! "#$%&'(#)*+,&! -#+*+,#.! *./! 01+2./2/!3#.*$,+%! ! 45'*.!"5') ! "#$%&'(#)*+,&!-#+*+,#.!*./!01+2./2/!3#.*$,+%! "#$%&'(#)*+,&!-#+*+,#.!*./!01+2./2/!3#.*$,+%! Our common notational system has had a very long evolution. Not only does it store and convey information but we can also use it to understand the theoretical and acoustic foundations of our musical system. Pitch, key, rhythm, performance instructions and so on, are all captured upon the page. It is easy to point out certain notational shortcomings, but with enough clever manipulations we can usually make our intent clear enough. The exact rhythm and pitch inflection of say spoken or sung text however is almost impossible to capture accurately, which comes down to a simple maxim; if it is possible to notate the subtle complexities of say, spoken or sung text or a free improvisation, it would also be almost impossible to read and realize it. Notationally we can sketch an outline and our musical sense will realize what is missing. For some music, say keyboard music, our notational system is excellent. For other music, like a free solo improvisation or a musical recitation, the challenges to capture or compose such are very difficult. As well there are not many notational alternatives. Overall though, our notational system is excellent, concise and clear and it has carried well the burdens put upon it through time. 12 Notes per Octave We have a complete notational system for 12 notes per octave. Between naturals, sharps, flats, double sharps and flats we have no less than 35 possible ways to notate the 12 pitches of the octave. Each pitch can be written in three possible ways except G#/Ab. For example, the three enharmonic pitches of C are C, B# and Dbb. We draw the line at triple sharps and flats. We nowadays don’t think much of the difference between say G# and Ab, but historically that has not always been the case. In Meantone Temperaments, G# and Ab are distinct pitches, to the point that organs and harpsichords could have one or more split keys. Though most historical instruments split only a few keys, on rare instruments there can be up to 19 or even 21 keys per octave. The demands on the performer and instrument maker can though become unrealistic. This is dealt with in depth in the chapter on Equal Meantone Temperaments. As tuning systems evolved through Well-Temperament to Equal Temperament it became possible to modulate out through the sharps and back through the flats or visa-versa. While we only have 12 notes to the octave there are 15 major and 15 minor keys. Three major keys can be written in two different ways; B/Cb, F#/Gb and C#/Db, as well as three minor keys; G#m/Abm, D#m/Ebm and A#m/Bbm. And so we need now as well a number of double sharps and flats to realize these keys. Every new set of musical demands, for example microtonal fluctuation, requires a new set of symbols but the underlying system of 7 letter names with sharps and flats remains unaltered. The diatonic scale and by extension the chromatic scale are almost more laws of nature than humanly created and so are universal across all cultures no matter how remote in geography or time. And if the 12 notes in the octave are pretty much a law of nature is our beginning also our end? Every relation of every degree of the chromatic scale to every other degree has by now been thoroughly explored and exhausted. But it is obvious to anyone that music does evolve. In what way does it evolve then? Largely it evolves through the creation of new machines and the subtle tuning systems inherent to them. The piano and electric guitar are both machines that evolved out of what came before them and the current state of technology that they were created in. Yet the overall system of 12 chromatic notes to the octave remains largely the same even though instruments themselves continue to undergo evolution. 12 notes to the octave are eminently manageable and nicely spaced. We hear different keys, chords, intervals and modes as tonal, harmonic and balanced. When tuning evolved from Meantone Temperament to Well and Equal Temperament not only was the scale evening itself out, albeit with an overall loss of harmonic purity, but also the need for the few split keys disappeared as well. And so for the last 400 years instruments with 12 notes to the octave continue to be the only norm. 2 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Compendium Musica It is hard to see how it can be possible to evolve comprehensively beyond our twelve notes to the octave. The few instruments capable of more than twelve notes to the octave are rare, expensive (both to purchase and learn time-wise) and overall ergonomically cumbersome, in no way allowing the same virtuosic potential of our regular instruments. Further, an overall theoretical and notational foundation is completely lacking and most microtonal music in the end just sounds like poorly played music on a completely out of tune instrument. There is a huge upside and advantage that was lacking as recently as a few decades ago. We no longer have to build instruments to realize possible microtonal systems, we can use the machine of the computer to assist us in our exploration and realization. Like all explorations many people will pursue many avenues in many different ways. Some are happy to take any temperament whatsoever (17Et, 19Et, 22Et etc) and write music in it regardless how out of tune it sounds harmonically. For others, a blind doubling or tripling of the number of notes in the octave is the way to go, again completely oblivious that doubling or tripling the number of notes in the octave in no way improves over 12Et tuning wise. As humans, we enjoy when two notes combine in a pleasing manner. Notes that combine in a pleasing manner as well have a simple physical relationship to one another which we delineate by the simple use of just intonation ratios. We can bend and pull these simple consonances slightly out of tune as we do in our many different tempering systems but we never lose sight or hearing of what that simple interval is. Overall we can say that almost all the intervals of our listening experience fall within what we call the 2, 3 and 5 Limit ratios. Argument can be made as well for the 7 Limit ratio of 7/4 also known as the “harmonic seventh”. Pretty much everything else though (7, 11 and 13 Limit ratios) falls into the cracks and is heard to be out of tune. Foregoing 11 and 13 Limit ratios for now, can we one day as well become acclimatized to 7 Limit ratios and harmonies and naturally accept them as consonant, as we accept the combinations of 2, 3 and 5 Limit ratios. As 12Et in no way approximates 7, 11 and 13 Limit ratios it won’t be through our equal tempered scale that we will ever become familiar with these intervals. It is sort of a catch-22. Only by creating new scales and instruments that support these higher Limit ratios can we become familiar with them. Maybe though no amount of familiarity will suffice and higher Limit ratio will always sound generally out of tune. Maybe a start would be to combine and bury higher Limit ratios into familiar chords as Harry Partch does with his 4:5:6:7:9:11 chords or Otonalities, though the same cannot be said of his Utonalities. If we have exhausted all the relationships of note and interval in our 12 note chromatic scale then the only thing possible to do is add more notes to the octave. We could add 7 Limit 7/4 ratios to each note and double the number of notes in the octave to 24 notes. Maybe not the most elegant or thought through solution! In adding more notes to the octave we want to be able to maintain and build upon the system or tonality that has been used since time immemorial. We want to expand or extend the tonality that forms the basis of our experience, not replace it. We want the system that we are used to, to sit perfectly and indistinguishably within the new system completely. The new system must contain within itself the familiar system and at the same time extend the familiar system with completely new relationships. Three equal temperaments allow us to meet this criterion: 31Et, 43Et and 53Et. 31 and 43 Notes per Octave With 31Et and 43Et we have the first two viable options to move beyond 12Et. 12Et, 31Et and 43Et can be considered a set as they share 3 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Compendium Musica similar characteristics. Firstly, all three temper out the 10/9 and 9/8 ratio small and large major seconds to a single pitch. What this means is that we can create the 6 major/minor triads of a key using only 7 diatonic notes. As well three intervals of a perfect fifth (C G D A), is equal exactly to the major sixth note and four intervals of a perfect fifth (C G D A E), is equal exactly to the major third note. This may seem completely self evident but none of these will hold when dealing with the almost perfect 5 Limit just intonation of 53Et. All three equal temperaments as well temper their intervals in the preferred