SOOCHOW JOURNAL OF MATHEMATICS Volume 21, No. 4, pp. 413-426, October 1995 SOME MAPPINGS ASSOCIATED WITH CAUCHY-BUNIAKOWSKI-SCHWARZ'S INEQUALITY IN INNER PRODUCT SPACES BY S. S. DRAGOMIR AND B. MOND 1. Introduction Let ( ( )) be an inner product space over the real or complex number eld K. The following inequality is well known in the literature as CauchyBuniakowski-Schwarz's inequality: H X i i 2 X p jjx jj2 i i i2I p j j i2I jj X i2I i i i 2 p x jj (1 1) : where i 0, i K, i for all and is a nite set of indices. The case of equality holds in (1.1) for i 0 ( ) i there exists a vector 0 so that i = i 0 for all . Indeed, a simple calculation shows that: X 2 0 12 i j i j j i i j 2I X 1 2 2 2Re( 2 2 =2 i j i j i j j i) + j i ] i j 2I p 2 x 2 H i 2 I I p x 2 H x p p jj x p p = = x X i j 2I X i2I 2 ; x jj j 2; p p j j jjx jj i i i 2 I i 2 I j j jjx jj i j i > ; X i j 2I x x i j Re(j xj p p 2 X p jjx jj2 ; jj X p x jj2 i i i i i i2I i2I p j j Received December 14, 1994. AMS Subject Classication. 26D20, 46C05. 413 j j jjx jj i i) x 414 S. S. DRAGOMIR AND B. MOND and thus the equality holds in (1.1) i i j = exists a vector 0 so that i = i 0 for all We shall use the following notations: x x 2 H x P f (N) : x = N is nite (R) : = = ( i )i2N i R + (R) : = = ( ) i i2N i 0 (K) : = = ( i )i2N i K ( ) : = = ( i )i2N i fI jI j i x i 2 I for all . i j 2 I , i.e., there g N N N N By the use of these notations we can dene the following mapping associated with the Cauchy-Buniakowski-Schwarz inequality (1.1): S S S S H S fp p jp 2 fp p jp f j fx x jx f (N) S : P given by ( ) := S I p x X i2I for all for all for all for all 2 2 H i 2 g i 2 g i 2 g i 2 g: + (R) S (K) S (H ) ! R i i 2 X p jjx jj2 ; jj X p x jj2 : i i i i i i2I i2I p j j The main aim of this paper is to point out the fundamental properties of this mapping. Some natural applications are also given. 2. Some Properties of The Mapping ( ) S I p x The following theorem holds: Theorem 2.1. Let ( ( )) be an inner product space and ( H ) S I p x the mapping de ned above. Then: (i) For all 0 one has the inequality: p q ( S I p + ) ( q x i.e., the mapping ( 0 one has: (ii) If )+ ( S I p x S I q x ) is superadditive on S I x S ) 0 (2 1) : + (R) p q ( ) S I p x ( S I q x ) 0 (2 2) : SOME MAPPINGS ASSOCIATED WITH CAUCHY-BUNIAKOWSKI-SCHWARZ'S INEQUALITY 415 i.e., the mapping ( ) is monotonic nondecreasing on S I x S + (R). Proof. We will use the following identity proved above: 1X 2 ( )=2 S I s x i j i j ; j xi jj s s jj x i j 2I : (i) By the use of the previous identity one has: X ( + ) = 21 ( i + i )( j + j ) i j j i 2 i j 2I X 2 1 X = 12 i j i j i j j i +2 i j 2I i j 2I X 2 1 X + 21 j i +2 i j i j j i j 2I i j 2I S I p q x p q p p p jj x q ; x jj + ) ( q x X )+ ( )] = ; S I p x S I q x 2 i j ; j xi jj i p q jj x )+ S I q x from where we get ( 2 i j ; j xi jj q q jj x )+ ( S I p x S I p ; x jj ; x jj p q jj x = ( jj x i j 2I i j 2 i j ; j xi jj p q jj x X i j 2I 2 i j ; j xi jj i j p q jj x 0 i.e., the inequality (2.1). (ii) Suppose that 0. Hence: p q ( )= ( ( S I p x S I p ;q )+ ) S I p ;q x ) S I p ;q x q x ( )+ ( ( ) 0 S I q x ) from where we get ( S I p x ) ( ;S I q x and the statement (2.2) is proved. Corollary 2.1.1. Let for all (K), f (N) we have the inequality: 2 S ( ) and = ( i )i2N x 2 S H R. Then I 2 P X 2 X jjx jj2 ; jj X x jj2 i i i i2I i2I i2I X 2 2 X 2 2 X ji j sin i jjxi jj sin i ; jj (sin i )2 i xi jj2 i2I X 2 2 i2IX 2 2 i2I X + ji j cos i jjxi jj cos i ; jj (cos i )2 i xi jj2 i2I i2I i2I i j j 0 416 S. S. DRAGOMIR AND B. MOND which improves Cauchy-Buniakowski-Schwarz's inequality. Corollary 2.1.2. Consider the set of sequences ( ) := S I with 0 i1 p for all i 2 fp N . Then one has the bound: = ( i )i2N p g 2 X p jjx jj2 ; jj X p x jj2 i i i i i p2S (I ) i2I i2I i2I X X X = ji j2 jjxi jj2 ; jj i xi jj2 : i2I i2I i2I 0 X sup i i p j j Another result of this type is embodied in the following theorem. Theorem 2.2. With the above assumption, we can state: f (N) (i) For all with I J 2 P ( S I J p x = , one has the inequality: I \ J ) ( )+ ( S I p x ) 0 S J p x (2 3) : for 0, i.e., the mapping ( ) is superadditive as an index set function on f (N) (ii) If one has: f (N) with p S p x P I J 2 P I J ( ) S I p x for all 0, i.e., the mapping ( index set function on f (N). p S ( ) 0 S J p x p x (2 4) : ) is monotonic nondecreasing as an P ( Proof. (i) Suppose that X 1 S I J p x ) =2 f (N) I J 2 P i j i j 2 i j ; j xi jj j i 2+ 1 j i X S I p x as X (i j )2I J i j )+ ( S J p x 2 i j ; j xi jj p p jj x = )+ X (i j )2J I 2 j i p p jj x ; x jj p p jj x ; x jj = ( i j 2 (i j)2J J i j 2+ 1 X 2 (i j)2J I i j p p jj x ; x jj i j = . Then I \ J p p jj x (i j )2(I J )(I J ) X = 21 i j (i j )2I I X +12 i j (i j )2I J with i j j i 2 p p jj x ; x jj X (i j )2I J i j i j 2 i j ; j xi jj p p jj x 2 i j ; j xi jj p p jj x 0 SOME MAPPINGS ASSOCIATED WITH CAUCHY-BUNIAKOWSKI-SCHWARZ'S INEQUALITY 417 and the inequality (2.3) is proved. (ii) Suppose that f (N) with I J 2 P ( ) = (( S I p x S I nJ ) J p x . Then I J ) ( )+ ( ( ) 0 S I nJ p x ) S J p x from which we get ( ) S I p x ( ) ;S J p x and the inequality (2.4) is proved. Now, let us denote: n( S where ):= ( p x I n := f1 n S I 2 ::: n X f (N) n n 2 X p jjx jj2 ; jj X p x jj2 i i i i i i i i=1 i=1 i=1 )= p x ng 2 P S I nJ p x ( n 2 p j j N 1). n The following corollaries hold: Corollary 2.2.1. With the assumptions of Theorem 2.2 we have: "X # X 2X 2 2 0 sup pi ji j pi jjxi jj ; jj pi i xi jj I In i2I i2I i2I n n n X X X = pi ji j2 pi jjxi jj2 ; jj pi i xi jj2 : i=1 i=1 i=1 Corollary 2.2.2. With the above