RECOGNIZING CONVEX BLOBS by J . Sklansky University of California Irvine, California 92664 Abstract we develop blobs. In t i o n o f the intuitive. Because o f t h e d i s c r e t e n a t u r e o f t h e memory and l o g i c o f a d i g i t a l c o m p u t e r , a d i g i t a l com p u t e r " s e e s " p i c t u r e s i n c e l l u l a r f o r m , each c e l l c o n t a i n i n g a number t h a t r e p r e s e n t s t h e d e n s i t y o f the viewed o b j e c t a t t h a t c e l l . In p a r t i c u l a r , when t h e p i c t u r e i s b i n a r y , e a c h c e l l h o l d s a 1 or 0, depending on whether or n o t t h e viewed object is p r o j e c t e d onto that c e l l . The convexity of c e l l u l a r blobs - i . e . , binary singly c o n n e c t e d c e l l u l a r f i g u r e s - i s d i s c u s s e d and d e f i n e d in terms of the continuous blobs of which the c e l l u l a r blobs are images. the elements of a theory of convex the I n t e r e s t o f b r e v i t y , the p r e s e n t a theory i s p a r t l y nonrigorous and For r i g o r o u s p r o o f s , see Reference 4. Statement of the Problem A f i g u r e i s d e f i n e d t o b e convex i f i t con t a i n s the l i n e segment t h a t j o i n s any two p o i n t s o f the f i g u r e . Otherwise the f i g u r e i s concave. A t h e o r y o f convex c e l l u l a r b l o b s i s s k e t c h e d , and t h e u s e o f t h e " m i n i m u m - p e r i m e t e r p o l y g o n " i n an a l g o r i t h m f o r t e s t i n g the convexity of c e l l u l a r blobs is described. Introduction I n d e s i g n i n g o r programming d i g i t a l machines to recognize two-dimensional connected o b j e c t s , one i s o f t e n c o n c e r n e d w i t h t h e g e o m e t r i c p r o p e r t i e s of the presented o b j e c t s . Examples o f s u c h p r o p e r t i e s are convexity, elongatedness, t h r e e lobedness, e t c . Consider the c e l l u l a r blobs i l l u s t r a t e d i n Figure 2. I n t u i t i o n t e l l s us t h a t Blob A is a c e l l u l a r image of a convex o b j e c t , and t h a t Blob B is a c e l l u l a r image of a concave o b j e c t . Blob A, considered as a continuous f i g u r e , is c l e a r l y concave, as shown by the d o t t e d l i n e . Hence we need t o f i n d a r e a s o n a b l e , i n t u i t i v e l y s a t i s f y i n g d e f i n i t i o n o f "convex c e l l u l a r b l o b . " The proper t i e s we b e l i e v e such a d e f i n i t i o n must have are discussed in the next two paragraphs. We t h i n k of " c o n v e x i t y " as a form of "smooth n e s s . " I . e . , the more convex an o b j e c t i s , the smoother it i s . When we ask whether a c e l l u l a r image J is convex or concave, we are t h e r e f o r e ask i n g whether the smoothest o b j e c t q, such t h a t I ( q ) ■ J, is convex or concave, where l a r image of q. Thus if we can f i n d any plane f i g u r e , say r, such t h a t I ( r ) - J and such t h a t r i s convex, then a l l o b j e c t s smoother than r , say such t h a t w i l l a l s o b e convex. The p r o p e r t i e s o f c o n t i n u o u s c o n v e x f i g u r e s a r e w e l l d e f i n e d and u n d e r s t o o d 1 . But a computer " s e e s " these o b j e c t s in the form of c e l l u l a r r a t h e r t h a n c o n t i n u o u s i m a g e s , each c e l l h o l d i n g a number t h a t r e p r e s e n t s t h e o b j e c t ' s p r o j e c t i o n into that c e l l . Hence i t i s i m p o r t a n t a ) t o d e f i n e r i g o r o u s l y the geometric properties of c e l l u l a r blobs in terms of the continuous o b j e c t s of which the c e l l u l a r b l o b s a r e i m a g e s , and b ) t o d e v e l o p a l gorithms that t e s t c e l l u l a r blobs f o r these properties. I n t h i s paper w e r e s t r i c t our a t t e n t i o n t o two-dimensional binary objects or "blobs", i . e . , b l a c k f i g u r e s o n a w h i t e b a c k g r o u n d , and t o b i n a r y c e l l u l a r "images" o f these o b j e c t s , i . e . , l ' s on a background of 0 ' s . A cell holding a 1 r e p r e s e n t s a nonempty p r o j e c t i o n o f t h e o b j e c t i n t o the c e l l . Two e x a m p l e s o f c o n t i n u o u s b i n a r y o b j e c t s a r e shown i n F i g u r e 1 . F i