Exponential Indeterminate Forms: The Logarithm Method (For 11, 1 0, and 00 Types) Dave L. Renfro The Logarithm Method: Justi…cation Recall the (sequential) de…nition of continuity: If () is continuous at = , then lim () = ( ). Since = lim (), we can recast this into the following form: ! ! ³ ´ lim [ ( ) ] = lim () ! ! More generally, suppose that is a function of and is a function of . Furthermore, assume that lim+ () exists (we’re not assuming that () is continuous on the right at = , or that ! ( ) even exists) and that () is continuous at = lim+ (). Then ! µ ¶ 1 lim+ (()) = lim+ () ! ! . Since the logarithm of is easier to handle, we Let’s make use of this to evaluate lim+ !0 introduce a logarithm: lim+ [ ln () ] = !0 lim+ [ ¢ ln () ] = lim+ !0 !0 · ¸ ln ( ) = ¡1 l’Hôpital lim+ !0 · ¡1 ¡¡2 ¸ = 0 0 Therefore (exponentiate both sides), lim+ = = 1. To see exactly how this is justi…ed, let !0 () = , () = ¢ ln ( ), and = 0. Then lim+ [¢ ln ( )] = 0 (by l’Hôpital; see above), µ ¶ µ ¶!0 so lim+ () becomes exp lim+ [¢ ln ()] = exp (0) = 1. This is supposed to equal ! !0 lim+ (()) = lim+ [exp (¢ ln ())] = lim+ [exp (ln ())] = lim+ [],2 which happens to be ! !0 !0 the limit being sought. !0 The Logarithm Method: Worked Examples 1. lim [1 + 2sin ()]cot() . !0 2 sin()] Let = [1 + 2sin ()]cot(). Then we have ln () = cot () ¢ ln [1 + 2sin ()] = ln[ 1 + . tan() Hence, 2 3 · ¸ 2 cos() · ¸ ln [1 + 2 sin ()] 2 cos3 () 1+2 sin() = 5 = lim lim ln () = lim lim 4 = 2 !0 !0 l’Hôpital !0 !0 tan () sec2 () 1 + 2sin () Exponentiating both sides gives h i exp lim ln ( ) !0 1 2 = c o nt i n ui t y of at = 2 lim [exp (ln )] = lim = !0 !0 2 Of co ur se, the ana log ous version for ! ¡ als o ho lds. The …rst equa lity co mes fro m plugg ing in fo r , , and . The la st two equalities a re a lgebraic ma nipula tions. ¡ ¢ ( 2. lim + , , and are …xed constants) !0 ¡ ¢ Let = + . Then ln ( )= lim ln () = lim !0 !0 " ¢ ¡ ¢ ln + = ¡ ¢# ¢ ln + = l’Hôpital4 ¡ ¢ Exponentiating both sides gives lim + !0 ³ sin() Let = ³ ´ 12 si n() ´ 1 2 2 lim ln () = lim 4 !0 !0 . Then ln ( )= ln ³ s in() 2 ´3 5 · 1 2 ¢ ln ³ sin( ) = l’Hôpital ,3 which gives 2 ¢ + 3 ( ) + 4 5 = (+ lim ) !0 1 (+ ) . = !0 3. lim ¢ln(+) ´ , which gives lim !0 " ¢cos() ¡s in() 2 ¥ 2 sin() # = lim !0 · ¢ cos () ¡ sin ( ) 22 ¢ sin () ¸ ¸ · ¸ · ¸ 2 ¢ cos ( ¡¢ sin () 4¢ sin () + 2 ) ¡1 4¢ sin () + 22 ¢ cos () ¡1 5 lim = lim = lim ! 0 !0 l’Hôpital !0 4¢ sin () + 22 ¢ cos () ¡¢ sin () ¡¢ sin () · µ ¶¸¡1 1 = lim ¡4 ¡ 2 ¢ cos ¢ = [¡4 ¡ 2 ¢ 1 ¢ 1]¡1 = ¡ !0 sin ( ) 6 ³ ´ 12 ¡ ¢ ) Exponentiating both sides gives lim sin( = exp ¡ 16 . = !0 Some Additional Limits (With Answers!) to Practice With6 ¡ ¢1 lim 1 + 2 = 1 !0 lim !1+ lim · lim h !0 !0 ¡ 1¡+ln() ³ lim+ !0 i = ¡2 si n(2 ) ¡si nh(2 ) 6 ¸ ¢sin(s in ) ¡si n2 () 6 lim !0 = ¡ 13 i = 1 18 lim !0 h h ´ ( ) 1 ¡ cos() 3¡2 =1 i sin(¢cos ) ¢sin() 1 lim [ln (1 + )]= 1 ¡2 lim [cos (2)] 2 = !0 !0+ lim+ ( ) = 0 h 1 1 lim ln() = !1 lim+ !0 =0 i = lim !0 2 lim [1 + ] = 1 ( 0) !1 lim !0 h h £1 + !0+ ¤ ln () = 1 tan() i 1 ¢s in() 1 2 ¡ 1 2 lim [1 + sin (2 )] = !0 1 3 = 1 2 1 i lim [1 + ] = !0 = lim · cos( )) 2 ¢cos( sin 2( ) lim h 3 ¢sin() (1 ¡ cos )2 !0 1 6 !0 lim !0 h sin() i i ¸ ! 0 !0 a ct ua lly co rrect fo r all choices of , , and . 5 6 ¡1 at = ¡6 jus ti…es go ing fr om lim [stu¤ ] ¡1 to Cont inuity of () = So me of these involve 0, 1, 0 1 !0 0 ¢ 1, or 1 ¡ 1 indeterminate for ms. · ¸ ¡1 lim (stu¤ ) . !0 4 =4 ¡ sin() ¡ ¢ is de…ned. In other wor ds , yo u want t o Check t o see that for the + ¡ ¢ purpos es of the pr es ent limit , ln m ake s ur e that ln + is de…ned for all values o f s u¢ciently clo se t o 0. [Consider 0, consider the e¤ect t ha t one or more of t he …xed co ns tants being neg ative (o r zer o) has, etc.] 4 If = 0, or if = = 0, then this isn’t an indeterminat e lim it. H owever, in either of these cases it is immediate (+). T herefore, this answer is t ha t lim ln () = 0, result ing in lim = 1. N ote this agr ees wit h our answer 3 = ¡1 =
© Copyright 2026 Paperzz