assumptions, one has: n n n X X 2X 2 2 pi i xi jj i=1 2 max fpi pj jji xj ; j xi jj g 0 1i<j n i=1 i i p j j i=1 i i p jjx jj ; jj which gives another type of re nement for Cauchy-Buniakowski-Schwarz's inequality. Also we have: Corollary 2.2.3. The sequence nondecreasing. n S := n (p S )( x n 2 N) is monotonic 418 S. S. DRAGOMIR AND B. MOND Now, if (R) and : R R, then by ( ) we will denote the sequence of real numbers ( i ) i2N . With these terms, we have the following theorem: p 2 S f ff p ! f p g Theorem 2.3. With the above assumptions, we have: (i) If : 0 ) 0 have the inequality: f ( 1 ( + (1 S I f tp (ii) If : 0 ( )) 1 ! ( + (1 S I f tp 1 2 ) ;t q ) f ) is concave, then for all ! x (0 ( () t S I f p x p q )2 ( ) + (1 ;t t 2 () S I f q 0 1] we x ) (2 5) : ) is logarithmically convex, i.e., ln is convex, then: 1 )) ;t q f ) ( x () S I f p )]t ( x S I f t 2 () S I f q for all 0 and 0 1], i.e., the mapping ( cally convex on + (R). p q 0 and () )]1;t x (2 6) : ) is logarithmi- x S Proof. (i) We have successively: ( ( + (1 S I f tp 1X =2 i j 2I )) ;t q ( i + (1 ) x ) i) ( f tp ;t q f tp 2 j + (1 ; t)qj )jji xj ; j xi jj 1 X ( ) + (1 ) ( )] ( ) + (1 ) ( )] i i j j i j j 2 i j 2I X X = 12 2 ( i ) ( j ) i j j i 2 + 12 (1 )2 ( i) ( j ) i j 2I i j 2I tf p t f p + (1 t 2 ;t f q ( ) ;t X i j 2I () t S I f p f p jj x f q ) + (1 x ; t 2 i j ; j xi jj jj x ; t i.e., the inequality (2.5). ;t f q ; x jj ( i) ( j ) f p tf p )2 ( () S I f q ) x jj x f q i 2 ; x jj f q 2 i j ; j xi jj jj x SOME MAPPINGS ASSOCIATED WITH CAUCHY-BUNIAKOWSKI-SCHWARZ'S INEQUALITY 419 (ii) We have, by Holder's inequality, that ( ( + (1 ) ) ) X = 21 ( i + (1 ) i ) ( j + (1 ) j ) i j i j 2I 1 X ( )]t ( )]1;t ( )]t ( )]1;t i j i j j 2 i j2I i X = 21 ( i ) ( j )]t ( i ) ( j )]1;t i j j i 2 i j 2I X 1 2 ( ( i ) ( j )]t )1=t i j j i 2 ]t i j 2I X 1 2 ( ( i ) ( j )]1;t ) 1;1 t i j j i 2 ]1;t i j 2I S I f tp ; t q f tp ;t q f p t 2 f p f p f q f p f p f q f q ; t q jj x f q f q jj x jj x jj x 2 j i ; x jj j i 2 ; x jj ; x jj ; x jj jj x ; x jj = ( ( ) )]t ( ( ) )]1;t (0 1). If = 0 or = 1, the inequality (2.6) also holds. S I f p for all f tp f q f p x x S I f q t x t This completes the proof of the theorem. 0 Corollary 2.3.1. Let 1 and be as above. Then for all : 0 ) a concave function, we have the inequality: ( ( +2 ) ) 41 ( ( ) )+ ( ( ) )] 0 S I f p q x p x q S I f p f x S I f q x ) 1 ! : Remark 2.1. If ( ) = , by the above inequality we recapture the f x x inequality (2.1). Corollary 2.3.2. With the above assumptions, for : 0 ) 0 ) a f 1 logarithmically convex function, one has the inequality: )]2 ( ( ) ) ( () ( ( +2 ) S I f p q x S I f p x S I f q ! 