direction; flat for perfect fifths, minor thirds/sixths and sharp for perfect fourths, major thirds/sixths Because of the above characteristics, 12 note subsets of 31Et and 43Et can as well form their own Meantone Temperaments. We don’t need an instrument of 31 or 43 notes to hear the tonal characteristics of each temperament. A regular 12 note to the octave instrument suffices to familiarize ourselves with a limited subset of their characteristics. When we have only seven diatonic notes to a scale we must by necessity choose the balance between purer perfect fifths and purer major thirds (C G D A E). The flatter the fifths are tempered from just the less sharp the major third becomes. When four perfect fifths are each tempered by 5.377 cents or one quarter Syntonic Comma 81/80 (21.51 cents), the major third will be pure. The major thirds in 31Et are almost pure and so the perfect fifths are tempered by almost one quarter Syntonic Comma each. At the other end of our set of three equal temperaments, the fifths in 12Et are close to just, being only around 2 cents flat, but the major thirds are now almost 14 cents or more than a seventh of a semitone sharp. Right in the middle lies 43Et with perfect fifths tempered flat (4.28 cents) by almost the same amount the major thirds are tempered sharp (4.38 cents). Very nicely these three temperaments encompass the range of choice we have to make when balancing the perfect fifths and major thirds! In what way now does 31Et and 43Et expand or extend upon the tonality inherent in 12Et? For starters 12Et is one of the worst temperaments to approximate 7, 11 and 13 limit ratios. Any approximation to these Limits by 31Et and 43Et in and of itself opens a new world of harmonic possibility whether dissonant or with the possibility of future acclimatization. Of all equal temperaments under 53Et, 31Et approximates the best to 7 and 11 Limit ratios though some ratios in these Limits approximate closer than others. We can also say that in 43Et some ratios in the 7,11 and 13 Limits approximate better than others, but overall 43Et poorly approximates 7 Limit ratios and is only middling at approximating 11 and 13 Limit ratios. If we are of the belief that higher Limit ratios will always be dissonant in our ears then the nice balance and tempering of 43Et makes it an excellent temperament to work in. To be able to add higher Limit ratios is one possible way to extend or expand upon our familiar tonality. The other is to increase the number of equally spaced notes in the octave which of course increases the number of possible keys and available intervals between the notes and keys. A whole new set of subtle interval and key relations immediately become available to us. In 31Et and 43Et we would have 31 and 43 different possible keys or modal centers. In 12Et we have a set of 12 unique intervals, all of which are familiar to us and which we have long utilized. In 31Et and 43Et there would be 31 and 43 unique intervals but whether all of them are usable or not is another matter. Chromatically our music would have incredibly subtle shades of pitch. 53 Notes per Octave Much that is written above holds as well for 53Et, but 53Et belongs to a different class completely. 53Et and 5 Limit just intonation are pretty much synonymous with one another. Even to high number 5 Limit ratios, 53Et differs from 5 Limit just intonation by only 1 or 2 cents. They are 4 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Compendium Musica almost identical to one another and so share the same characteristics. 53Et however is much easier to work with than having to manipulate a plethora of ratios. The interval relationships between different degrees in 53Et are easily determined just by measuring steps. In 53Et the 10/9 and 9/8 small and large major seconds are untempered from one another and now exist independently. That means in order to have all 6 major/minor triads in a key we now need 8 diatonic notes per major scale instead of 7. That means we have 8 modes instead of the regular 7. There are two Dorian modes on the two different major seconds. We have as well 53 key or mode centers and 53 unique intervals and even subtler shades of chromaticism. Having an 8 note diatonic scale as well means we no longer have to balance the major thirds and perfect fifths for purity of tuning as we must in 12Et, 31Et and 43Et. Both the perfect fifths and major thirds are almost just. For higher Limit ratios, 53Et has excellent 13 Limit ratios, very good 7 Limit ratios, though the 11 Limit ratios could be better. The perfect fifths of 53Et are almost identical to pure Pythagorean 3/2 ratios. That means four perfect fifths added together are almost identical to the Pythagorean Ditone of 81/64 (407.82 cents). The just major third (5/4) we are looking for though lies a Syntonic Comma (21.51 cents) below the Ditone which is almost 1 step in 53Et (22.64 cents). The almost just Ditone (81/64) is then 18 steps in 53Et while the almost just major third (5/4) is 17 steps. Unlike 12Et, 31Et and 43Et, in 53Et we can’t cycle up through four perfect fifths to find the major third. In 53Et, as in the Pythagorean Just Fifth Tuning we have to cycle down 8 perfect fifths to reach the diminished fourth (Fb Cb Gb Db Ab Eb Bb F C) which is the enharmonic major third we are looking for. In Pythagorean Just Fifth Tuning this diminished fourth/enharmonic major third is 1.95 cents flat from just while in 53Et it is 1.41 cents flat from just. This goes to show how almost identical these two systems are, one a temperament, the other a tuning. 53Et can be thought of as a miracle temperament due to its almost identical approximation to 5 Limit just intonation. Notation - Extended Cycle of Perfect Fifths In order to utilize a musical system an equivalent notational system is absolutely necessary. We have seen that for 12 notes per octave we have 35 possible ways to notate the 12 different pitches. Further the cycle of perfect fifths nicely cycles through the double flats, flats, naturals, sharps and double sharps: | Fbb Cbb Gbb Dbb Abb Ebb Bbb | Fb Cb Gb Db Ab Eb Bb | F C G D A E B | F# C# G# D# A# E# B# | Fx Cx Gx Dx Ax Ex Bx | With 12Et we only have to cycle through 12 perfect fifths before we end up back where we started, albeit with a different letter name. For example: C G D A E B F# C# G# D# A# E# B#. With 31Et, 43Et and 53Et we have to cycle through 31, 43 and 53 perfect fifths respectively to end up back where we started. Even with 7 or 8 notes to a diatonic scale, 12Et, 31Et, 43Et and 53Et overall are all similar musical systems both diatonically and chromatically. Anything that is written in 12Et can be played in 31Et, 43Et and 53Et but with a greater accuracy of tuning towards just intonation. Notationally, 31Et and 43Et follow directly the system and cycle of fifths in 12Et, in the same manner and with the same clarity. In 53Et however our scale has to be written enharmonically to follow the cycle of fifths and so immediately becomes a mind-boggling mess: 5 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Compendium Musica F C G D Ebb Bbb Fb Cb Logically and soundly though, we can use an extended cycle of perfect fifths to form the basis of a notational system for 12Et, 31Et, 43Et and also 53Et. In all four equal temperaments we can as well modulate out through the sharps and back through the flats, except these now will include triple and even quadruple flats and sharps. As we look at the notation for 12Et we can always understand where we are key wise etc and the same goes for 31Et, 43Et and 53Et. The notational system for 31Et, 43Et and 53Et by the extended cycle of perfect fifths is not an abstract, obtuse system. It is an exact extension of 12Et and all the note relations hold true even with 31, 43 and 53 keys! We just have a few more keys to deal with and a notational mess for 53Et! As we have 35 possible ways to notate pitches with sharps, flats and double sharps and flats, we could completely notate 31Et not going beyond double sharps and flats. We could notate any equal temperament up to 35Et this way and 35Et then would have only one distinct written note per pitch. However in 31Et to have 15 sharp keys and 15 flat keys plus the one key with no sharps and flats, and not mix sharps and flats, there must be 6 pitches that are enharmonic equivalents and so 37 written notes are required to notate the 31 pitches of 31Et. 31Et then also requires one triple sharp and one triple flat. In this way we can logically and clearly move through the keys in perfect fifths from Gx major to Fbb major without mixing double sharps and flats, in precisely the same way we move from sharps to flats or flats to sharps going around the keys in 12Et. We could also add more enharmonic triple sharps or flats if musically required, for example as leading notes in minor keys or flat seconds etc. The same is also true for 43Et where we need a complete set of triple sharps and flats for the 21 sharp keys and 21 flat keys and the one key without sharps or flats. There will then be 6 enharmonic equivalents for a total of 49 written notes. For 53Et we need almost a full set of quadruple sharps and flats for the 26 sharp keys and 26 flat keys and the one key without sharps and flats. There will as well be 6 enharmonic equivalents between quadruple sharps and triple and quadruple flats. 