1 S.I. OBSERVED TERM VALUES Table S.I summarizes the rotational term values for low-lying vibrational levels of the C̃ state of SO2 , observed by IR-UV double resonance in the current work. S.II. IR-UV INTERMEDIATES Table S.II provides an overview of the transitions that were excited in our typical IR pump schemes. 2 TABLE S.I. Term values (T /cm−1 ) of the rovibronic C̃-state levels observed in this work. For brevity, the first two digits are printed only in the first table entry for each vibrational level, and are understood to be appended to the remaining entries. 0 JK 0 0 a Kc T Ka0 = 0, e 000 42786.03 202 787.84 404 791.99 606 798.36 Ka0 000 202 404 606 = 0, e 43155.61 157.49 161.74 168.32 Ka0 = 0, e 000 43464.40 202 466.14 404 470.20 606 476.33 Ka0 = 0, e 000 43522.58 202 524.46 404 528.88 606 535.69 Ka0 = 0, e 000 43825.75 202 827.76 404 832.23 606 839.19 808 848.34 Ka0 = 0, e 000 43886.71 202 888.70 404 893.36 606 900.59 Ka0 = 0, e 000 43834.76 202 836.55 404 840.62 606 846.92 808 855.21 0 JK 0 0 a Kc T 0 JK 0 0 a Kc T Ka0 = 1, e Ka0 = 2, e 211 413 615 817 220 422 624 Ka0 211 413 615 788.80 793.32 800.35 809.77 = 1, e 158.46 163.02 170.12 Ka0 220 422 624 791.23 795.56 802.46 = 2, e 160.93 165.32 172.25 Ka0 = 1, e Ka0 = 2, e 211 413 615 817 220 422 624 467.14 471.58 478.45 487.68 469.54 473.78 480.57 0 JK 0 0 a Kc T 0 JK 0 0 a Kc T (0,0,1) Ka0 = 3, e Ka0 = 1, f 111 787.44 313 790.25 431 799.72 515 795.28 633 806.42 717 802.53 (0,1,1) = 3, e Ka0 = 1, f 111 157.05 313 160.00 431 169.59 515 165.21 633 176.40 717 172.74 (0,0,3) 0 Ka = 3, e Ka0 = 1, f 111 465.78 313 468.51 431 477.93 515 473.35 633 484.51 717 480.31 Ka0 Ka0 = 1, e Ka0 = 2, e (0,2,1) Ka0 = 3, e Ka0 = 1, f 111 524.04 313 527.09 431 536.78 515 532.54 633 543.79 717 540.37 (0,1,3) Ka0 = 3, e Ka0 = 1, f 111 827.24 313 830.44 515 836.01 717 843.88 835 857.22 919 853.94 (0,3,1) Ka0 = 3, e Ka0 = 1, f 111 888.22 313 891.52 431 901.33 515 897.41 717 905.73 (1,0,1) Ka0 = 3, e Ka0 = 4, e 211 413 615 817 220 422 624 826 431 633 835 Ka0 = 1, e Ka0 = 2, e 211 413 615 220 422 624 525.41 530.02 537.26 527.95 532.42 539.49 Ka0 = 1, e Ka0 = 2, e 211 413 615 817 220 422 624 826 828.66 833.36 840.70 850.53 831.05 835.80 843.06 852.85 Ka0 = 1, e Ka0 = 2, e 211 413 615 220 422 624 889.60 894.37 901.80 837.54 841.99 848.97 858.30 892.20 896.92 904.24 839.96 844.23 851.08 860.55 848.37 855.04 864.17 844 869.98 0 JK 0 0 a Kc T 0 JK 0 0 a Kc T 0 JK 0 0 a Kc T Ka0 = 2, f Ka0 = 3, f Ka0 = 4, f 322 524 726 331 533 735 744 793.05 798.48 806.28 797.27 802.74 810.71 Ka0 = 2, f Ka0 = 