1 ) x : The following inequality of Holder type also holds. Theorem 2.4. Let ( ( )) be an inner product space and H 2 S (K) and ( ). Then for all x 2 S H ( ) ( S I pq x S I p s p q 0 one has the inequality )]1=s ( x S I q t x )]1=t f (N), I 2 P (2 7) : 420 S. S. DRAGOMIR AND B. MOND where s 1 and 1 + 1 = 1. If =s =t s < 1, the inequality (2 7) is reversed. : Proof. We will use the following Holder inequality for double sums, i.e., 0 11=s 0 11=t X X X sA @ tA @ i j 2I where ij Since p ij bij a ij aij bij p 0 for all i j 2 ( S I pq x i j 2I ij = ij aij N and X ) = 21 i j 2I hence, choosing p p i j ; j xi jj jj x 2 p q p q jj x 2 41 X 2 i j2I s s i j a The case s < i ij = i j ij p p b = i j q q 2 ; x jj i j 31=s 2 25 4 1 X j i 2 i j2I p p jj x ; x jj x 2 i j ; j xi jj i i j j p q p q jj x and = ( s )]1=s ( and the inequality (2.7) is proved. S I p ij bij p are as above. s t we get, by the above Holder inequality X ( ) = 12 i i j j i j j i j 2I S I pq x i j 2I S I q t x t t i j i j j i 31=t 25 q q jj x ; x jj )]1=t 1 goes likewise and we will omit the details. Corollary 2.4.1. With the above assumptions, one has the following inequality of Cauchy-Buniakowski-Schwarz type: )]2 ( S I pq x ( S I p 2 ) ( x S I q 2 ) x : Now, let us observe that the inequality (2.1) can be improved in the following way: Theorem 2.5. With the above assumptions, we have for ( 2 + q2 S I p 2 ( ) ( ) 0 x S I pq x ; S I p : 2 )+ ( x S I q 2 p q )] x 0, that: SOME MAPPINGS ASSOCIATED WITH CAUCHY-BUNIAKOWSKI-SCHWARZ'S INEQUALITY 421 Proof. We have: ( S I p 2 + q2 X ) = 21 ( 2i + i2 )( 2j + j2 ) x p i j 2I q p q 1 X ( + )2 2 i j2I i j i j X 22 = 12 i j i j i j 2I X 22 + 12 i j i j i j 2I p p q q p p jj x S I p 2 2+ j i ; x jj X i i j j 2 i j ; j xi jj p q p q jj x i j 2I 2 j i ; x jj )+ ( x 2 i j ; j xi jj jj x q q jj x = ( 2 i j ; j xi jj jj x S I q 2 x )+2 ( S I pq x ) which gives the desired inequality. Another result of this type is also embodied in the next theorem: Theorem 2.6. With the above assumption, we have: 2 ( )+ ( S I p x S I q 2 x ) ( ;S I p Proof. We have successively: 1X 2 2 2 ( S I p ;q ) =2 x ( i j 2I 1 X( 2 i j2I 2 = ( S I p p i 2 ; q2 ) 2 ( x ) 0 S I pq x : 2 2 2 2 i )(pj ; qj )jji xj ; j xi jj ; q 2 jj x ; x jj2 i j j i i j ; qi qj ) p p x )+ ( S I q 2 ) 2 ( x ; ) S I pq x from where we obtain the desired result. Corollary 2.6.1. With the above assumptions, we have: ( 2 + q2 S I p ) x ( 2 ; q2 ;S I p ) 4 ( x ) 0 S I pq x : Further on, we shall give other results which contain renements of the Cauchy-Buniakowski-Schwarz inequality: 422 S. S. DRAGOMIR AND B. MOND Theorem 2.7. With the above assumptions, one has the following bound: ( S I p x where ( ) := S p fq 2 S Proof. Let (R) ) = sup q2S (p) i for all i jq j p ) ( ). Thus we have: X ( ) = 21 i i j 2I 0 (2 8) : . i 2 Ig q 2 S p S I q x Hence ( ) jS I q x j Therefore ( ) 2: i j ; j xi jj j q q jj x 1X 2 i j2I 1X 2 i j2I i j 2 i j ; j xi jj jq jjq