59 written notes then are required to notate 53 pitches using the extended cycle of perfect fifths. In 31Et, 43Et and 53Et it is important to realize that in these systems there are no enharmonic equivalents except for the ones laid out above. D is no longer the same as Cx as it is in 12Et. Before anyone decries all these triple and quadruple sharps and flats one must realize that we are dealing with 31, 43 and 53 pitches now. There is no easy way, yet the above systems operate exactly in the same way and with the same theoretical understanding and acoustic foundations as in 12Et. This makes complete sense as one of our criteria was that any new system must contain within itself completely the familiar system. There is now though one strange thing we have to deal with. The ultra “chromatic” scales of 31Et, 43Et and 53Et can start looking a little strange and confusing. For example, to move chromatically from C to C# in 53 Et we would have to write: C B# Ax# Ebbb Db C#. Strange indeed but there is no way around this using notation based on the extend cycle of perfect fifths. While that adds further to our confusion, especially in 53Et!, it is however clear which keys are higher and lower pitch-wise which can be somewhat advantageous. We are now however swimming in a morass of accidentals. In our common musical system we have a single symbol for a natural, sharp, flat and double sharp. Unfortunately we do not have a single symbol for a double flat as we use two flats. What is vitally necessary then is to have 6 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Compendium Musica as well a single symbol for double flats and triple and quadruple sharps and flats in an attempt to clarify our notation. We unfortunately have no end of new symbols that look pretty much like Martian and are as hard to distinguish, write and memorize! One way around this mess of accidentals, strange chromatic progressions and enharmonic chord writing, has been to introduce simple microtonal inflections to a simple set of notes that go no further than one sharp or one flat. This works very well in 31Et and 43Et with our familiar keys from Cb major through to C# major. This system is a good simplification but is incomplete. It needs expansion so every single degree in 31Et and 43Et can be utilized as a home key and read consistently without mixing sharps and flats and microtonal inflections. Using a simplified system of microtonal inflections is also possible in 53Et though now we need both single and double microtonal inflections. We can also use the simple microtonal inflections in 53Et to nicely clarify the confusing enharmonic writing of chords! Polychromatic Notation and Extended Tonality It would be an understatement to say that a fair bit of time and thought went into figuring this all out! How is it possible to create a notation for high number octave divisions like 31Et, 43Et, 53Et or even 108Et and yet keep the same clarity and theoretical comprehension we have with our regular notational system of 12Et? Every single scale degree as well has to be notationally completely consistent key and interval wise. We as well have to be able to move logically and understandably through all the scale degrees right around to where we started from. We also have to be able to extend our familiar tonality without compromise through a high number of scale degrees without a morass of symbols, always immediately being able to understand where we are both notationally and theoretically. We can effect this all in two simple ways. We simply start with our entire familiar musical system of 15 sharp and flat keys. To that we add a simple system of upward and downward inflections (!,!!,!!!,!!!! and ","",""",""""). The second way is to substitute the upward and downward inflections by different coloured noteheads, hence Polychromatic Notation. The whole system is as simple and easy as that, though it might take just a little more explaining for a complete understanding! An early use of the term “Polychromatic Notation” can be found in an edition of Bach Sinfonias edited by Bern Boekelman in 1904. The concept of different coloured noteheads however goes right back to music written in the fourteenth century. Besides figuring out how to create the above system one of the first challenges in developing a Polychromatic Notation was how to choose and organize the colours. As for most things, one always comes back to the simplest and most familiar construct. The colours simply proceed from lowest frequency to highest frequency like we find in a rainbow: Red, Orange, Yellow, Green, Blue and Violet. Orange and Green are between the primary colours of Red, Yellow and Blue. It is strange why in nature Violet being the highest frequency is between the primary colours Blue, a higher frequency, and Red which is the lowest frequency. We have eight inflections though and so as Violet fades out of sight into ultra-violet we use a light mauve. Similarly as Red fades into infra-red we use a light pink. Now we have equated our eight inflection symbols with eight colours. What about our regular uninflected normal notation? We are going to put that right in the middle of the eight colours, simple. The Polychromatic Notation charts colour this off-white to match the lightness of the yellow below and the green above, but in writing our notation these will just be the normal black notes. Kind of like writing regular black notes on off-white paper! We find we can use this Polychromatic Notation for a large number of high number note systems. Green, Blue, Violet and Ultra-violet proceed upwards pitch wise and Yellow, Orange, Red and Infra-red proceed downwards pitch wise from our normal notation pitch. All three 7 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Compendium Musica Polychromatic systems for 31Et, 43Et and 53Et follow the same layout even tough 53Et differs slightly from 31Et and 43Et. This works because all three systems are based upon the cycle of perfect fifths. For all three systems, miraculously if we add together 12 perfect fifths from C, when we arrive back at the first note (B#), we have simply moved down one step for 31Et and 43Et or up one step for 53Et. This also goes to show how the pitch center of systems that have perfect fifths smaller than 700 cents descend while the pitch center of systems that have perfect fifths larger than 700 cents ascend. Further in trying to come to terms with the complexities of creating our layout we see that all three systems of 31Et, 43Et and 53Et in the end produce a similar layout with exactly the same crossover points between the different colours or inflections. These crossover or shared pitches between different levels exist exactly where we find them in our familiar notation; on C#/Db, F#/Gb and B/Cb. This is also somewhat miraculous. In the end everything looks so logical, simple, self-obvious and normal that it is hard to believe any effort had to be taken at all to find the system. To reach what seems to be this self-consistent natural system however took a lot of time and effort to create or discover! Looking at the polychromatic layout as well we can see how it can easily become the basis of an “Extended Tonality Keyboard” colours and all! And so we can now see how we can simply extend our familiar tonality to a high number of divisions of the octave, never losing simple comprehension of where we are, with just a simple set of inflections or polychromatic notation and a simple layout. Each scale degree can belong to a number of polychromatic levels and so moving from one level to another means no more than the equivalent of changing from say F# major to Gb major in our familiar system. Every single scale degree of the octave for the three layouts for 31Et, 43Et and 53Et is as well its own key center with of course dual keys on C#/Db, F#/Gb and B/Cb. The systems are perfect and complete and every note of every key can be found. Not only the major keys but also all the minor keys including the remote minor keys on A#/Bb, D#/Eb and G#/Ab. We aren’t finished yet though! For every single scale degree we can perfectly also find the notation for all seven modes in 31Et and 43Et and all eight modes for 53Et. In order to make available the minor keys of G#, D# and A# minor found in our familiar notation, we have to extend three perfect fifths beyond C#. To keep everything symmetrical we will also then extend three perfect fifths below Cb giving as well Fb, Bbb and Ebb as key or modal centers. Our entire range of complete modes or keys then extends from Ebb all the way A#. On each degree of this range