3, f 322 524 726 331 533 735 162.81 168.33 816.54 167.12 172.68 180.74 Ka0 = 2, f Ka0 = 3, f Ka0 = 4, f 322 524 726 331 533 735 744 471.32 476.61 484.22 475.60 480.94 488.65 Ka0 = 2, f Ka0 = 3, f 322 524 726 331 533 735 529.85 535.59 543.77 534.24 539.95 548.21 Ka0 = 2, f Ka0 = 3, f 322 524 726 928 331 533 735 833.11 839.06 847.38 858.01 837.13 843.56 852.07 Ka0 = 2, f Ka0 = 3, f 322 524 726 331 533 735 894.27 900.25 908.80 Ka0 = 1, f 111 836.16 313 838.93 515 843.89 717 850.99 919 860.16 494.59 898.61 904.70 913.37 Ka0 = 2, f Ka0 = 3, f 322 524 726 928 331 533 735 841.72 847.08 854.79 864.78 846.00 851.41 859.22 3 TABLE S.I. (continued) 0 JK 0 0 a Kc T Ka0 = 0, e 000 44169.21 202 170.89 404 174.62 606 180.08 Ka0 = 1, e 212 43821.13 414 824.40 616 829.49 818 836.54 a 0 JK 0 0 a Kc T 0 JK 0 0 a Kc T Ka0 = 1, e Ka0 = 2, e 211 413 615 817 220 422 624 171.96 176.26 182.88 191.56 Ka0 = 2, e 221 823.96 423 827.71 625 833.55 827 841.49 174.36 178.38 184.91 Ka0 = 3, e 432 634 836 831.95 837.93 0 JK 0 0 a Kc T 0 JK 0 0 a Kc T (0,0,5) Ka0 = 3, e 431 633 182.50 188.59 (0,0,4) Ka0 = 0, f Ka0 = 1, f 101 819.45a 110 820.39a 303 822.07 312 823.46a 505 826.50 514 828.85 707 832.70 716 836.41 909 840.78 918 845.91 0 JK 0 0 a Kc T 0 JK 0 0 a Kc T 0 JK 0 0 a Kc T Ka0 = 1, f 111 170.59 313 173.05 515 177.39 717 183.49 Ka0 = 2, f Ka0 = 3, f 322 524 726 331 533 735 Ka0 = 2, f Ka0 = 3, f Ka0 = 4, f 321 523 725 330 532 734 936 541 743 825.66 830.94 838.88 176.02 180.94 187.96 829.85 834.71 842.15 852.32 180.29 185.47 192.70 840.42 847.47 Ref. 6. TABLE S.II. Because the IR laser has a bandwidth of ∼0.1 cm−1 , it was possible to observe double resonance simultaneously from lower levels with a range of Ka . The a-type IR transitions within the bandwidth of the nominal IR pump were typically such that we could populate levels with Ka = 1–3 simultaneously. We use the P, Q, R notation ∆Ka ∆JKa00 (J 00 ) to label rovibrational transitions. (We omit Kc because it is constrained by the nuclear spin statistics.) Nominal IR Pump P(2) R(1) R(2) R(3) R(4) R(5) R(6) R(7) Transitions within the IR bandwidth (frequencies/cm−1 ) q P0 (2)(2498.59) q P1 (2)(2498.52) q R1 (1)(2501.06) q R0 (2)(2501.75) q R1 (2)(2501.81) q R2 (2)(2501.69) q R1 (3)(2502.25) q R2 (3)(2502.30) q R3 (3)(2502.22) q q R0 (4)(2502.96) R1 (4)(2503.08) q R2 (4)(2502.93) q R3 (4)(2502.83) q R1 (5)(2503.41) q R2 (5)(2503.51) q R3 (5)(2503.44) q q R0 (6)(2504.12) R1 (6)(2504.32) q R2 (6)(2504.17) q R3 (6)(2504.04) q R1 (7)(2504.54) q R2 (7)(2504.70) q R3 (7)(2504.64)
© Copyright 2026 Paperzz