these integers. a) 10, 11 b) 21, 44 Answer: a) gcd(10, 11) = 1, and 1 = 11 - 10 = ( -1) · 10 + 1 · 11. b) gcd(21, 44)= 1, and 44 = 2∙21 + 2 21= 10∙2 + 1 1 = 21 – 10∙2 = 21 –10∙ (44 – 2∙21) = 21 – 10∙44 + 10 ∙2∙21 = 21 – ( 10 ∙44) + ( 20∙21) = ( 21∙21 ) – ( 10 ∙44) DISCRETE MATHMATICS ECOM 2012 ENG. HUDA M. DAWOUD Section 4: Solving Congruences :توضيح وعندما يطلب حل معادلة على هذا الشكل ax ≡ b mod m هو معادلة على الشكلlinear congruencesال . التي تحقق المعادلةx يعني أننا يجب أن نجد قيم حيث أنinverse نحتاج أن نجد ما يسمى بالx حتى نجد a’a ≡ 1 mod m تابع األسئلة لتتضح الفكرة 1. Show that 15 is an inverse of 7 modulo 26. Answer: We want to find if 15.7 ≡ 1 mod 26 or not 105 mod 26 = 1 and 1 mod 26 = 1, which means that 15.7 ≡ 1 mod 26 is true and 15 is an inverse of 7 mod 27 DISCRETE MATHMATICS ECOM 2012 ENG. HUDA M. DAWOUD Note: To find an inverse of a mod m: 1. a and m first must be relatively prime that gcd(a,m) = 1 2. From Bezout’s Theorm, we can write sa + tm = 1 3. s here is the inverse of a mod mas Now see the answer 5. Find an inverse of a modulo m for each of these pairs of relatively prime integers using the method followed in Example 2. a) a = 4, m = 9 b) a = 19, m = 141 Answer: a) 9=2·4 + 1 4=4·1 Now, 1 = 9-2·4 -2 is an inverse of 4 mod 9 b) 141=7∙19 + 8 19 = 2∙8 + 3 8=2·3+2 3=1·2+1 2=2·1 Now, 1=3-1·2 DISCRETE MATHMATICS ECOM 2012 ENG. HUDA M. DAWOUD = 3 - 1∙ (8 - 2∙3) = 3∙3 - 1∙ 8 = 3∙ (19 - 2 ∙8) - 1∙8 = 3 ∙19 - 7∙8 = 3∙19 - 7∙ (141 - 7. 19) = (-7) ∙141+52∙19 52 is an inverse of 19 mod 141 11. Solve each of these congruences using the modular inverses found in parts (b) of Exercise 5. a) 19x ≡ 4 (mod 141) Answer: a) In Exercise 5b we found that an inverse of 19 modulo 141 is 52. That 19*52 ≡ 1 (mod 141). Therefore we multiply both sides of this equation by 52. 19*52 * x ≡ 4*52 (mod 141) (19*52 mod 141)1(x mod 141) = 208 mod 141 x ≡ 67 (mod 141) :مالحظة a’a ≡ 1 mod m linear congruence إلكمال حل الinverse بعد إيجاد ال inverseنقوم بضرب طرفي المعادلة بال 19*52*x ≡ (4*52) mod 141 وحسب الخاصية السابقة ab mod c = (a mod c)(b mod c) mod c ((19*52) mod 141)1 (x mod 141) ≡ (4*52) mod 141 x ≡ (4*52) mod 141 ..وهو المطلوب DISCRETE MATHMATICS ECOM 2012 ENG. HUDA M. DAWOUD Section 5: Application of Congruences :مالحظة نالحظه في البرامج التي تصمم إلختيار رقم،إيجاد أرقام عشوائية يلزم في استخدامات متعددة .. واأللعاب الورقية وغيرها،فائز ضمن مجموعة من األرقام linear إحداها ال،لذلك هناك أكثر من من طريقة إليجاد هذه األرقام برمجيا تتفاوت في ما بينها congruential method 5. What sequence of pseudorandom numbers is generated using the linear congruential generator xn+1 = (3xn + 2) mod 13 with seed x0 = 1? Answer: x1 = (3 · x0 + 2) mod 13 = (3 · 1 + 2) mod 13 = 5. x2 = (3 · x1 + 2) mod 13 = (3 · 5 + 2) mod 13 = 17 mod 13 = 4. x3 = (3 · 4 + 2) mod 13 = 1. Because this is the same as x0, the sequence repeats from here on out. So the sequence is 1, 5, 4, 1, 5, 4, 1, 5, 4, .... DISCRETE MATHMATICS ECOM 2012 ENG. HUDA M. DAWOUD Section 6: Cryptography 1. Encrypt the message DO NOT PASS GO by translating the letters into numbers, applying the given encryption function, and then translating the numbers back into letters. b) f(p) = (p + 13) mod 26 Answer: Letter Before Encryption After Encryption Letter D 4 17 Q O 15 2 B N 14 1 A O 15 2 B T 20 7 G P 16 3 C A 1 14 N S 19 6 F f(4) = (4+13 mod 26) = 17 f(15) = (15+13 mod 26) = 28 mod 26 = 2 and so on… To translate it back into letter (decrypt it) we use f-1(p) = (p – 13) mod 26.Try it yourself S 19 6 F G 7 20 T O 15 2 B DISCRETE MATHMATICS A 00 K 10 U 20 B 01 L 11 V 21 C 02 M 12 W 22 ECOM 2012 D 03 N 13 X 23 E 04 O 14 Y 24 F 05 P 15 Z 25 ENG. HUDA M. DAWOUD G 06 Q 16 H 07 R 17 I 08 S 18 J 09 T 19 25. Encrypt the message UPLOAD using the RSA system with n = 53 · 61 and e = 17, translating each letter into integers and grouping together pairs of integers, as done in Example 8. Answer: UPLOAD = 20 15 11 14 00 03 2015 1114 0003 C = Me mod n = M17 mod 3233 Note that n = 53 · 61 = 3233 and that gcd(e, (p - 1) ( q - 1)) = gcd(l 7, 52 · 60) = 1, as it should be. C1 = (2015)17 mod 3233 = 2545 C2 = (1114)17 mod 3233 = 2757 ECOM 2012 ENG. HUDA M. DAWOUD DISCRETE MATHMATICS C3 = (0003)17 mod 3233 = 1211 The message would be sent as 2545 2757 1211 مالحظة: و nالتي تم الرسالة المشفرة باستخدام ال RSAال يمكن فك تشفيرها إال إزا علمنا قيمة e من خاللها التشفير ،حيث ال eوال ) n=(p-1)(q-1تكون بمثابة كلمة السر التي تمكن من يعرفها من قراءة الرسالة الصحيحة. حيث نقوم بإيجاد dالذي هو inverseل e mod nكما تعلمنا في section 4 فيما يلي سنقوم بفك التشفير للمثال السابق.. ) We need to get d which is the inverse of e mod (p-1)(q-1 Note that we have chosen e, p, q such that the gcd(e, (p-1)(q-1)) =1, so the inverse of e mod n exists. DISCRETE MATHMATICS ECOM 2012 ENG. HUDA M. DAWOUD 3233 = 190∙17+ 3 17 = 5∙3 + 2 3 = 2∙1 + 1 Now, 1 = 3 - 2∙1 = 3 – 2(17 - 5∙3) =3 – 2∙17 + 2∙5∙3 = – 2∙17 + 11∙3 = -2.17 + 11 (3233 - 190∙17) = -2.17 + 11∙3233 - 2090∙17 = 11∙3233 - 2092∙17 d(2092) is the inverse of e(17) mod n(3233) 2545 2757 1211 M = Cd mod n M1 = C12092 mod 3233 = (2545) 2092 mod 3233 ويكفي الوصول في الحل حاليا ً لهنا،حسابها ليس سهل = 2015 M2 = (2757) 2092 mod 3233 = 1114 M3 = (1211) 2092 mod 3233 = 0003
© Copyright 2026 Paperzz