we can find all the modes from Ebb Locrian right through to A# Lydian. The entire range of each polychromatic colour or inflection then is: Bbbb | Fbb Cbb Gbb Dbb Abb Ebb Bbb | Fb Cb Gb Db Ab Eb Bb | F C G D A E B | F# C# G# D# A# E# B# | Fx Cx Gx Dx The system is entirely complete right across every scale degree and key. This is how we extend our familiar tonality to higher number divisions of the octave! Each colour or inflection consists of a cycle of 32 perfect fifths and 33 notes. We can also see in the polychromatic layout multiple chromatic scales, one per colour or inflection, hence a polychromatic layout for our polychromatic notation! We have mentioned above in detail the differences between 12Et, 31Et, 43Et as a group and 53Et. In 12Et, 31Et and 43Et each system of keys or modes is contained within a single cycle of perfect fifths and its corresponding colour or inflection. We can simply cross over levels of colours or inflections as need be to keep the notation of our extended tonality as simple as possible. For the 8 note diatonic scale in 53Et to be 8 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Compendium Musica contained in a single colour or inflection requires two completely separate groups of four notes (separated by fifths), with the two groups themselves separated by sixth fifths: Ebb Bbb Fb Cb ( Gb Db Ab Eb Bb ) F C G D This though once again gives us the mind-boggling mess of enharmonic scale and chord writing. We can get around this simply by notating the eight note diatonic scale in 53Et using two different adjacent levels and their corresponding colour or inflection: F C G D D! A! E! B! Things look normal once again besides needing two different colours or inflections. To write or analyze music now in just intonation becomes incredibly simple and visually intuitive. Perfect fifths are always of the same colour or inflection. Major thirds are always one colour downwards or one additional downward inflection more. Minor thirds are always one colour upwards or one additional upwards inflection more. Things could not be simpler or clearer. We could simply analyze a Renaissance motet in just intonation and see where it comes out if all the relationships between voices must always be perfectly just. In this perfect 5 Limit just intonation world, which we can almost perfectly approximate by using 53Et, and completely and simply notate using our Polychromatic Notation, it would be more than interesting to see where each piece might drift to and end up in comparison to it’s starting point. As well, composing in 5 Limit just intonation through 53Et with Polychromatic Notation is notationally as clear and easy as day! With 31Et and 43Et we can see how the pitch center drops through successive fifths, while with 53Et the pitch center rises with successive fifths. Right in the middle is the polychromatic layout for the 12nEt system which includes 12Et, 24Et, 36Et, 48Et, 60Et, 72Et, 84Et, 96Et and 108Et, where the pitch center neither rises nor falls. To put it simply I am not at all a fan of this system. 24Et and 36Et present equal temperaments that are no more in tune than 12Et. 48Et can be said to be more in tune but the fifth and thirds are tempered in the wrong direction which makes it even worse. Sure 96Et has good 5, 7, 11 and 13 Limit ratios, but with that many notes to the octave how can it not approximate well these Limits. The blind usage of 24Et or 36Et to expand our tonal resources completely belies a lack of understanding of temperaments and tunings. 24Et and 36Et seem to be a default mode when little or no thought has gone into microtonal systems except to think that doubling or tripling the number of notes in the octave must be what it means to write or play microtonal music. Further I don’t include the 12nEt systems in the category of “Extended Tonality”. What we are really dealing with here with are parallel 12Et systems separated by some division of the semitone without any crossover points to move from one level through to another level. I instead class these temperaments (along with 34Et (2 x17Et)) under the category “Parallel Tonalities”. For 31Et, 43Et and 53Et the charts also show the “Generalised Isomorphic Layout” for each temperament along with their “Isomorphic Keyboard Patterns” for each mode. For 31Et, the limited notational system of the Fokker organ, which is the same as the simplified system of microtonal inflections found earlier, is compared to a complete polychromatic notation of only three colours or inflections (!,o,"). The original simplified notation for the Fokker organ is incomplete for all possible scale degrees. In showing the Polychromatic layouts we can see that different scale degrees duplicate in higher and lower levels. These pitch duplications are necessary to maintain consistently and without confusion the layout of the different polychromatic levels. The layouts given then are the 9 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Compendium Musica minimum complete systems where every mode can be created on every key with as few pitch duplications as possible. Pitch extensions are also given if we need to duplicate more pitches for ergonomic or layout reasons. If we had a physical keyboard wrapped like a spiral around a barbershop pole we could avoid any pitch duplication whatsoever. The spirals of each different temperament however would have to have a slightly different note spacing to take into consideration the different note relations of each equal temperament. Done! the Polychromatic Layouts and Notations are complete for Extended Tonality! Partch 43 Tone Scale Partch created great structure in his 43 tone scale, yet by his own admission he did not create a universal notation to compose in it. I have now done so. Partch’s system of 43 tones is comprehensive in itself but for his compositions he created a different notation particular to each of his instruments. To compose abstractly in it, it is necessary to have a universal notational system for the Partch 43 Tone Scale in the same way we have a universal notational system when composing for Western instruments and voices with 12 notes to the octave. It is necessary also that by this universal notation that we can as well understand the theoretical and acoustic foundations of the Partch 43 Tone Scale. Partch chose to base his scale in Just Intonation and to expand his tonal and harmonic resources beyond our twelve notes to the octave by the introduction of 7 and 11 Limit ratios. As mentioned above, 12Et is the worst of all temperaments for 7, 11 and 13 Limit ratios. 12Et does not even come close to approximating the intervals of these Limit ratios. Partch’s 2, 3 and 5 Limit ratios are the same diatonic pitches we use except with the perfection of Just Intonation. These represent no problems or demands to our notational system except we also now have pitches that have the same letter name but that are separated by the Syntonic Comma of 81/80 (21.51 cents). Briefly then, the simple 2, 3 and 5 Limit ratios are given by nothing more than naturals, sharps and flats. For the 2, 3 and 5 Limit ratios that are a Syntonic Comma sharp or flat we simply add ! or " to the above notes to show the difference of the 81/80 Syntonic Comma, between say G and G! or G". 7 Limit ratios for the most part are around a third of a semitone sharp or flat. Hence the 7 Limit ratios are all grouped together by #!, #" and also by 1/6!, 1/6" symbols in front of the written pitch. The 11 Limit ratios for the most part are around a half of a semitone sharp or flat. Hence the 11 Limit ratios are grouped together by ½!, ½" and also by 2/3!, 2/3" 5/6!, 5/6" symbols in front of the written pitch. And so we can comprehensively and logically with full understanding of the 43 tone scale structure compose using our regular notation with just the addition of a few fractional symbols. The fractional symbols are of course approximate and for the most part, also consistent with one another. If we decided to write the pitches using polychromatic notation for the different Limits we wouldn’t need the fractional symbols at all, instead creating a very colourful, comprehensive and clear score with complete understanding of the relationship between the different Limits and Tonalities! And so simply we have a universal notation for the Partch 43 Tone Scale and with this notation we can also have an immediate understanding of the musical system we are in. The notation reveals to us the system, that is, when we have learned to understand how Partch organized his scale with Otonalities, Utonalities, Identities and so forth! And so for a greater understanding of the depth of this scale the reader is directed to the chapter on the Partch 43 Tone Scale! 10 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Compendium Musica 11 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Compendium Musica 12 Tone Equal Temperament 12ET Ratio Major Scale Intervals -> 2 2 1 2 2 2 1 Cents +/- from 12ET 5 Limit +/- from Just Avg.