3.3 Divided Differences
1
Representing πth Lagrange Polynomial
β’ If ππ π₯ is the πth degree Lagrange interpolating
polynomial that agrees with π π₯ at the points
{π₯0 , π₯1 , β¦ , π₯π }, express ππ π₯ in the form:
ππ π₯ =
π0 + π1 π₯ β π₯0 + π2 π₯ β π₯0 π₯ β π₯1 + β― +
ππ π₯ β π₯0 π₯ β π₯1 π₯ β π₯2 β¦ π₯ β π₯πβ1
β’ ? How to find constants π0 ,β¦, ππ ?
2
Divided Differences
β’ Zeroth divided difference:
π π₯π = π(π₯π )
β’ First divided difference:
π π₯π+1 β π π₯π
π π₯π , π₯π+1 =
π₯π+1 β π₯π
β’ Second divided difference:
π π₯π+1 , π₯π+2 β π π₯π , π₯π+1
π π₯π , π₯π+1 , π₯π+2 =
π₯π+2 β π₯π
β’ πth divided difference:
π π₯π , π₯π+1 , β¦ , π₯π+π
π π₯π+1 , π₯π+2 , β¦ , π₯π+π β π π₯π , π₯π+1 , β¦ , π₯π+πβ1
=
π₯π+π β π₯π
3
β’ Finding constants π0 ,β¦, ππ .
1. π₯ = π₯0 : π0 = ππ π₯0 = π π₯0 = π π₯0
2. π₯ = π₯1 : π π₯0 + π1 π₯1 β π₯0 = ππ π₯1 =
π π₯1
π π₯1 β π π₯0
βΉ π1 =
= π π₯0 , π₯1
π₯1 β π₯0
3. In general: ππ = π π₯0 , π₯1 , β¦ , π₯π for π = 0, β¦ , π
4
Newtonβs Interpolatory Divided Difference Formula
ππ π₯
= π π₯0 + π π₯0 , π₯1 π₯ β π₯0
+ π π₯0 , π₯1 , π₯2 π₯ β π₯0 π₯ β π₯1 + β―
+ π π₯0 , β¦ , π₯π π₯ β π₯0 π₯ β π₯1 β¦ (π₯ β π₯πβ1 )
Or
ππ π₯
= π π₯0
π
+
[π[π₯0 , β¦ , π₯π ] π₯ β π₯0 β¦ (π₯ β π₯πβ1 )]
π=1
5
Table for Computing
β¦
6
Algorithm: Newtonβs Divided Differences
Input: π₯0 , π π₯0 , π₯1 , π π₯1 , β¦ , π₯π , π π₯π
Output: Divided differences πΉ0,0 , β¦ , πΉπ,π
//comment: ππ π₯ = πΉ0,0 +
π
π=1[πΉπ,π
Step 1: For π = 0, β¦ , π
set πΉπ,0 = π(π₯π )
Step 2: For π = 1, β¦ , π
For π = 1, β¦ , π
set πΉπ,π =
π₯ β π₯0 β¦ (π₯ β π₯πβ1 )]
πΉπ,πβ1 βπΉπβ1,πβ1
π₯π βπ₯πβπ
End
End
Output(πΉ0,0 ,β¦πΉπ,π ,β¦,πΉπ,π )
STOP.
7
Theorem. Suppose that π β πΆ π [π, π] and
π₯0 , π₯1 , β¦ , π₯π are distinct numbers in [π, π]. Then
βπ β π, π with π π₯0 , β¦ , π₯π =
π π (π)
.
π!
Remark: When π = 1, itβs just the Mean Value
Theorem.
8
Example. 1) Complete the following divided difference
table. 2) Find the interpolating polynomial.
9
© Copyright 2026 Paperzz