g u r e 2 shows how t h e s e o b j e c t s a r e u s u a l l y s e e n b y a d i g i t a l computer. I n t h i s f i g u r e t h e c e l l u l a r images a r e arranged on a r e c t a n g u l a r mosaic. Other mosaics, such as h e x a g o n a l or i r r e g u l a r m o s a i c s , a r e a l s o possible. W e d e s c r i b e t h e p r o b l e m o f d e f i n i n g and t e s t i n g c o n v e x i t y o f bounded c e l l u l a r b l o b s , and w e present a s o l u t i o n . In p r e s e n t i n g our s o l u t i o n , This leads us to the f o l l o w i n g p r e l i m i n a r y d e f i n i t i o n of c e l l u l a r convexity: A c e l l u l a r blob i s convex i f and only i f t h e r e e x i s t s a t l e a s t one convex f i g u r e r of which the g i v e n c e l l u l a r blob is an image. Searching f o r such an r is not a p r a c t i c a l t e s t f o r c o n v e x i t y , however, because even a f t e r an i n d e f i n i t e l y long u n s u c c e s s f u l search such an r may s t i l l e x i s t . What we need is an a l g o r i t h m f o r c o n s t r u c t i n g an o b j e c t p, such t h a t I ( p ) ■ J, and such t h a t if p is concave then every other o b j e c t whose image is J w i l l n e c e s s a r i l y be concave, t o o . We show in Theorems 1 to 3 t h a t the "minimump e r i m e t e r p o l y g o n " answers t h i s need. Unger's a l g o r i t h m s f o r d e t e c t i n g " v e r t i c a l con c a v i t y " and " h o r i z o n t a l c o n c a v i t y " are the c l o s e s t known e a r l i e r approaches to the d e t e c t i o n of convex cellular b l o b s . I t i s easy, however, t o draw a concave b l o b t h a t i s v e r t i c a l l y convex and h o r i z o n t a l l y convex. Such a blob is shown in F i g . 3. The d o t t e d l i n e shows t h a t t h i s blob is concave. -107- Elements of the Theory of C e l l u l a r Blobs Elementary Concepts of Plane Figures A simple curve is d e f i n e d i n t u i t i v e l y as the curve o b t a i n e d from the continuous motion of a p o i n t on a p l a n e , such t h a t the path of the p o i n t never crosses or becomes tangent to i t s e l f , except p o s s i b l y when the path r e e n t e r s i t s e l f . A simple c l o s e d curve is a simple curve which r e e n t e r s its e l f . A simple curve may be bounded or unbounded at either of i t s "ends." (For r i g o r o u s d e f i n i t i o n s o f these e n t i t i e s , see A l e x a n d r o v 1 . ) If the d i s t a n c e of p r e c i s e l y one of a simple c u r v e ' s ends from the p l a n e ' s o r i g i n i s i n f i n i t e , the curve i s s i n g l y unbounded; i f both o f a simple c u r v e ' s ends are i n f i n i t e l y d i s t a n t from the o r i g i n , the curve i s doubly unbounded. A plane f i g u r e , o r simply a f i g u r e , i s d e f i n ed here as a s e t of p o i n t s f having the f o l l o w i n g properties. 1. f l i e s i n a plane 2. f 3. f c o n t a i n s a simple curve c which is e i t h e r closed or doubly unbounded f c o n t a i n s the i n t e r i o r of c f c o n t a i n s no p o i n t of the e x t e r i o r of c 4. 5. = , where is t h e empty s e t Curve c is the boundary of f. We u s u a l l y r e p r e s e n t a f i g u r e by a lower case c h a r a c t e r , such as p, q, r. A f i g u r e i s bounded i f i t l i e s e n t i r e l y w i t h i n some c i r c l e o f f i n i t e d i a m e t e r . Thus q u a d r i l a t e r a l s and e l l i p s e s are bounded f i g u r e s . A b l o b is any bounded f i g u r e . Note t h a t if a f i g u r e i s bounded, i t s boundary must b e c l o s e d . A s e t o f p o i n t s s i s connected i f i t i s nonempty and i f every p a i r o f p o i n t s i n s i s c o n t a i n ed in a simple curve b e l o n g i n g e n t i r e l y to s. A s e t o f p o i n t s i s simply connected i f i t i s connect ed and if t h e r e e x i s t s no f i g u r e f whose boundary l i e s i n s , b u t some p o i n t i n f does not l i e i n s . Note t h a t every f i g u r e , a s w e have d e f i n e d i t , i s simply connected, A polygon is a f i g u r e whose boundary c o n t a i n s o n l y s t r a i g h t l i n e segments. Thus, i n t h i s paper, a r e c t a n g l e is a p o l y g o n , but a q u a d r i l a t e r i a l w i t h a p a i r