-> 2^(12/12) 2^(11/12) 2^(10/12) 2^(9/12) 2^(8/12) 2^(7/12) 2^(6/12) 2^(5/12) 2^(4/12) 2^(3/12) 2^(2/12) 2^(1/12) 2^(0/12) 2 1.887749 1.781797 1.681793 1.587401 1.498307 1.414214 1.334840 1.259921 1.189207 1.122462 1.059463 1 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31 Tone Equal Temperament 31ET Ratio 2/1 15/8 16/9 5/3 8/5 3/2 45/32 4/3 5/4 6/5 9/8 16/15 1/1 1200 1088.27 996.09 9/5 1017.60 884.36 813.69 701.96 590.22 64/45 609.78 498.04 386.31 315.64 203.91 10/9 182.40 111.73 0 0 11.73 3.91 15.64 -13.69 -1.96 9.78 1.96 13.69 -15.64 -3.91 -11.73 0 12 2 1.955777 1.912532 1.870243 1.828889 1.788450 1.748905 1.710234 1.672418 1.635438 1.599276 1.563914 1.529334 1.495518 1.462450 1.430113 1.398491 1.367568 1.337329 1.307759 1.278843 1.250566 1.222914 1.195873 1.169431 1.143573 1.118287 1.093560 1.069380 1.045734 1.022611 1 +/- from Just Avg.-> -17.60 7/4 12/7 14/9 968.83 933.13 764.92 -9.78 7/5 582.51 17.60 9/7 7/6 8/7 435.08 266.87 231.17 29.22 31.17 -33.13 35.08 10/7 617.49 17.49 -17.49 -35.08 33.13 -31.17 Major Scale Intervals -> 5 5 3 5 5 5 3 Cents +/- from 12ET 5 Limit +/- from Just Avg.-> 2^(31/31) 2^(30/31) 2^(29/31) 2^(28/31) 2^(27/31) 2^(26/31) 2^(25/31) 2^(24/31) 2^(23/31) 2^(22/31) 2^(21/31) 2^(20/31) 2^(19/31) 2^(18/31) 2^(17/31) 2^(16/31) 2^(15/31) 2^(14/31) 2^(13/31) 2^(12/31) 2^(11/31) 2^(10/31) 2^(9/31) 2^(8/31) 2^(7/31) 2^(6/31) 2^(5/31) 2^(4/31) 2^(3/31) 2^(2/31) 2^(1/31) 2^(0/31) 7 Limit 10.61 1200 1161.29 1122.58 1083.87 1045.16 1006.45 967.74 929.03 890.32 851.61 812.90 774.19 735.48 696.77 658.06 619.35 580.65 541.94 503.23 464.52 425.81 387.10 348.39 309.68 270.97 232.26 193.55 154.84 116.13 77.42 38.71 0 0 -38.71 22.58 -16.13 45.16 6.45 -32.26 29.03 -9.68 -48.39 12.90 -25.81 35.48 -3.23 -41.94 19.35 -19.35 41.94 3.23 -35.48 25.81 -12.90 48.39 9.68 -29.03 32.26 -6.45 -45.16 16.13 -22.58 38.71 0 2/1 1200 0 15/8 1088.27 -4.40 16/9 996.09 9/5 1017.60 10.36 5/3 884.36 5.96 8/5 813.69 -0.78 3/2 701.96 -5.18 64/45 45/32 609.78 590.22 9.58 -9.58 4/3 498.04 5.18 5/4 386.31 0.78 6/5 315.64 -5.96 9/8 203.91 10/9 182.40 -10.36 16/15 111.73 4.40 1/1 0 0 7 Limit +/- from Just 6.77 Avg.-> -11.14 11.14 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 7/4 12/7 968.83 933.13 -1.08 -4.10 14/9 764.92 9.28 10/7 7/5 617.49 582.51 1.87 -1.87 9/7 435.08 -9.28 7/6 8/7 266.87 231.17 4.10 1.08 4.08 Compendium Musica 12 ET "keyboard mapping" 12ET Ratio Cents 11 Limit +/- from Just Avg.-> 0,12 8va 0,11 +7 0,10 -7 0,9 +6 0,8 -6 0,7 P5 0,6 x4 0,5 P4 0,4 +3 0,3 -3 0,2 +2 0,1 -2 0,0 Unis. Unis. -2 +2 -3 +3 P4 x4 P5 -6 +6 -7 +7 8va 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,10 0,11 0,12 2^(12/12) 2^(11/12) 2^(10/12) 2^(9/12) 2^(8/12) 2^(7/12) 2^(6/12) 2^(5/12) 2^(4/12) 2^(3/12) 2^(2/12) 2^(1/12) 2^(0/12) 2 1.887749 1.781797 1.681793 1.587401 1.498307 1.414214 1.334840 1.259921 1.189207 1.122462 1.059463 1 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 31ET Ratio Cents 21/11 20/11 1119.46 1035.00 -19.46 -35.00 11/7 22/15 782.49 663.05 17.51 36.95 15/11 14/11 536.95 417.51 -36.95 -17.51 11/10 22/21 165.00 80.54 13 Limit +/- from Just 27.23 25/13 1132.10 22/13 910.79 13/7 1071.70 Avg.-> 27.61 -32.10 28.30 -10.79 21/13 830.25 13/9 636.62 13/11 289.21 26/25 67.90 18/13 563.38 -30.25 -36.62 26/21 369.75 35.00 19.46 36.62 30.25 10.79 14/13 128.30 32.10 -28.30 31 ET "keyboard mapping" 11 Limit +/- from Just Avg.-> 0,31 0,30 0,29 0,28 0,27 0,26 0,25 0,24 0,23 0,22 0,21 0,20 0,19 0,18 0,17 0,16 0,15 0,14 0,13 0,12 0,11 0,10 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 P5 x4 P4 +3 -3 +2 -2 2-8va +7 -7 +6 -6 P5 x4 P4 +3 -3 +2 -2 8va +7 -7 +6 -6 P5 x4 P4 +3 -3 +2 -2 Unis. 13 Unis. -2 +2 -3 +3 P4 x4 P5 -6 +6 -7 +7 8va -2 +2 -3 +3 P4 x4 P5 -6 +6 -7 +7 2-8va -2 +2 -3 +3 P4 x4 P5 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,10 0,11 0,12 0,13 0,14 0,15 0,16 0,17 0,18 0,19 0,20 0,21 0,22 0,23 0,24 0,25 0,26 0,27 0,28 0,29 0,30 0,31 2^(31/31) 2^(30/31) 2^(29/31) 2^(28/31) 2^(27/31) 2^(26/31) 2^(25/31) 2^(24/31) 2^(23/31) 2^(22/31) 2^(21/31) 2^(20/31) 2^(19/31) 2^(18/31) 2^(17/31) 2^(16/31) 2^(15/31) 2^(14/31) 2^(13/31) 2^(12/31) 2^(11/31) 2^(10/31) 2^(9/31) 2^(8/31) 2^(7/31) 2^(6/31) 2^(5/31) 2^(4/31) 2^(3/31) 2^(2/31) 2^(1/31) 2^(0/31) 2 1.955777 1.912532 1.870243 1.828889 1.788450 1.748905 1.710234 1.672418 1.635438 1.599276 1.563914 1.529334 1.495518 1.462450 1.430113 1.398491 1.367568 1.337329 1.307759 1.278843 1.250566 1.222914 1.195873 1.169431 1.143573 1.118287 1.093560 1.069380 1.045734 1.022611 1 1200 1161.29 1122.58 1083.87 1045.16 1006.45 967.74 929.03 890.32 851.61 812.90 774.19 735.48 696.77 658.06 619.35 580.65 541.94 503.23 464.52 425.81 387.10 348.39 309.68 270.97 232.26 193.55 154.84 116.13 77.42 38.71 0 21/11 1119.46 3.12 11/6 1049.36 20/11 1035.00 -4.20 18/11 852.59 -0.98 11/7 782.49 -8.30 16/11 648.68 22/15 551.32 14/11 417.51 8.30 11/9 347.41 0.98 150.64 22/21 80.54 11/10 536.95 9.38 11/8 12/11 15/11 663.05 165.00 -9.38 4.20 -3.12 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 13 Limit +/- from Just 5.88 10.17 Avg.-> 25/13 13/7 24/13 1132.10 1071.70 1061.43 -9.52 12.17 -16.27 26/15 22/13 952.26 910.79 15.48 18.24 13/8 21/13 840.53 830.25 11.09 -17.35 20/13 745.79 -10.30 13/9 18/13 636.62 563.38 -17.26 17.26 13/10 454.21 10.30 26/21 16/13 369.75 359.47 17.35 -11.09 13/11 15/13 289.21 247.74 -18.24 -15.48 13/12 14/13 26/25 138.57 128.30 67.90 16.27 -12.17 9.52 -4.98 4.98 -10.17 14.19 Compendium Musica 43 Tone Equal Temperament 43ET Ratio Major Scale Intervals -> 7 7 4 7 7 7 4 Cents +/- from 12ET 5 Limit +/- from Just Avg.-> 2^(43/43) 2^(42/43) 2^(41/43) 2^(40/43) 2^(39/43) 2^(38/43) 2^(37/43) 2^(36/43) 2^(35/43) 2^(34/43) 2^(33/43) 2^(32/43) 2^(31/43) 2^(30/43) 2^(29/43) 2^(28/43) 2^(27/43) 2^(26/43) 2^(25/43) 2^(24/43) 2^(23/43) 2^(22/43) 2^(21/43) 2^(20/43) 2^(19/43) 2^(18/43) 2^(17/43) 2^(16/43) 2^(15/43) 2^(14/43) 2^(13/43) 2^(12/43) 2^(11/43) 2^(10/43) 2^(9/43) 2^(8/43) 2^(7/43) 2^(6/43) 2^(5/43) 2^(4/43) 2^(3/43) 2^(2/43) 2^(1/43) 2^(0/43) 14 2 1.968019 1.936549 1.905583 1.875112 1.845128 1.815624 1.786591 1.758022 1.729911 1.702249 1.675029 1.648244 1.621888 1.595953 1.570433 1.545321 1.520611 1.496296 1.472369 1.448825 1.425658 1.402861 1.380429 1.358355 1.336634 1.315261 1.294229 1.273534 1.253169 1.233131 1.213412 1.194009 1.174916 1.156129 1.137642 1.119450 1.101550 1.083936 1.066603 1.049547 1.032765 1.016250 1 1200 1172.09 1144.19 1116.28 1088.37 1060.47 1032.56 1004.65 976.74 948.84 920.93 893.02 865.12 837.21 809.30 781.40 753.49 725.58 697.67 669.77 641.86 613.95 586.05 558.14 530.23 502.33 474.42 446.51 418.60 390.70 362.79 334.88 306.98 279.07 251.16 223.26 195.35 167.44 139.53 111.63 83.72 55.81 27.91 0 0 -27.91 44.19 16.28 -11.63 -39.53 32.56 4.65 -23.26 48.84 20.93 -6.98 -34.88 37.21 9.30 -18.60 -46.51 25.58 -2.33 -30.23 41.86 13.95 -13.95 -41.86 30.23 2.33 -25.58 46.51 18.60 -9.30 -37.21 34.88 6.98 -20.93 -48.84 23.26 -4.65 -32.56 39.53 11.63 -16.28 -44.19 27.91 0 2/1 1200 0 15/8 1088.27 0.10 16/9 996.09 9/5 1017.60 8.56 5/3 884.36 8.66 8/5 813.69 -4.38 3/2 701.96 -4.28 64/45 45/32 609.78 590.22 4.18 -4.18 4/3 498.04 4.28 5/4 386.31 4.38 6/5 315.64 -8.66 9/8 203.91 10/9 182.40 -8.56 16/15 111.73 -0.10 1/1 0 0 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 7 Limit +/- from Just 6.16 Avg.-> -12.95 12.95 7/4 968.83 7.92 12/7 933.13 -12.20 14/9 764.92 -11.43 10/7 7/5 617.49 582.51 -3.53 3.53 9/7 435.08 11.43 7/6 266.87 12.20 8/7 231.17 -7.92 8.77 Compendium Musica 43 ET "keyboard mapping" 43ET Ratio Cents 11 Limit +/- from Just Avg.-> 0,43 P5 Unis. 0,0 0,42 x4 -2 0,1 0,41 P4 +2 0,2 0,40 +3 -3 0,3 0,39 -3 +3 0,4 0,38 +2 P4 0,5 0,37 -2 x4 0,6 0,36 3-8va 0,35 +7 P5 0,7 0,8 -6 0,34 -7 +6 0,9 0,33 0,32 +6 -7 -6 +7 0,10 0,11 0,31 P5 8va 0,12 0,30 x4 -2 0,13 0,29 P4 +2 0,14 0,28 +3 -3 0,15 0,27 -3 +3 0,16 0,26 +2 P4 0,17 0,25 -2 x4 0,18 0,24 2-8va P5 0,19 0,23 +7 -6 0,20 0,22 0,21 -7 +6 +6 -7 0,21 0,22 0,20 -6 +7 0,23 0,19 P5 2-8va 0,24 0,25 0,18 x4 -2 0,17 P4 +2 0,26 0,16 +3 -3 0,27 0,15 -3 +3 0,28 0,14 +2 P4 0,29 0,13 -2 x4 0,30 0,12 8va P5 0,31 0,11 0,10 +7 -6 -7 +6 0,32 0,33 0,9 +6 -7 0,34 0,8 0,7 -6 +7 P5 3-8va 0,35 0,36 0,6 x4 -2 0,37 0,5 P4 +2 0,38 0,4 +3 -3 0,39 0,3 -3 +3 0,40 0,2 +2 P4 0,41 0,1 -2 x4 0,42 0,0 Unis. P5 0,43 15 2^(43/43) 2^(42/43) 2^(41/43) 2^(40/43) 2^(39/43) 2^(38/43) 2^(37/43) 2^(36/43) 2^(35/43) 2^(34/43) 2^(33/43) 2^(32/43) 2^(31/43) 2^(30/43) 2^(29/43) 2^(28/43) 2^(27/43) 2^(26/43) 2^(25/43) 2^(24/43) 2^(23/43) 2^(22/43) 2^(21/43) 2^(20/43) 2^(19/43) 2^(18/43) 2^(17/43) 2^(16/43) 2^(15/43) 2^(14/43) 2^(13/43) 2^(12/43) 2^(11/43) 2^(10/43) 2^(9/43) 2^(8/43) 2^(7/43) 2^(6/43) 2^(5/43) 2^(4/43) 2^(3/43) 2^(2/43) 2^(1/43) 2^(0/43) 2 1.968019 1.936549 1.905583 1.875112 1.845128 1.815624 1.786591 1.758022 1.729911 1.702249 1.675029 1.648244 1.621888 1.595953 1.570433 1.545321 1.520611 1.496296 1.472369 1.448825 1.425658 1.402861 1.380429 1.358355 1.336634 1.315261 1.294229 1.273534 1.253169 1.233131 1.213412 1.194009 1.174916 1.156129 1.137642 1.119450 1.101550 1.083936 1.066603 1.049547 1.032765 1.016250 1 1200 1172.09 1144.19 1116.28 1088.37 1060.47 1032.56 1004.65 976.74 948.84 920.93 893.02 865.12 837.21 809.30 781.40 753.49 725.58 697.67 669.77 641.86 613.95 586.05 558.14 530.23 502.33 474.42 446.51 418.60 390.70 362.79 334.88 306.98 279.07 251.16 223.26 195.35 167.44 139.53 111.63 83.72 55.81 27.91 0 21/11 1119.46 -3.18 11/6 20/11 1049.36 1035.00 11.10 -2.44 18/11 11/7 852.59 782.49 13 Limit +/- from Just 6.27 Avg.