j jj x i j 2 i j ; j xi jj p p jj x ( jS I q x Since ( jS I q x j S I p x = ( ) for all ) S I p x : () q 2 S p : ( ), hence we get, the bound (2.8). p 2 S p Corollary 2.7.1. If the inequality: i ` 2 C (1) := fz 2 K jzj = 1 , = 1 , then we have g n i n X n X 2 2 n jjxi jj ; jj xi jj i=1 i=1 X n X n n X 2 2 i=1 `i i=1 `ijjxi jj ; jj i=1 `ixi jj 0: Corollary 2.7.2. (a) If i ( = 1 2 ), then we have the inequality 2k 2k 2k X X X 2 2 i 2 x 2 k (b) If i x 2 H i=1 i jjx jj ; jj 2 H i=1 i i x jj k jj ( = 1 2 + 1), one has: i=1 ( 1) ; i x jj k i (2 + 1) k 2X k+1 i=1 2X k+1 ( 1)i i=1 ; 2 jjxi jj ; jj 2 jjxi jj + jj 2X k+1 i=1 2X k+1 i=1 i 2 x jj (;1)i xi jj2 0: 0 : SOME MAPPINGS ASSOCIATED WITH CAUCHY-BUNIAKOWSKI-SCHWARZ'S INEQUALITY 423 3. Some Properties of The Mappings ( S I J p x ) and ~( S I p q x ) Using the above notations, let us dene the following mappings: : S f (N) Pf (N) S (R) S (K) S (H ) ! R P given by ( ) := ( S I J p x and ~: ) S I J p x ( ) ; S I p x ( ) ; S J p x f (N) S (R) S (R) S (K) S (H ) ! R S P given by ~( ) := ( S I p q x S I p + q x ) ( ) ; S I p x ( ) ; S J p x respectively. If = and 0, then by the inequality f (H) are such that (2.3), one gets that ( ) 0 and if 0 then also f (N), ( ) 0, for all (K) and ( ). Further on, we shall give some renements of these inequalities. I J 2 P I \J S I J p x S I p q x I J Then one has the inequality: ) := ) X i2I ; Proof. For all i i i p j j X j 2J i j 2 i j ( ) jjL I J p x jj X j 2I i p jjx jj j j+ j p jjx jjx X i2I i i x ; X j 2J X i2I j (3 1) : j j j i i i p jjx jj j i 0. p 0 p j j N we have: i j ; j xi jj ji j jj x p q be disjoint sets of positive integers and ( ( I 2 P x 2 S H S I J p x where p 2 S Theorem 3.1. Let L I J p x jjx jj ; j j jjx jj : X i2I X j 2J i i p jjx jjx j j j jx : i 424 S. S. DRAGOMIR AND B. MOND By multiplying with i j ; j xi jj 0 we derive: jj x 2 i j ; j xi jj jj x ( i j j i )( jj j j jjx jj ; j j jjx jj i j ; j xi )jj x from which we deduce: 2 i j ; j xi jj jj x i i j+ j j j jjx jjx j j i i j Now, if we multiply this inequality with over ( ) we deduce: i j 2 I J ( S I J p x j i i i i j j j jjx jjx ; jjx jj j jx ; jjx jj j jx )= X (i j )2I J X (i j )2I J j i j p p 0 (( ) i j 2 I J j : ) and summing 2 i j i j ; j xi jj i j i i p p jj x j + jj jj jjxi jjxi j p p jj j j jjx jjx j i i i i j j ; jjx jj j jx ; jjx jj j jx jj ( ) jjL I J p x jj and the inequality (3.1) is proved. The following similar result holds for the mapping ~( S I p q x Theorem 3.2. With the above assumptions, for all inequality: ~( ) S I p q x where ( )= K I p q x X i2I ; i i i p j j X i2 I i i ( ) jjK I p q x jj X i2 I i q jjx jj i i i+ q jjx jjx X i2I X i2I i i i p j jx ; p q i i i i2I X i2I i i ( )= i j 2I i j i p jjx jj i j ; j xi jj p q jj x : i i p jjx jjx Proof. It is obvious that (see the