Section 3.3 Divided Differences

3.3 Divided Differences
1
Representing 𝑛th Lagrange Polynomial
β€’ If 𝑃𝑛 π‘₯ is the 𝑛th degree Lagrange interpolating
polynomial that agrees with 𝑓 π‘₯ at the points
{π‘₯0 , π‘₯1 , … , π‘₯𝑛 }, express 𝑃𝑛 π‘₯ in the form:
𝑃𝑛 π‘₯ =
π‘Ž0 + π‘Ž1 π‘₯ βˆ’ π‘₯0 + π‘Ž2 π‘₯ βˆ’ π‘₯0 π‘₯ βˆ’ π‘₯1 + β‹― +
π‘Žπ‘› π‘₯ βˆ’ π‘₯0 π‘₯ βˆ’ π‘₯1 π‘₯ βˆ’ π‘₯2 … π‘₯ βˆ’ π‘₯π‘›βˆ’1
β€’ ? How to find constants π‘Ž0 ,…, π‘Žπ‘› ?
2
Divided Differences
β€’ Zeroth divided difference:
𝑓 π‘₯𝑖 = 𝑓(π‘₯𝑖 )
β€’ First divided difference:
𝑓 π‘₯𝑖+1 βˆ’ 𝑓 π‘₯𝑖
𝑓 π‘₯𝑖 , π‘₯𝑖+1 =
π‘₯𝑖+1 βˆ’ π‘₯𝑖
β€’ Second divided difference:
𝑓 π‘₯𝑖+1 , π‘₯𝑖+2 βˆ’ 𝑓 π‘₯𝑖 , π‘₯𝑖+1
𝑓 π‘₯𝑖 , π‘₯𝑖+1 , π‘₯𝑖+2 =
π‘₯𝑖+2 βˆ’ π‘₯𝑖
β€’ π‘˜th divided difference:
𝑓 π‘₯𝑖 , π‘₯𝑖+1 , … , π‘₯𝑖+π‘˜
𝑓 π‘₯𝑖+1 , π‘₯𝑖+2 , … , π‘₯𝑖+π‘˜ βˆ’ 𝑓 π‘₯𝑖 , π‘₯𝑖+1 , … , π‘₯𝑖+π‘˜βˆ’1
=
π‘₯𝑖+π‘˜ βˆ’ π‘₯𝑖
3
β€’ Finding constants π‘Ž0 ,…, π‘Žπ‘› .
1. π‘₯ = π‘₯0 : π‘Ž0 = 𝑃𝑛 π‘₯0 = 𝑓 π‘₯0 = 𝑓 π‘₯0
2. π‘₯ = π‘₯1 : 𝑓 π‘₯0 + π‘Ž1 π‘₯1 βˆ’ π‘₯0 = 𝑃𝑛 π‘₯1 =
𝑓 π‘₯1
𝑓 π‘₯1 βˆ’ 𝑓 π‘₯0
⟹ π‘Ž1 =
= 𝑓 π‘₯0 , π‘₯1
π‘₯1 βˆ’ π‘₯0
3. In general: π‘Žπ‘˜ = 𝑓 π‘₯0 , π‘₯1 , … , π‘₯π‘˜ for π‘˜ = 0, … , 𝑛
4
Newton’s Interpolatory Divided Difference Formula
𝑃𝑛 π‘₯
= 𝑓 π‘₯0 + 𝑓 π‘₯0 , π‘₯1 π‘₯ βˆ’ π‘₯0
+ 𝑓 π‘₯0 , π‘₯1 , π‘₯2 π‘₯ βˆ’ π‘₯0 π‘₯ βˆ’ π‘₯1 + β‹―
+ 𝑓 π‘₯0 , … , π‘₯𝑛 π‘₯ βˆ’ π‘₯0 π‘₯ βˆ’ π‘₯1 … (π‘₯ βˆ’ π‘₯π‘›βˆ’1 )
Or
𝑃𝑛 π‘₯
= 𝑓 π‘₯0
𝑛
+
[𝑓[π‘₯0 , … , π‘₯π‘˜ ] π‘₯ βˆ’ π‘₯0 … (π‘₯ βˆ’ π‘₯π‘˜βˆ’1 )]
π‘˜=1
5
Table for Computing
…
6
Algorithm: Newton’s Divided Differences
Input: π‘₯0 , 𝑓 π‘₯0 , π‘₯1 , 𝑓 π‘₯1 , … , π‘₯𝑛 , 𝑓 π‘₯𝑛
Output: Divided differences 𝐹0,0 , … , 𝐹𝑛,𝑛
//comment: 𝑃𝑛 π‘₯ = 𝐹0,0 +
𝑛
𝑖=1[𝐹𝑖,𝑖
Step 1: For 𝑖 = 0, … , 𝑛
set 𝐹𝑖,0 = 𝑓(π‘₯𝑖 )
Step 2: For 𝑖 = 1, … , 𝑛
For 𝑗 = 1, … , 𝑖
set 𝐹𝑖,𝑗 =
π‘₯ βˆ’ π‘₯0 … (π‘₯ βˆ’ π‘₯π‘–βˆ’1 )]
𝐹𝑖,π‘—βˆ’1 βˆ’πΉπ‘–βˆ’1,π‘—βˆ’1
π‘₯𝑖 βˆ’π‘₯π‘–βˆ’π‘—
End
End
Output(𝐹0,0 ,…𝐹𝑖,𝑖 ,…,𝐹𝑛,𝑛 )
STOP.
7
Theorem. Suppose that 𝑓 ∈ 𝐢 𝑛 [π‘Ž, 𝑏] and
π‘₯0 , π‘₯1 , … , π‘₯𝑛 are distinct numbers in [π‘Ž, 𝑏]. Then
βˆƒπœ‰ ∈ π‘Ž, 𝑏 with 𝑓 π‘₯0 , … , π‘₯𝑛 =
𝑓 𝑛 (πœ‰)
.
𝑛!
Remark: When 𝑛 = 1, it’s just the Mean Value
Theorem.
8
Example. 1) Complete the following divided difference
table. 2) Find the interpolating polynomial.
9