-> 25/13 1132.10 24/13 1061.43 26/15 22/13 952.26 910.79 13/8 840.53 20/13 745.79 7.70 13/9 636.62 5.24 18/13 563.38 -5.24 13/10 454.21 -7.70 16/13 359.47 13/11 15/13 289.21 247.74 13/12 138.57 26/25 67.90 6.79 12.09 13/7 1071.70 -0.96 -11.24 -3.42 10.14 12.52 21/13 830.25 -3.32 6.96 -1.10 22/15 16/11 663.05 648.68 6.72 -6.82 11/8 15/11 551.32 536.95 6.82 -6.72 14/11 417.51 1.10 11/9 347.41 -12.52 11/10 12/11 165.00 150.64 2.44 -11.10 22/21 80.54 3.18 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 26/21 369.75 3.32 -6.96 -10.14 3.42 14/13 128.30 0.96 -12.09 11.24 Compendium Musica 53 Tone Equal Temperament 53ET Ratio Major Scale Intervals -> 8 1 8 5 9 8 9 5 Cents +/- from 12ET 5 Limit +/- from Just Avg.-> 2^(53/53) 2^(52/53) 2^(51/53) 2^(50/53) 2^(49/53) 2^(48/53) 2^(47/53) 2^(46/53) 2^(45/53) 2^(44/53) 2^(43/53) 2^(42/53) 2^(41/53) 2^(40/53) 2^(39/53) 2^(38/53) 2^(37/53) 2^(36/53) 2^(35/53) 2^(34/53) 2^(33/53) 2^(32/53) 2^(31/53) 2^(30/53) 2^(29/53) 2^(28/53) 2^(27/53) 2^(26/53) 2^(25/53) 2^(24/53) 2^(23/53) 2^(22/53) 2^(21/53) 2^(20/53) 2^(19/53) 2^(18/53) 2^(17/53) 2^(16/53) 2^(15/53) 2^(14/53) 2^(13/53) 2^(12/53) 2^(11/53) 2^(10/53) 2^(9/53) 2^(8/53) 2^(7/53) 2^(6/53) 2^(5/53) 2^(4/53) 2^(3/53) 2^(2/53) 2^(1/53) 2^(0/53) 16 2 1.974014 1.948365 1.923050 1.898064 1.873402 1.849061 1.825036 1.801323 1.777918 1.754817 1.732017 1.709512 1.687301 1.665377 1.643739 1.622382 1.601302 1.580496 1.559960 1.539692 1.519686 1.499941 1.480452 1.461216 1.442231 1.423492 1.404996 1.386741 1.368723 1.350939 1.333386 1.316061 1.298961 1.282084 1.265426 1.248984 1.232756 1.216738 1.200929 1.185325 1.169924 1.154723 1.139720 1.124911 1.110295 1.095869 1.081630 1.067577 1.053705 1.040015 1.026502 1.013164 1 1200 1177.36 1154.72 1132.08 1109.43 1086.79 1064.15 1041.51 1018.87 996.23 973.58 950.94 928.30 905.66 883.02 860.38 837.74 815.09 792.45 769.81 747.17 724.53 701.89 679.25 656.60 633.96 611.32 588.68 566.04 543.40 520.75 498.11 475.47 452.83 430.19 407.55 384.91 362.26 339.62 316.98 294.34 271.70 249.06 226.42 203.77 181.13 158.49 135.85 113.21 90.57 67.92 45.28 22.64 0 0 -22.64 -45.28 32.08 9.43 -13.21 -35.85 41.51 18.87 -3.77 -26.42 -49.06 28.30 5.66 -16.98 -39.62 37.74 15.09 -7.55 -30.19 47.17 24.53 1.89 -20.75 -43.40 33.96 11.32 -11.32 -33.96 43.40 20.75 -1.89 -24.53 -47.17 30.19 7.55 -15.09 -37.74 39.62 16.98 -5.66 -28.30 49.06 26.42 3.77 -18.87 -41.51 35.85 13.21 -9.43 -32.08 45.28 22.64 0 2/1 1200 0 15/8 1088.27 -1.48 9/5 16/9 1017.60 996.09 1.27 0.14 5/3 884.36 -1.34 8/5 813.69 1.41 3/2 701.96 -0.07 64/45 45/32 609.78 590.22 1.54 -1.54 4/3 498.04 0.07 5/4 386.31 -1.41 6/5 315.64 1.34 9/8 10/9 203.91 182.40 -0.14 -1.27 16/15 111.73 1.48 1/1 0 0 7 Limit +/- from Just 0.95 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Avg.-> 7/4 968.83 4.76 12/7 933.13 -4.83 14/9 764.92 4.90 10/7 7/5 617.49 582.51 -6.17 6.17 9/7 435.08 -4.90 7/6 266.87 4.83 8/7 231.17 -4.76 5.16 Compendium Musica 53 ET "keyboard mapping" 53ET Ratio Cents 11 Limit +/- from Just Avg.-> 0,53 0,52 0,51 0,50 0,49 0,48 0,47 0,46 0,45 0,44 0,43 0,42 0,41 0,40 0,39 0,38 0,37 0,36 0,35 0,34 0,33 0,32 0,31 0,30 0,29 0,28 0,27 0,26 0,25 0,24 0,23 0,22 0,21 0,20 0,19 0,18 0,17 0,16 0,15 0,14 0,13 0,12 0,11 0,10 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 17 P4 +3 -3 +2 -2 4-8va +7 -7 +6 -6 P5 x4 P4 +3 -3 +2 -2 3-8va +7 -7 +6 -6 P5 x4 P4 +3 -3 +2 -2 2-8va +7 -7 +6 -6 P5 x4 P4 +3 -3 +2 -2 8va +7 -7 +6 -6 P5 x4 P4 +3 -3 +2 -2 Unis. Unis. -2 +2 -3 +3 P4 x4 P5 -6 +6 -7 +7 8va -2 +2 -3 +3 P4 x4 P5 -6 +6 -7 +7 2-8va -2 +2 -3 +3 P4 x4 P5 -6 +6 -7 +7 3-8va -2 +2 -3 +3 P4 x4 P5 -6 +6 -7 +7 4-8va -2 +2 -3 +3 P4 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 0,10 0,11 0,12 0,13 0,14 0,15 0,16 0,17 0,18 0,19 0,20 0,21 0,22 0,23 0,24 0,25 0,26 0,27 0,28 0,29 0,30 0,31 0,32 0,33 0,34 0,35 0,36 0,37 0,38 0,39 0,40 0,41 0,42 0,43 0,44 0,45 0,46 0,47 0,48 0,49 0,50 0,51 0,52 0,53 2^(53/53) 2^(52/53) 2^(51/53) 2^(50/53) 2^(49/53) 2^(48/53) 2^(47/53) 2^(46/53) 2^(45/53) 2^(44/53) 2^(43/53) 2^(42/53) 2^(41/53) 2^(40/53) 2^(39/53) 2^(38/53) 2^(37/53) 2^(36/53) 2^(35/53) 2^(34/53) 2^(33/53) 2^(32/53) 2^(31/53) 2^(30/53) 2^(29/53) 2^(28/53) 2^(27/53) 2^(26/53) 2^(25/53) 2^(24/53) 2^(23/53) 2^(22/53) 2^(21/53) 2^(20/53) 2^(19/53) 2^(18/53) 2^(17/53) 2^(16/53) 2^(15/53) 2^(14/53) 2^(13/53) 2^(12/53) 2^(11/53) 2^(10/53) 2^(9/53) 2^(8/53) 2^(7/53) 2^(6/53) 2^(5/53) 2^(4/53) 2^(3/53) 2^(2/53) 2^(1/53) 2^(0/53) 2 1.974014 1.948365 1.923050 1.898064 1.873402 1.849061 1.825036 1.801323 1.777918 1.754817 1.732017 1.709512 1.687301 1.665377 1.643739 1.622382 1.601302 1.580496 1.559960 1.539692 1.519686 1.499941 1.480452 1.461216 1.442231 1.423492 1.404996 1.386741 1.368723 1.350939 1.333386 1.316061 1.298961 1.282084 1.265426 1.248984 1.232756 1.216738 1.200929 1.185325 1.169924 1.154723 1.139720 1.124911 1.110295 1.095869 1.081630 1.067577 1.053705 1.040015 1.026502 1.013164 1 1200 1177.36 1154.72 1132.08 1109.43 1086.79 1064.15 1041.51 1018.87 996.23 973.58 950.94 928.30 905.66 883.02 860.38 837.74 815.09 792.45 769.81 747.17 724.53 701.89 679.25 656.60 633.96 611.32 588.68 566.04 543.40 520.75 498.11 475.47 452.83 430.19 407.55 384.91 362.26 339.62 316.98 294.34 271.70 249.06 226.42 203.77 181.13 158.49 135.85 113.21 90.57 67.92 45.28 22.64 0 21/11 1119.46 -10.03 11/6 1049.36 20/11 1035.00 -7.85 18/11 11/7 16/11 11/8 852.59 782.49 648.68 22/15 663.05 551.32 15/11 536.95 7.92 -7.92 -9.96 11/9 347.41 -7.79 22/21 80.54 Avg.-> 25/13 1132.10 -0.02 24/13 1061.43 13/7 1071.70 2.72 26/15 952.26 -1.32 22/13 910.79 -5.13 13/8 840.53 21/13 830.25 -2.79 20/13 745.79 1.38 13/9 636.62 -2.66 18/13 563.38 2.66 13/10 454.21 -1.38 16/13 359.47 26/21 369.75 2.79 13/11 289.21 5.13 15/13 247.74 1.32 13/12 138.57 14/13 128.30 -2.72 26/25 67.90 0.02 3.45 -7.55 6.51 7.48 9.96 417.51 150.64 11/10 165.00 +/- from Just 7.79 14/11 12/11 13 Limit 8.07 7.85 -6.45 6.45 -6.51 10.03 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 -7.48 7.55 Compendium Musica Notation for 12 Notes Per Octave Scale degrees by the Cycle of Fifths (7n mod 12) 0 B# C Cycle of Fifths 1 2 Bx C# Cx 3 Db Ebb Eb Fbb E Fb E# F 6 7 Ex F# Fx 8 9 Gb 10 Gx G# G Gbb Ab Bbb 12 Ax A# A Abb 11 Bb Cbb B Cb B# C 7 Note Diatonic Scales by the Cycle of Fifths (monochromatic notation) Bx Cx Dx Ex B# Cx Dx Ex B# Cx Dx E# B# Cx Dx E# B# Cx D# E# B# Cx D# E# B# C# D# E# Cx Fx B# E# A# D# G# 1 6 11 4 9 2 7 C# F# B E A D G B# C D E E E 0 C C D E 5 10 3 8 1 6 11 F Bb Eb Ab Db Gb Cb C C C C C D D D E 4 9 2 7 0 5 10 Fb Bbb Ebb Abb Dbb Gbb Cbb C# C# C# C# C# C# D# D# D# D# D D Db Db Db Db Db Db Db Dbb Dbb Dbb Dbb E B F G G G G A A Eb Fb Gb Gb Gb Gb Gbb Gbb Gbb Gb Ab Ab Ab Ab Gb Ab Ab Abb Abb Abb Abb Abb Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Bb Bb Bb Bb Bb Bb Bb Ab Bbb Bbb Bbb Bbb Bbb Bbb Cbb Cbb 2 7 0 5 10 3 8 1 6 11 4 9 2 7 C C 0 C C C C C F Bb Eb Ab Db Gb Cb 5 10 3 8 1 6 11 Fb Bbb Ebb Abb Dbb Gbb Cbb 4 9 2 7 0 5 10 Cb Cb Cb Cb Cb Cb Cb Bbb Cx Fx B# E# A# D# G# C B A A Keys C# F# B E A D G B# G G A B# B F Gb Fbb A# A# A# A# A# B# B# B# B# B# A# A A Fb Ebb A# G Eb Eb Eb Eb Fb Fb Fb Fb Fb G# G# G# G# G# Ax Ax Ax B B B B F F F F F Eb F# F# F# F# F# F# F# E Eb Ebb Ebb Ebb Ebb Ebb E# E# Major Scale Intervals -> 2 2 1 2 2 2 1 Fx Gx Fx Gx Fx Gx Fx Gx Fx Gx Fx G# Fx G# Cycle of Fifths Dbb Keys 2 7 0 5 10 3 8 18 5 Dx D# D Dbb 4 Dbb Dbb Dbb Dbb Compendium Musica Notations for 31 Notes Per Octave Scale degrees by the Cycle of Fifths (18n mod 31) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Fx# Bx Cx Dx C# Ex D# C E# D E Db Eb Dbb Ebb Fx Gx F# F B Ab Gbb B# A Gb Fbb A# G Fb Ax G# Bb Abb Bbb C Cb Cbb Bbbb Incomplete Notation by Microtonal Inflection Cycle of Fifths C C! C# Db D" D D! D# Eb E" E F" E# F F! F# Gb G" G G! G# Ab A" A A! A# Bb B" B B! C" Cb B# C Keys 7 Note Diatonic Scales by the Cycle of Fifths (monochromatic notation) Bx Cx Dx 22 Gx 4 17 30 12 25 7 20 Cx Fx B# E# A# D# G# 2 15 28 10 23 5 18 C# F# B E A D G C D E E E 0 C C D E 13 26 8 21 3 16 29 F Bb Eb Ab Db Gb Cb C C C C C D D D E 11 24 6 19 1 14 27 Fb Bbb Ebb Abb Dbb Gbb Cbb 9 Fbb 19 E! Fb Cx Bx Dx Dx Dx Dx Cx Cx Cx Cx Cx C# D# D# D# D# Dbb B# B# A# B# B# B# B# A# A# A# F Bb Eb Ab Db Gb Cb 13 26 8 21 3 16 29 Cbb Fb Bbb Ebb Abb Dbb Gbb Cbb 11 24 6 19 1 14 27 Cbb Fbb 9 A B F G G G G A A Fb Gb Eb Fb Gb Gb Gb Gb Bbb Abb Fbb Gbb Dbb Ebb Fbb Gbb Abb Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Cb Cb Cb Cb Cb Cb Cb Bbb Bbb Bbb Bbb Bbb Bbb Abb Abb Abb Abb Gbb Bb Bb Bb Bb Bb Ab Ab Dbb Dbb Gbb Bb Bb Ab Ab Ab Bbbb 2 15 28 10 23 5 18 C C C C C G Gb 4 17 30 12 25 7 20 0 F Gb Cx Fx B# E# A# D# G# C A A Ab 22 C B A Ab Gx C B# B A G Keys C# F# B E A D G A# A# A# G Ebb Ebb Ebb Ebb Dbb Ax Ax Ax B B B B Eb Eb Eb Eb Ebb Gx Gx Gx Gx Gx G# G# G# G# G# F# F# F# F# F# Fb Fb Fb Fb Fb Ax G# F# F F F F F Ebb Gx G# F# E Eb Db Db Fx Fx Fx Fx Fx E Eb Db Db Db Db E# E# E# D Db Fx E# E# E# D Fx# Fx E# D# D# C# C# C# C# C# Ex Ex D# C# Major Scale Intervals -> 5 5 3 5 5 5 3 Ex Cycle of Fifths Cbb Compendium Musica Notations for 43 Notes Per Octave Scale degrees by the Cycle of Fifths (25n mod 43) 0 1 2 3 4 5 6 7 8 Bx# Bx 9 10 11 12 13 14 15 Cx# 16 18 19 E# E Db Eb Ebb Ebbb 22 23 Ex D# D Dbb 21 24 25 27 Fx# Fx F# F G Fb Gb Fbb Gbb Fbbb 26 Ex# Dx C# 20 Dx# Cx C 17 Abb Gbbb Abbb Incomplete Notation by Microtonal Inflection C Cycle of Fifths Keys 9 27 2 20 38 13 31 Cx# Fx# Bx Ex Ax Dx Gx 6 24 42 17 35 10 28 Cx Fx B# E# A# D# G# 3 21 39 14 32 7 25 C# F# B E A D G 0 18 36 11 29 4 22 40 20 C! C#" C# Db Db! D" D D! D#" D# Eb Eb! E" E E! F" F F! F#" F# Gb Gb! G" G G! G#" Fb Fb!