1 Table SI summarizes the rotational term values

1
S.I.
OBSERVED TERM VALUES
Table S.I summarizes the rotational term values for
low-lying vibrational levels of the C̃ state of SO2 , observed by IR-UV double resonance in the current work.
S.II.
IR-UV INTERMEDIATES
Table S.II provides an overview of the transitions that
were excited in our typical IR pump schemes.
2
TABLE S.I. Term values (T /cm−1 ) of the rovibronic C̃-state levels observed in this work. For brevity, the first two digits are
printed only in the first table entry for each vibrational level, and are understood to be appended to the remaining entries.
0
JK
0
0
a Kc
T
Ka0 = 0, e
000 42786.03
202
787.84
404
791.99
606
798.36
Ka0
000
202
404
606
= 0, e
43155.61
157.49
161.74
168.32
Ka0 = 0, e
000 43464.40
202
466.14
404
470.20
606
476.33
Ka0 = 0, e
000 43522.58
202
524.46
404
528.88
606
535.69
Ka0 = 0, e
000 43825.75
202
827.76
404
832.23
606
839.19
808
848.34
Ka0 = 0, e
000 43886.71
202
888.70
404
893.36
606
900.59
Ka0 = 0, e
000 43834.76
202
836.55
404
840.62
606
846.92
808
855.21
0
JK
0
0
a Kc
T
0
JK
0
0
a Kc
T
Ka0 = 1, e
Ka0 = 2, e
211
413
615
817
220
422
624
Ka0
211
413
615
788.80
793.32
800.35
809.77
= 1, e
158.46
163.02
170.12
Ka0
220
422
624
791.23
795.56
802.46
= 2, e
160.93
165.32
172.25
Ka0 = 1, e
Ka0 = 2, e
211
413
615
817
220
422
624
467.14
471.58
478.45
487.68
469.54
473.78
480.57
0
JK
0
0
a Kc
T
0
JK
0
0
a Kc
T
(0,0,1)
Ka0 = 3, e
Ka0 = 1, f
111 787.44
313 790.25
431 799.72 515 795.28
633 806.42 717 802.53
(0,1,1)
= 3, e
Ka0 = 1, f
111 157.05
313 160.00
431 169.59 515 165.21
633 176.40 717 172.74
(0,0,3)
0
Ka = 3, e
Ka0 = 1, f
111 465.78
313 468.51
431 477.93 515 473.35
633 484.51 717 480.31
Ka0
Ka0 = 1, e
Ka0 = 2, e
(0,2,1)
Ka0 = 3, e
Ka0 = 1, f
111 524.04
313 527.09
431 536.78 515 532.54
633 543.79 717 540.37
(0,1,3)
Ka0 = 3, e
Ka0 = 1, f
111 827.24
313 830.44
515 836.01
717 843.88
835 857.22 919 853.94
(0,3,1)
Ka0 = 3, e
Ka0 = 1, f
111 888.22
313 891.52
431 901.33 515 897.41
717 905.73
(1,0,1)
Ka0 = 3, e
Ka0 = 4, e
211
413
615
817
220
422
624
826
431
633
835
Ka0 = 1, e
Ka0 = 2, e
211
413
615
220
422
624
525.41
530.02
537.26
527.95
532.42
539.49
Ka0 = 1, e
Ka0 = 2, e
211
413
615
817
220
422
624
826
828.66
833.36
840.70
850.53
831.05
835.80
843.06
852.85
Ka0 = 1, e
Ka0 = 2, e
211
413
615
220
422
624
889.60
894.37
901.80
837.54
841.99
848.97
858.30
892.20
896.92
904.24
839.96
844.23
851.08
860.55
848.37
855.04
864.17
844
869.98
0
JK
0
0
a Kc
T
0
JK
0
0
a Kc
T
0
JK
0
0
a Kc
T
Ka0 = 2, f
Ka0 = 3, f
Ka0 = 4, f
322
524
726
331
533
735
744
793.05
798.48
806.28