proof of Theorem 2.1): X 2 ~ S I p q x 0 one has the 0 q j j X ). X i2I i i i i q j jx : SOME MAPPINGS ASSOCIATED WITH CAUCHY-BUNIAKOWSKI-SCHWARZ'S INEQUALITY 425 Now, as in the above theorem, we have: 2 i j ; j xi jj jj x i i j+ j j j j j jjx jjx i i j j i i i i j j j jjx jjx ; jjx jj j jx ; jjx jj j jx for all N. If we multiply this inequality with we deduce: j i j 2 ~( )= S I p q x X (i j )2I i j i i = 0( i j 2 I i j (i ji j i i i i X i2I i q jjx jj ( i ) j + jj jj jjxi jjxi ; j jjxj jj i i+ q jjx jjx X i2I i j 2 I , 2 j jjx jjx ) and sum over i j ; j xi jj i j p q jj x j + jj jj jjxi jjxi ; j jjxj jj j p q p j j i2I (i j )2I i i p q jj j j jjx jjx X i j )2I (X = i i2I X ; X i j p q X i2I i i i p j jx ; i i i q j j X i2I i i X i2I i p jjx jj i i i2I i j j i i i i j j ) j jx ; jjx jj j jx i p jjx jjx X i j jx ; jjx jj j jx jj i i i q j jx jjK I p q x jj and the theorem is proved. The following result also holds: Theorem 3.3. Let be disjoint sets of positive integers and I J Then one has the bound ) = sup ( ( S I J p x where ( ) := S p fp 2 S (R) i q2S(p) i j jq j p S I J q x for all i 2 p 0. ) 0 N. g Proof. We shall use the following identity (see the proof of Theorem 2.2): X 2 ( )= S I J s x (i j )2I J i j i j ; j xi jj s s jj x : 426 S. S. DRAGOMIR AND B. MOND Hence, for all ( ), we have: q 2 S p ( ) jS I J q x j X (i j )2I J i j ( 2 i j ; j xi jj jq q j jj x ) S I J p x : Since ( ), we get the desired bound. p 2 S p Similarly, we can prove Theroem 3.4. Let one has the bound: ~( f (N), I 2 P p q 0, 2 S ~( ) = sup (t s)2S (p)S (q) S I p q x (R) and ( ). Then x 2 S H ) 0 S I t s x : For other recent results of Cauchy-Buniakowski-Schwarz type in inner product spaces we refer the reader to the papers listed in the references. References 1] S. S. Dragomir, SomerefinementsofSchwarz'sinequality, Proc. Symp. Math. Appl., (1985), 13-15. 2] S. S. Dragomir, A refinement of Cauchy-Schwarz inequality, Gaz. Mat. Metod. (Bucharest), 8 (1987), 94-95. 3] S. S. Dragomir and J. Sandor, Someinequalitiesinprehilbertianspaces, Studia Univ. BabesBolyai, Mathematica, 32:1 (1987), 71-78. 4] S. S. Dragomir, OnsomeoperatorialinequalitiesinHilbertspaces, Bull. Inst. Pol. Cluj-Napoca, 36 (1987), 23-28. 5] S. S. Dragomir, SomerefinementsofCauchy-Schwarz'sinequality, Gaz. Mat. Metod., 10 (1989), 93-95. 6] S. S. Dragomir and N. M. Ionescu, ArefinementofGram'sinequalityininnerproductspaces, Proc. 4th Symp. Math. Appl., (1991), 188-191. 7] S. S. Dragomir and B. Mond, OnthesuperadditivityandmonotonicityofSchwarz'sinequality ininnerproductspaces, (submitted for publication). Department of Mathematics, Timisoara University, B-dul. V. Parvan 4, Ro-1900 Timisoara, Romania. School of Mathematics, La Trobe University, Bundoora, Victoria, 3083, Australia.
© Copyright 2026 Paperzz