HW 2 – Due Sep 5, Wed 1. Find the given integral. Z (a) cos2 dx. Hint: use the double angle formula cos 2x = 2 cos2 x − 1 cos 2x + 1 cos2 x = 2 Z cos 2x + 1 1 1 dx = sin 2x + x + C 2 2 2 Z cos x . Then use the method of substitution. (b) cot xdx. Hint: write cot x = sin x Z cos x = dx sin x Z 1 = d sin x, because cos xdx = d sin x sin x Z 1 du, (u = sin x) = u = ln |u| + C = ln | sin x| + C Z (c) sin x · cos xdx. (Hint: method of substitution) Z = sin xd sin x, (cos xdx = d sin x) Z = = Z (d) udu, (u = sin x) u2 sin2 x +C = +C 2 2 x dx. (Hint: method of substitution) 1 + x2 1 Let u = 1 + x2 , du = 2xdx, xdx = du 2 Z 1 1 √ · du = u 2 Z 1 1 u1/2 −1/2 = u du = · +C 2 2 1/2 √ = u1/2 + C = 1 + x2 + C √ 1 Z (e) arcsin xdx. Z arcsin xdx = x · arcsin x − Hint: by integration-by-part, Z Z xd(arcsin x). Z arcsin xdx = x · arcsin x − xd[arcsin x] Z = x · arcsin x − x √ dx 1 − x2 1 Let u = 1 − x2 , du = −2xdx, xdx = − du 2 Z Z √ √ x 1 √ dx = − u−1/2 du = − u + C = − 1 − x2 + C 2 1 − x2 Z √ arcsin xdx = x · arcsin x + 1 − x2 + C 1. Find the general solution of the given differential equation, and use it to determine how solutions behave as t → ∞. (a) y 0 + y = 5 sin 2t p(t) = 1, g(t) = 5 sin 2t Z R p(t)dt = t, µ(t) = e p(t)dt = et Z Z µ(t) · g(t)dt = 5 et sin 2tdt sin(2t) − 2 cos(2t) · et = [sin(2t) − 2 cos(2t)]et =5 5 [sin(2t) − 2 cos(2t)]et + C y= et (b) (1 + t2 )y 0 + 4ty = (1 + t2 )−2 2 Divide (1 + t2 ) from both sides, ⇒ y 0 + 4t , p(t) = 1 + t2Z Z p(t)dt = 4t y = (1 + t2 )−3 2 1+t g(t) = (1 + t2 )−3 4t dt 1 + t2 Let u = 1 + t2 , du = 2tdt, 4tdt = 2du Z 1 · 2du = 2 ln |u| = 2 ln |1 + t2 | = u R 2 µ(t) = e p(t)dt = e2 ln |1+t | = (1 + t2 )2 Z Z 1 µ(t)g(t)dt = dt = arctan t 1 + t2 arctan t + C y= 1 + t2 (c) (sin t)y 0 + (cos t)y = et cos t et y= Divide sin x from both sides: y + sin t sin t 0 et cos t , g(t) = p(t) = sin t Z sinZt Z cos t 1 p(t)dt = dt = d sin t = ln sin t sin t sin t R µ(t) = e p(t)dt = eln sin t = sin t Z Z Z et dt = et dt = et + C µ(t)g(t)dt = sin t · sin t et + C y= sin t 2. Find the solution of the following initial value problem, and describe its behavior for large t. 3 (a) y 0 + 3y = 3 + 10 cos t, y(0) = 0. p(t) = 3, g(t) = 3 + 10 cos t Z Z p(t)dt = 3dt = 3t R µ(t) = e p(t)dt = e3t Z Z Z Z 3t 3t µ(t)g(t)dt = e (3 + 10 cos t)dt = 3 e dt + 10 e3t cos tdt sin t + 3 cos t + C = e3t + sin t + 3 cos t + C 12 + 32 e3t + sin t + 3 cos t + C y= e3t = e3t + 10 · e0 + sin 0 + 3 cos 0 + C =0 e0 1 + 3 + C = 0 ⇒ C = −4 e3t + sin t + 3 cos t − 4 y= e3t π sin t , y − = 1, t < 0. (b) ty 0 + 2y = t 2 y(0) = 0, ⇒ 2 y0 + y = t 2 p(t) = , t Z sin t t2 sin t g(t) = 2 t Z 2 p(t)dt = dt = 2 ln t = ln t2 t R 2 µ(t) = e p(t)dt = eln t = t2 Z Z sin t µ(t)g(t)dt = t2 · 2 dt = − cos t + C t − cos t + C y= t2 π − cos − π2 + C = 1, ⇒ =1 y − 2 (π/2)2 π 2 ⇒ C= 2 − cos t + (π/2)2 y= t2 4 3. Solve the given differential equation. (a) y 0 = (1 − 2x)y 2 , y0 = 1 y(0) = − . 6 dy = (1 − 2x)y 2 dx dy = (1 − 2x)dx y2 Z Z 1 dy = (1 − 2x)dx y2 1 − = x − x2 + C y 1 1 y(0) = − ⇒ − = 0 − 02 + C 6 −(1/6) C=6 1 − = x − x2 + 6, implicit solution y 1 y=− , explicit solution x − x2 + 6 (b) y 2 (1 − x2 )1/2 dy = arcsin xdx, 1 dx = d arcsin x. y(0) = 1. Hint: √ 1 − x2 arcsin x y 2 dy = √ dx, ⇒ y 2 dy = arcsin xd arcsin x 2 1Z− x Z Z 2 y dy = arcsin xd arcsin x = udu, u = arcsin x y3 (arcsin x)2 = +C 3 2 (arcsin 1)2 13 = + C, y(0) = 1 ⇒ 3 2 1 π = +C 3 4 1 π C= − 3 4 arcsin(1) = 5 π 2
© Copyright 2026 Paperzz