o f i n t e r s e c t i n g o p p o s i t e sides i s n o t . The v e r t e x angle of a polygon is the i n t e r i o r angle between two adjacent edges of the p o l y g o n . Note t h a t a v e r t e x angle l i e s in one of the open intervals (0,TT), (TT, 2TT) . As a consequence of the d e f i n i t i o n of con v e x i t y , a polygon i s convex i f and o n l y i f each of i t s v e r t e x angles is l e s s than TT r a d i a n s . Hence every t r i a n g l e is convex. The above obser v a t i o n s lead t o the f o l l o w i n g d e f i n i t i o n s . A v e r t e x o f a polygon i s a convex v e r t e x i f i t s v e r t e x angle i s l e s s than I T r a d i a n s ; i t i s a concave v e r t e x if i t s v e r t e x angle exceeds TT r a d i a n s . A c e l l u l a r mosaic* is a set of bounded convex f i g u r e s ( c } , c a l l e d c e l l s , such t h a t either o r p a r t o f the boundary o f c for a l l i, j , and such t h a t the union o f a l l the c e l l s covers the e n t i r e p l a n e . A c e l l u l a r mosaic i s i l l u s t r a t e d i n F i g u r e 4 . An a r r a y of c e l l s which is somewhat l i k e a c e l l u l a r mosaic, but which v i o l a t e s the c o n v e x i t y r e quirement, i s shown i n F i g u r e 5 . Let denote c e l l s i n a c e l l u l a r mosaic, q is a neighbor of p if is a curve of non zero l e n g t h . It can be shown t h a t t h i s curve must be a s t r a i g h t l i n e segment. Hence every c e l l of a c e l l u l a r mosaic is a convex p o l y g o n . A c e l l u l a r map is a nonempty subset of c e l l s of a c e l l u l a r mosaic. A c e l l u l a r map may c o n s i s t of j u s t one c e l l . Note t h a t a c e l l u l a r map need not be connected, bounded or convex. A chain is a sequence of c e l l s each of which i s a neighbor o f i t s predecessor, i t s successor, or b o t h . A c e l l u l a r map J i s chained i f i t i s non empty, and i f f o r every p a i r o f c e l l s ( a , b ) i n J t h e r e e x i s t s a c h a i n b e l o n g i n g e n t i r e l y to J and c o n t a i n i n g c e l l s a and b. Note t h a t if the boun dary of the u n i o n of the elements of a c e l l u l a r map J is a simple closed c u r v e , then J is c h a i n e d . A c e l l u l a r map J is the c e l l u l a r image, or b r i e f l y the image, o f a f i g u r e p i f and o n l y i f a) the union of the members of J c o n t a i n s p, and b) every member of J c o n t a i n i n g an e x t e r i o r p o i n t of p a l s o c o n t a i n s a boundary p o i n t of p. We use the n o t a t i o n I ( p ) t o denote t h e c e l l u l a r image o f P. The degree of a polygon is the number of sides it h a s . A minimum-degree polygon of a c e l l u l a r image J is any polygon p such t h a t I ( p ) = J, and such t h a t t h e r e e x i s t s no polygon q whose degree is l e s s than t h a t of p and such t h a t i C q ^ J . A minimum p e r i m e t e r polygon of J is any p o l y on p such t h a t I ( p ) = J, and such t h a t t h e r e e x i s t s no polygon q whose p e r i m e t e r is l e s s than t h a t of p and such t h a t The c e l l u l a r e x t e r i o r of a c e l l u l a r f i g u r e J i s the set c o n s i s t i n g o f a l l c e l l s not i n J . J denotes the c e l l e x t e r i o r o f J . boundary o f the u n i o n o f a l l c e l l s o f J . C l e a r l y LJ is the boundary of a p o l y g o n , s i n c e every c e l l of J is a p o l y g o n . At each v e r t e x of feJ draw a c i r c l e of r a d i u s e, w i t h e s u f f i c i e n t l y s m a l l s o t h a t the c i r c l e i n t e r s e c t s o n l y the s i d e s forming the v e r t e x . Replace every corner of * A c e l l u l a r mosaic i s s i m i l a r , b u t not i d e n t i c a l t o , a " t o p o l o g i c a l complex."1 -108- -109- -110- F i g . 3. A concave blob t h a t Is both v e r t i c a l l y convex and h o r i z o n t a l l y convex -112- F i g . 5. An array of c e l l s which v i o l a t e s the convexity requirement of a c e l l u l a r mosaic >114- F i g . 6. The minimum p e r i m e t e r p o l y g o n i n a concave c e l l u l a r b l o b -115- Fig. 7. R e l a t i o n s h i p s among v a r i o u s c l a s s e s o f f i g u r e s and t h e i r c e l l u l a r images -116-
© Copyright 2026 Paperzz