/E#" E# 7 Note Diatonic Scales by the Cycle of Fifths (monochromatic notation) Bx# Cx# Bx Cx# Bx Cx# Bx Cx# Bx Cx# Bx Cx# Bx Cx Major Scale Intervals -> 7 7 4 7 7 7 4 Dx# Dx# Dx# Dx# Dx C# D# D# D# D# C# C# C# C# C# Ex Ex Ex Fx Fx E# Fx Fx Fx Fx Fx E# D# D# Fx# Fx# Fx# Fx# Fx# Ex Ex E# E# E# D# C# Ex Dx Dx Dx Dx Dx Cx Cx Cx Cx Cx Fx# Fx# Ex Dx Cx Bx Ex# Ex# E# E# F# F# E D E E F# F# F# F# C D E F# C C D E F G F Bb Eb Ab Db Gb Cb C C C C C D D D E F G G G G E D Db Db Db Db Eb F F F F F Eb Eb Eb Eb Eb Fb Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Gb Gb Gb G G Compendium Musica 15 33 8 26 1 19 37 Fb Bbb Ebb Abb Dbb Gbb Cbb 12 30 5 23 41 16 34 Fbb Bbbb Ebbb Abbb Dbbb Gbbb Cbbb Db Db Db Dbb Dbb Dbb Ebb Ebb Ebb Ebb Fbb Gbb Ebb Fbb Gbb Gbb Gbb Gbb Ebbb Fbb Fbb Fbb Fbb Fbb Ebbb Ebbb Ebbb Ebbb Ebbb Gb Gb Gb Gb Fb Fb Fb Fb Fb Ebb Dbb Dbb Dbb Dbb Fb Eb Ebb Fbbb Gbb Abb Abb Abb Gbb Gbbb Gbbb Gbbb (foldout) 21 Abb Abb Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Abb Abb Abbb Abbb Abbb Abbb Abbb Compendium Musica 28 29 30 31 32 33 34 35 36 37 38 39 40 Gx# A# B# A B Ab Bb Bbb Bbbb Ab! C Cb Cbb Cbbb A" 43 Ax G# Ab 42 Ax# Gx G# 41 A A! A#" Dbbb A# Bb Bb! B" B B! C" C Keys Cycle of Fifths Cx# Fx# Bx Ex Ax Dx Gx 9 27 2 20 38 13 31 Cx Fx B# E# A# D# G# 6 24 42 17 35 10 28 3 21 39 14 32 7 Cb Cb!/B#" B# Gx# Gx# Gx# Gx# Gx# Ax# Ax# Ax# Ax Ax Gx Ax Ax Gx Gx Gx Gx Gx Gx Ax Ax Ax B# B# A# B# B# B# B# A# G# A# A# G# G# G# G# G# G# A B B B A B C C# F# B E A D G A B C C 0 C C C C C F Bb Eb Ab Db Gb Cb 18 36 11 29 4 22 40 A# A# A# B# B B A A A A Ab Ab Ab Ab Ab 22 Bb Bb Bb Bb Bb Bb Bb Cb Cb 25 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Compendium Musica Ab Ab Bbb Cb Cb Cb Cb Cb Bbb Bbb Bbb Bbb Bbb Bbb Cbb Cbb Bbbb Cbb Cbb Cbb Cbb Cbb Bbbb Bbbb Bbbb Bbbb Bbbb Bbbb Cbbb Cbbb Dbbb Dbbb Dbbb Dbbb Fb Bbb Ebb Abb Dbb Gbb Cbb 15 33 8 26 1 19 37 Fbb Bbbb Ebbb Abbb Dbbb Gbbb Cbbb 12 30 5 23 41 16 34 (foldout) 23 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Compendium Musica Notations for 53 Notes Per Octave Scale degrees by the Cycle of Fifths (31n mod 53) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Axx 17 18 19 Bx# Bx 20 21 22 Cx# D# 26 E# D E Db Eb Ebb 27 F# F Fb Gb Fbb Gbb Fbbb Gbbb Abbb Gbbbb (Fbbbb) 25 Dx C# Ebbb 24 Dx# Cx C 23 Cxx (Bxx) Ax# B# 16 Abbbb Incomplete Notation by Microtonal Inflection C Cycle of Fifths Keys 11 33 2 24 46 Bx# Ex# Ax# Dx# Gx# 15 37 6 28 50 19 41 Cx# Fx# Bx Ex Ax Dx Gx 10 32 1 23 45 14 36 Cx Fx B# E# A# D# G# 5 27 49 18 40 9 B#" 31 C# F# B E A D G 0 C C 24 C! C!! C#"" C#" Db! Db!! D"" D" D D! 8 Note Diatonic Scales by the Cycle of Fifths (duochromatic notation) Axx" Ax# Ax# Bx#" Ax# Bx#" Ax#" Ax# Bx#" Ax#" Ax#" Ax#" Eb" Eb Eb! E"" E" E Bx# Bx# Cx#" Cx#" Cx#" Cx#" Cx" Cx" Cx" Cx" Gb! Dx# Dx Dx" Dx" Dx" Dx" Ex" Ex" Dx Ex" Ex" E# E# D# E#" E#" D# F# F# E F#" F#" F#" E D E" D E" D E" Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 E# E# E#" E#" D# D D" F#" Dx Cx Cx D#" D#" D#" D#" C F#"" Dx# Dx#" Dx#" Dx#" Dx#" D# C# C# F!! Dx C# C# F! Dx# Cx# Cx# Cx B# B# Cxx F Dx# Cx B# Cxx" Cxx" Cxx" Cxx" F" Cx# Bx Bx Bx" F"" Cx# Bx B# E! Major Scale Intervals -> 8 1 8 5 9 8 9 5 Bx#" C#" C#" C#" C#" Eb!! Bx# Bx Bx" Bx" Bx" B#" B#" B#" D!! E E F#" F F# F# Compendium Musica 22 44 13 35 4 26 48 F Bb Eb Ab Db Gb Cb 17 39 8 30 52 21 43 Fb Bbb Ebb Abb Dbb Gbb Cbb 12 34 3 25 47 16 38 Fbb Bbbb Ebbb Abbb Dbbb Gbbb Cbbb 7 29 51 20 42 Fbbb Bbbbb Ebbbb Abbbb Dbbbb C C D! D! D! Eb Db Db Db! Eb! Eb! Eb! Db Db Db! Db! Db! F! F! F! F! Eb Eb Fb! Fb! Fb! Fb! Ebb Ebb Fbb! Fbb! Fbb! Fbb! Fbbb Gbbb Ebbb! Fbbb Gbbb! Gbbb Gbbb! Gbbb! Gbbb! Gbbb Gbbbb Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Gbb Abbb Abbb Abbb Abbb! Abbb Abbb! Gbbb (foldout) 25 Gbb Gbb Gbb! Gbb! Gbb! Gbb! Fbb Fbb Ebbb Ebbb! Ebbb Ebbb! Ebbb! Fbbb Fbbb! Fbbb Fbbb! Fbbb! Gb! Gb! Gb! Gb! Fb Fb Gbb Fbb Ebb! Ebbb Gb Fbb Ebbb Gb Gb Fb Eb! Ebb F F Fb Ebb Ebb! Ebb! Ebb! F E! Eb Abbb! Abbb! Abbbb Abbbb Abbbb Gb Compendium Musica 28 29 30 31 32 33 34 35 36 37 Dxx 38 39 40 41 Ex 43 44 Bbb Bbbb Dxx" Dxx" Ab Ab! Cbb Ab!! A"" A" A A! Ex# Fxx" Fxx" Fxx" Fxx" Ex# Ex# Ex#" Ex#" Bb" Bb Bb! Fx#" Fx#" Fx#" Fx#" Ex Ex B"" B" Cb! Fx Fx Ax Ax Ax" Gx Gx Ax" Ax" Ax" A#" G# G# A#" A#" A#" B#" B#" B#" A# A# B#" A" Bx# Ex# Ax# Dx# Gx# 11 33 2 24 46 Cx# Fx# Bx Ex Ax Dx Gx 15 37 6 28 50 19 41 Cx Fx B# E# A# D# G# 10 32 1 23 45 14 36 5 27 49 18 40 9 0 A B" B" A B" C B" C C A G Keys Cycle of Fifths C# F# B E A D G B B A A" Ax Ax A# A# G# G C Gx# Gx# Gx G# G C" Gx# Gx Gx" Gx" Gx" Gx" C"" Gx# Fx# Fx# Fx Cb!! Gxx" Gxx" Gxx" Gx#" Gx#" Gx#" Gx#" Fx G#" G#" G#" G#" Bb!! Fxx Fxx Fx# Ex 26 Bb"" Ebbbb Fx# Ex Fx" Fx" Fx" Fx" Dbb Dbbb Ex# Ex#" Ex#" 53 C Dbbbb Ab" 52 Cb Cbbb (Cbbbb) G!! 51 B Bb Abb G! 50 Ax A Bbbbb 49 A# Ab G 48 Gx G G" 47 Gx# Fx G"" 46 Gxx Fx# G# Gb!! 45 Fxx (Exx) Ex# 42 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 B B 31 Compendium Musica G! G! G! G! G A! A! Ab Ab Ab! Ab! Bb! Bb! Bb! Bb! Ab Ab Ab! Ab! Abb! Abb! Bbbbb Bbbbb Bbbbb Bbbbb! Bbbbb Bbbbb! Cb Cb Cb! Cb! Cb! Cb! Bbb Bbb Cbb! Cbb! Cbb! Cbb! Bbbb Bbbb Cbbb Cbb Dbb! Cbb Cbb Dbb! Dbb! Dbb! Dbbb Dbbb Dbbb! Dbbb! Dbbb! Dbbbb Dbbbb (foldout) 27 Dbb Dbb Dbbb Dbbb! Dbbb Cbbb Cbbb Cbbb! Cbbb Cbbb! Cbbb! Cbbb! Cb Cb Cbb Bbbb Bbbb Bbbb! Bbbb! Bbbb! Bbbb! Bb Bb Bbb Bbb! Bbb! Bbb! Bbb! Abb Abb C! C! C! C! Bbb Abb Abb Abb! Abb! Bb Bb Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Ebbbb Ebbbb Ebbbb Ebbbb! Ebbbb Dbb Dbb C C F Bb Eb Ab Db Gb Cb 22 44 13 35 4 26 48 Fb Bbb Ebb Abb Dbb Gbb Cbb 17 39 8 30 52 21 43 Fbb Bbbb Ebbb Abbb Dbbb Gbbb Cbbb 12 34 3 25 47 16 38 Fbbb Bbbbb Ebbbb Abbbb Dbbbb 7 29 51 20 42 Compendium Musica Polychromatic Layout for 31Et Minimum Complete 31Et System Third Extension ! (optional) ! (31 notes + (2 x 7) duplicate notes = 45 Notes) C#!!! 5 Db!! 5 F#!!! 18 Gb!! 18 B!!! 0 Cb!! 0 ! D#!!! G#!!! A#!!! Second Extension ! Eb!! 10 Ab!! 23 Bb!! 28 (optional) ! Fbb! Bbbb! Cbb! ! B#!!! E#!!! Fx!!! B#!!! First Extension ! C!! 2 F!! 15 G!! 20 C!! 2 (optional) ! Dbb! Gbb! Abb! (incomplete Upper (incomplete Upper modes on 7) modes on 12) modes on 25) Cx!!! Dx!!! Gx!!! D!! 7 E!! 12 A!! 25 Complete Lydian, Ionian, Mixolydian Upper modes and Dorian Middle mode on each key. Complete Aeolian mode except 30 !! !! ! ! ! Complete Phrygian mode except 17, 30 ! ! Complete Locrian mode except 4, 17, 30 o ! (20, 2, 15 required for complete Lower modes) Complete Locrian, Phrygian, Aeolian Lower modes and Dorian Middle mode on each key. o ! " "" Complete Mixolydian mode except 1 ! " ! "" ! B#!! C#"" 4 Db" 4 Ebb! Cx!! C" 1 !!!!!!!!!!!!!!!!!!!!!!!!!!! D" 6 C#" 3 Dbb Ebb Db 3 B#! Cx! C 0 !!!!!!!!!!!!!!!!!!!!!!!!!!! D 5 C# 2 Dbb" Ebb$ Db$ 2 B# Cx C$ 30!!!!!!!!!!!!!!!!!!!!!!!!!!! D$ 4 C#$ 1 Dbb"" Ebb$$ Db$$ 1 Complete Ionian mode except 14, 1 Complete Lydian mode except 27, 14, 1 (11,29,16 required for complete Upper modes) Fb! D#"" Dx!! Eb" 9 E" 11 Fbb Fb D#" Dx! Eb 8 E 10 Fbb" Fb$ D# Dx Eb$ 7 E$ 9 Fbb"" Fb$$ D#" E#!! F#"" 17 Gb" 17 B"" 30 Cb" 30 Bbb! Fx!! F" 14 !!!!!!!!!!!!!!!!!!!!!!!!!!! G" 19 F#" 16 Gbb Abb Gb 16 E#! Fx! F 13 !!!!!!!!!!!!!!!!!!!!!!!!!!! G 18 F# 15 Gbb" Abb" Gb$ 15 E# Fx F$ 12 !!!!!!!!!!!!!!!!!!!!!!!!!!! G$ 17 F#$ 14 Gbb"" Abb"" Gb$$ 14 G#"" Gx!! Ab" 22 A" 24 Bbbb Bbb G#" Gx! Ab 21 A 23 Bbbb" Bbb$ G# Gx Ab$ 20 A$ 22 Bbbb"" Bbb$$ G#" A#"" B#!! Bb" 27!!!!!!!!!!!!!!!!!!!!!!!!!!! C" 1 B" 29 Cbb Dbb Cb 29 A#" B#! Bb 26!!!!!!!!!!!!!!!!!!!!!!!!!!! C 0 B 28 Cbb" Dbb" Cb$ 28 A# B# Bb$ 25!!!!!!!!!!!!!!!!!!!!!!!!!!! C$ 30 B$ 27 Cbb"" Dbb"" Cb$$ 27 A#" Eb"" 6 Ab"" 19 Fbb""" Bbbb""" Cbb""" (incomplete Lower (incomplete Lower (incomplete Lower modes on 19) modes on 24) modes on 6) 28 Dbb! (incomplete Upper Bb"" 24 ! B#" E#" Fx" B#" First Extension ! C"" 29 F"" 11 G"" 16 C"" 29 (optional) ! Dbb""" Gbb""" Abb""" Dbb""" ! Cx" Dx" Gx" Second Extension ! D"" 3 E"" 8 A"" 21 (optional) ! Ebb""" Fb""" Bbb""" Third Extension ! (optional) ! C#"" 0 Db""" 0 F#"" 13 Gb""" 13 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 B"" 26 Cb""" 26 # ! # o ! Complete Upper, #!!!!!!!!!!!!!!!!! o Middle and Lower " modes on all keys # o # " Compendium Musica Modes for 31Et Complete Locrian to Lydian modes from Ebb to A# Lower Modes Upper Modes (retrograde inversion around C) ! " C Locrian (Db+) Gb - 16 Eb - 8 C Phrygian (Ab+) Db - 3 Bb - 26 Db - 3 Bb - 26 C Aeolian (Eb+) Ab - 21 Ab - 21 Eb - 8 Eb - 8 C-0 Eb - 8 A - 23 Bb - 26 C Ionian (C+) G - 18 D-5 C Mixolydian (F+) C Dorian (Bb+) 29 Eb - 8 C-0 Bb - 26 G - 18 C-0 F - 13 D-5 A - 23 Bb - 26 G - 18 A - 23 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 D-5 B - 28 C-0 F - 13 Middle Mode (self-symmetrical around C) G - 18 E - 10 D-5 F - 13 Bb - 26 G - 18 C-0 C Lydian (G+) C-0 C-0 F - 13 F - 13 Ab - 21 F - 13 G - 18 E - 10 D-5 B - 28 C-0 F - 13 D-5 A - 23 F# - 15 A - 23 G - 18 E - 10 Compendium Musica Polychromatic Layout for 31Et Generalised Isomorphic Keyboard B!!! 0 Cb!! 0 0 Third Extension (optional) F#!!! 