797.27
802.74
810.71
Ka0 = 2, f
Ka0 = 3, f
322
524
726
331
533
735
162.81
168.33
816.54
167.12
172.68
180.74
Ka0 = 2, f
Ka0 = 3, f
Ka0 = 4, f
322
524
726
331
533
735
744
471.32
476.61
484.22
475.60
480.94
488.65
Ka0 = 2, f
Ka0 = 3, f
322
524
726
331
533
735
529.85
535.59
543.77
534.24
539.95
548.21
Ka0 = 2, f
Ka0 = 3, f
322
524
726
928
331
533
735
833.11
839.06
847.38
858.01
837.13
843.56
852.07
Ka0 = 2, f
Ka0 = 3, f
322
524
726
331
533
735
894.27
900.25
908.80
Ka0 = 1, f
111 836.16
313 838.93
515 843.89
717 850.99
919 860.16
494.59
898.61
904.70
913.37
Ka0 = 2, f
Ka0 = 3, f
322
524
726
928
331
533
735
841.72
847.08
854.79
864.78
846.00
851.41
859.22
3
TABLE S.I. (continued)
0
JK
0
0
a Kc
T
Ka0 = 0, e
000 44169.21
202
170.89
404
174.62
606
180.08
Ka0 = 1, e
212 43821.13
414
824.40
616
829.49
818
836.54
a
0
JK
0
0
a Kc
T
0
JK
0
0
a Kc
T
Ka0 = 1, e
Ka0 = 2, e
211
413
615
817
220
422
624
171.96
176.26
182.88
191.56
Ka0 = 2, e
221 823.96
423 827.71
625 833.55
827 841.49
174.36
178.38
184.91
Ka0 = 3, e
432
634
836
831.95
837.93
0
JK
0
0
a Kc
T
0
JK
0
0
a Kc
T
(0,0,5)
Ka0 = 3, e
431
633
182.50
188.59
(0,0,4)
Ka0 = 0, f
Ka0 = 1, f
101 819.45a 110 820.39a
303 822.07 312 823.46a
505 826.50 514 828.85
707 832.70 716 836.41
909 840.78 918 845.91
0
JK
0
0
a Kc
T
0
JK
0
0
a Kc
T
0
JK
0
0
a Kc
T
Ka0 = 1, f
111 170.59
313 173.05
515 177.39
717 183.49
Ka0 = 2, f
Ka0 = 3, f
322
524
726
331
533
735
Ka0 = 2, f
Ka0 = 3, f
Ka0 = 4, f
321
523
725
330
532
734
936
541
743
825.66
830.94
838.88
176.02
180.94
187.96
829.85
834.71
842.15
852.32
180.29
185.47
192.70
840.42
847.47
Ref. 6.
TABLE S.II. Because the IR laser has a bandwidth of ∼0.1 cm−1 , it was possible to observe double resonance simultaneously
from lower levels with a range of Ka . The a-type IR transitions within the bandwidth of the nominal IR pump were typically
such that we could populate levels with Ka = 1–3 simultaneously. We use the P, Q, R notation ∆Ka ∆JKa00 (J 00 ) to label
rovibrational transitions. (We omit Kc because it is constrained by the nuclear spin statistics.)
Nominal
IR Pump
P(2)
R(1)
R(2)
R(3)
R(4)
R(5)
R(6)
R(7)
Transitions within the IR bandwidth (frequencies/cm−1 )
q
P0 (2)(2498.59) q P1 (2)(2498.52)
q
R1 (1)(2501.06)
q
R0 (2)(2501.75) q R1 (2)(2501.81) q R2 (2)(2501.69)
q
R1 (3)(2502.25) q R2 (3)(2502.30) q R3 (3)(2502.22)
q
q
R0 (4)(2502.96) R1 (4)(2503.08) q R2 (4)(2502.93) q R3 (4)(2502.83)
q
R1 (5)(2503.41) q R2 (5)(2503.51) q R3 (5)(2503.44)
q
q
R0 (6)(2504.12) R1 (6)(2504.32) q R2 (6)(2504.17) q R3 (6)(2504.04)
q
R1 (7)(2504.54) q R2 (7)(2504.70) q R3 (7)(2504.64)