GraphsofLogarithmicFunctions Review: Find the inverse of f ( x ) Find the inverse of f ( x) 2 x2 3 x The exponential function has an inverse called _______________________ Definition of Logarithmic Function: b 1 , b y x is equivalent to y log b x The function f ( x) logb x is the logarithmic function with base b. For x 0 and b 0, Graph the following Inverse Functions: f ( x) 2 x f ( x) log 2 x Domain:___________________ Domain:___________________ Range:____________________ Range:____________________ X-int:_____________________ X-int:_____________________ Y-Int:_____________________ Y-Int:_____________________ Asymptote:________________ Asymptote:________________ Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/) Graph the following Inverse Functions: f ( x) 4 x f ( x) log 4 x Domain:___________________ Domain:___________________ Range:____________________ Range:____________________ x-int:_____________________ x-int:_____________________ y-int:_____________________ y-int:_____________________ Asymptote:________________ Asymptote:________________ Note: Some bases are used frequently, and have simplified notation. Common Log (Base 10): log10 x = Natural Log (Base e): log e x = Inverse Functions Logarithm Form Exponential Form f ( x) b x f ( x ) 10 x f ( x) e x Transformations: Parent Function: f x log b x All logarithmic functions (in “basic” form) have 2 points on their graphs: (1,0) and (b,1) Vertical Shift f x log b x c f x log b x c Horizontal Shift f x log b x c f x log b x c Reflections f x log b x Vertical Stretch and Compress f x c log b x Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/) Sketch f ( x) log x Then, sketch the following f ( x) log x 2 f ( x ) log( x 2) f ( x ) log( x 1) 4 f ( x) 2log x f ( x) log( x 2) 3 Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/) Sketch f ( x) ln x Then, sketch the following f ( x) ln x 3 f ( x ) ln x 3 f ( x ) ln( x 2) 4 f ( x) 1 ln x 2 f ( x) ln( x 1) 2 Print to PDF without this message by purchasing novaPDF (http://www.novapdf.com/)
© Copyright 2026 Paperzz