18 Gb!! 18 18 C#!!! 5 Db!! 5 5 23 Second Extension 10 Eb!! 10 (optional) 28 Fbb! First Extension Bbbb! A#!!! Bb!! 28 E#!!! 15 B#!!! F!! 15 2 20 C!! 2 Gbb! Cbb! Cx!!! G!! 20 D!! 7 Abb! complete Upper and Middle 25 Ebb! Dx!!! A!! 25 modes on top row keys 12 E!! 12 Bbb! 30 Fb! Enharmonic dual keys 17 Start of 31Et note duplication 22 Dbb! 9 Eb! 9 Fbb Bbbb 14 B#!! F! 14 1 C! 1 Gbb 19 Dbb Cx!! G! 19 D! 6 Abb 24 Ebb Dbb Gx!! Dx!! A! 24 E! 11 Bbb 29 Fb B! 29 Cb 29 F#! 16 Gb 16 C#! 3 Db 3 G#! Ab 21 D#! 8 Eb 8 26 Fbb" Bbbb" A#! Bb 26 E#! 13 B#! F 13 0 C0 Gbb" 18 Dbb" Cbb" Cx! G 18 D5 Abb" 23 Ebb" Dbb" Gx! Dx! A 23 10 E 10 Bbb" 28 Fb" C# 2 Db" 2 2 B 28 Cb" 28 F# 15 Gb" 15 15 G# Ab" 20 D# 7 Eb" 7 25 Fbb"" Bbbb"" A# Bb" 25 E# 12 B# F" 12 30 C" 30 Gbb"" 17 Dbb"" Cbb"" B# C" 30 Fx Cx G" 17 4 D" 4 Abb"" 22 Ebb"" Dbb"" Gx Dx A" 22 9 E" 9 Bbb"" 27 Fb"" 14 B#! C0 Fx! 5 20 B#!! C! 1 11 3 Enharmonic dual keys Cbb Fx!! 6 21 Start of 31Et note duplication A#!! Bb! 27 E#!! 16 31 ET G#!! Ab! 22 D#!! 27 Dbb! Gx!!! B!! 30 Cb! 30 F#!! 17 Gb! 17 C#!! 4 Db! 4 4 B#!!! C!! 2 Fx!!! 7 (optional) Necessary notes for 30 G#!!! Ab!! 23 D#!!! F#" 14 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 B" 27 Cb"" 27 Compendium Musica C#! 1 Db!! 1 1 Necessary notes for 19 Gb!! 14 complete Lower and Middle 6 Eb!! 6 modes on bottom row keys 24 Fbb!!! First Extension (optional) Second Extension (optional) B#! F!! 11 29 16 C!! 29 Gbb!!! Dbb!!! (optional) 0 Cbb!!! C#!! 0 Db!!! 0 Cx! G!! 16 Abb!!! Dbb!!! Gx! Dx! A!! 21 E!! 8 Bbb!!! F#!! 13 Gb!!! 13 (foldout) 31 B#! C!! 29 Fx! Fb!!! 13 A#! Bb!! 24 D!! 3 Ebb!!! 26 Third Extension Bbbb!!! E#! 11 3 21 8 G#! Ab!! 19 D#! Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 B!! 26 Cb!!! 26 Compendium Musica Isomorphic Keyboard Patterns for 31Et C Lydian (G+) C-0 C-0 C Ionian (C+) F - 13 C-0 G - 18 C-0 D-5 G - 18 A - 23 D-5 E - 10 A - 23 B - 28 ! E - 10 ! F# - 15 (retrograde inversion around C) (retrograde inversion around C) ! ! C Locrian (Db+) Gb - 16 B - 28 C Phrygian (Ab+) Db - 3 Db - 3 Ab - 21 Ab - 21 Eb - 8 Eb - 8 Bb - 26 Bb - 26 F - 13 C-0 F - 13 C-0 C-0 C-0 C Mixolydian (F+) Bb - 26 G - 18 C Dorian (Bb+) F - 13 Eb - 8 Bb - 26 (self-symmetrical around C) C-0 C-0 F - 13 C-0 G - 18 C-0 D-5 G - 18 A - 23 ! D-5 E - 10 A - 23 (retrograde inversion around C) ! C Aeolian (Eb+) Ab - 21 Eb - 8 Bb - 26 F - 13 C-0 C-0 G - 18 D-5 32 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Compendium Musica (foldout) 33 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Compendium Musica Fokker Organ Layout for 31Et Polychromatic Layout Complete Locrian to Lydian modes from Ebb! to A#" -first octave only -67+1 keys to play an octave of 31+1 notes Dx! Cx! E 10 A# B# Cx Fb! F# 15 Gb! 15 G# D5 Ab! 20 Bb! 25 Ebb! Fbb! Gbb! Abb! Bbb" C! 30 Cb" 30 D! 4 Db" 4 C# 2 Db! 2 D# E# Fx Gx Eb! 7 F! 12 Dbb! Ebb" G! 17 Gb" 17 A! 22 Ab" 22 Cx D! 4 Db" 4 Fb" C#! 1 C" 1 Cbb Dbb E! 9 Eb" 9 F#! 14 F" 14 A#! B#" Cx" G" 19 A" 24 Fbb Gbb Abb Bbb B" 29 Cb 29 C#" 3 Db 3 G#! Bbbb C#! 1 C" 1 D#! E#" Fx" Gx" A#" B#! D" 6 E" 11 G#" Bb 26 C0 Dbb Ebb F#" 16 Gb 16 Ab 21 Cbb" Dbb" Dx" Fb Cx" D#" E#! Fx! 28 C# 2 C#" 3 Db 3 Eb 8 F 13 G 18 A 23 Cb! 28 Db! 2 Gbb" Abb" Bbb! Cbb! Dbb! Fbb" Dx! B#! Cx! E 10 C0 D5 Fb! Dbb" 34 Dx B! 27 Bb" 27 Ebb! Fbb! C# 2 Db! 2 Eb! 7 Dbb! Ebb" D# B# Cx C! 30 Cb" 30 D! 4 Db" 4 F# 15 Gb! 15 Dx Bbbb" G# Bbbb! Ab! 20 Gbb! Abb! Fx Gx F! 12 G! 17 Gb" 17 A! 22 Ab" 22 E! 9 Eb" 9 F#! 14 F" 14 Fbb Gbb G#! A# B# Bb! 25 C! 30 Cb" 30 Bbb" E# Fb" B Gx! Bbbb B! 27 Bb" 27 C#! 1 C" 1 Cbb Dbb A#! B#" G" 19 A" 24 Abb Bbb B" 29 Cb 29 C#! 1 C" 1 D#! E#" Fx" Gx" A#" B#! D" 6 E" 11 G#" Bb 26 C0 Dbb Ebb F#" 16 Gb 16 Ab 21 Cbb" Dbb" Dx" Fb D#" E#! Fx! Eb 8 F 13 G 18 A 23 Cb! 28 Gbb" Abb" Bbb! Cbb! Dx! Gx! 28 Cx" C#" 3 Db 3 Fbb" Bbbb" B B#" B" 29 Cb 29 B#! Cx! E 10 B# D5 Fb! F# 15 Gb! 15 A# C0 Ab! 20 Bb! 25 Dbb" Ebb! Fbb! Gbb! Abb! Bbb" C! 30 Cb" 30 G# Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Bbbb! Compendium Musica Original Colouration -first octave only -67+1 keys to play an octave of 31+1 notes (Archiphone Keyboard) D5 C# 2 E 10 D# 7 D! 4 C" 1 E! 9 Db 3 C! 30 D! 4 B" 29 E! 9 Db 3 C0 F" 14 Eb 8 D5 F 13 E 10 B! 27 Ab 21 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 C" 1 B" 29 Bb 26 A 23 G# 20 C# 2 C! 30 A" 24 G 18 F# 15 C0 A# 25 G" 19 Db 3 B 28 A! 22 Gb 16 C" 1 Bb 26 G# 20 D! 4 B" 29 A 23 G! 17 E" 11 B! 27 Ab 21 F# 15 C! 30 A" 24 G 18 F! 12 D" 6 A! 22 Gb 16 E 10 A# 25 G" 19 F 13 D# 7 C" 1 G! 17 E" 11 D5 G# 20 F" 14 Eb 8 C# 2 35 F! 12 D" 6 C0 F# 15 C0 B 28 A# 25 C! 30 Compendium Musica Isomorphic Keyboard Patterns for the Fokker Organ Keyboard in 31Et Complete Locrian to Lydian modes from Ebb! to A#" Polychromatic Layout C-0 C Lydian (G+) " C-0 D-5 E - 10 F# - 15 Db - 3 Eb - 8 F - 13 G - 18 A - 23 B - 28 Gb - 16 Ab - 21 Bb - 26 G - 18 A - 23 B - 28 Ab - 21 Bb - 26 C-0 Bb - 26 C-0 Bb - 26 C-0 Bb - 26 C-0 (retrograde inversion around C) ! C Locrian (Db+) C-0 C-0 C-0 C Ionian (C+) F - 13 " C-0 D-5 E - 10 (retrograde inversion around C) ! C Phrygian (Ab+) Db - 3 Eb - 8 F - 13 G - 18 F - 13 G - 18 F - 13 G - 18 C-0 C Mixolydian (F+) " C-0 D-5 A - 23 E - 10 (retrograde inversion around C) ! C Aeolian (Eb+) Ab - 21 Eb - 8 C-0 D-5 C Dorian (Bb+) Eb - 8 (self-symmetrical around C) C-0 F - 13 G - 18 A - 23 D-5 (foldout) 36 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Compendium Musica Polychromatic Layout for 43Et Minimum Complete 43Et System ! D#!!!! G#!!!! A#!!!! Third Extension ! Eb!!! 14 Ab!!! 32 Bb!!! 39 (optional) ! Fbb!! Bbbb!! Cbb!! ! B#!!!! E#!!!! Fx!!!! B#!!!! Second Extension ! C!!! 3 F!!! 21 G!!! 28 C!!! 3 (optional) ! Dbb!! Gbb!! Abb!! Dbb!! ! Cx!!!! Dx!!!! Gx!!!! First Extension ! D!!! 10 E!!! 17 A!!! 35 (optional) ! Ebb!! Fb!! Complete Lydian, Ionian, Mixolydian Upper modes and Dorian Middle mode on each key. !!! !! ! ! ! ! Complete Aeolian mode except 31 Complete Phrygian mode except 13, 31 Complete Locrian mode except 38, 13, 31 (17, 35, 10 required for complete Lower modes) Complete Locrian, Phrygian, Aeolian Lower modes and Dorian Middle mode on each key. Complete Mixolydian mode except 12 " ! Complete Ionian mode except 30, 12 "" ! """ ! Complete Lydian mode except 5, 30, 12 (26, 8, 33 required for complete Upper modes) 37 (43 notes + (2 x 10) duplicate notes = 63 Notes) B#!!! Bbb!! (incomplete Upper (incomplete Upper (incomplete Upper modes on 6) modes on 24) modes on 42) C#!!! 6 Db!! 6 F#!!! 24 Gb!! 24 C"" 2!!!!!!!!!!!!!!!!!!!!!!!!!!! C#"" 5 Dbb! Db" 5 B#!! C" 1 !!!!!!!!!!!!!!!!!!!!!!!!!!! C#" 4 Dbb Db 4 B#! C 0 !!!!!!!!!!!!!!!!!!!!!!!!!!! C# 3 Dbb" Db$ 3 B# C$ 42!!!!!!!!!!!!!!!!!!!!!!!!!!! C#$ 2 Dbb"" Db$$ 2 B#" C$$ 41!!!!!!!!!!!!!!!!!!!!!!!!!!! C#"" 1 Dbb""" Db""" 1 Cx!!! D#""" Dx!!! D"" 9 Eb"" 13 E"" 16 Ebb" Fbb! Fb" Cx!! D#"" Dx!! D" 8 Eb" 12 E" 15 Ebb Fbb Fb Cx! D#" Dx! D7 Eb 11 E 14 Ebb$ Fbb" Fb$ Cx D# Dx D$ 6 Eb$ 10 E$ 13 Ebb$$ Fbb"" Fb$$ Cx" D#$ Dx" D$$ 5 Eb$$ 9 E$$ 12 Ebb$$$ Fbb""" Fb$$$ E#!!! F"" 20 !!!!!!!!!!!!!!!!!!!!!!!!!!! F#"" 23 Gbb! Gb" 23 E#!! F" 19 !!!!!!!!!!!!!!!!!!!!!!!!!!! F#" 22 Gbb Gb 22 E#! F 18 !!!!!!!!!!!!!!!!!!!!!!!!!!! F# 21 Gbb" Gb$ 21 E# F$ 17 !!!!!!!!!!!!!!!!!!!!!!!!!!! F#$ 20 Gbb"" Gb$$ 20 E#" F$$ 16 !!!!!!!!!!!!!!!!!!!!!!!!!!! F#"" 19 Gbb""" Gb""" 19 (incomplete Lower (incomplete Lower modes on 1) modes on 19) Fx!!! G#""" Gx!!! G"" 27 Ab"" 31 A"" 34 Abb! Bbbb! Bbb" Fx!! G#"" Gx!! G" 26 Ab" 30 A" 33 Abb Bbbb Bbb Fx! G#" Gx! G 25 Ab 29 A 32 Abb" Bbbb" Bbb$ Fx G# Gx G$ 24 Ab$ 28 A$ 31 Abb"" Bbbb"" Bbb$$ Fx" G#$ Gx" G$$ 23 Ab$$ 27 A$$ 30 Abb""" Bbbb""" Bbb$$$ A#""" B!!! 42 Cb!! 42 Bb"" 38!!!!!!!!!!!!!!!!!!!!!!!!!!! B"" 41 Cbb! Cb" 41 A#"" Bb" 37!!!!!!!!!!!!!!!!!!!!!!!!!!! B" 40 Cbb Cb 40 A#" Bb 36 !!!!!!!!!!!!!!!!!!!!!!!!!!! B 39 Cbb" Cb$ 39 A# Bb$ 35!!!!!!!!!!!!!!!!!!!!!!!!!!! B$ 38 Cbb"" Cb$$ 38 A#$ Bb$$ 34!!!!!!!!!!!!!!!!!!!!!!!!!!! B"" 37 Cbb""" Cb""" 37 B#!!! C"" 2 # B#!! # ! C" 1 # !!!!!!!!!!! ! Dbb # ! o o ! B#! # #!!!!!!!!!!!!!!!!! o Middle and Lower Dbb" # o " modes on all keys B# # " o C$ 42 G#"" A#"" First Extension ! Eb""" 8 Ab""" 26 Bb""" 33 (optional) ! Fbb"""" Bbbb"""" Cbb"""" # " B#" # "" C$$ 41 Dbb""" ! B#"" E#"" Fx"" B#"" Second Extension ! C""" 40 F""" 15 G""" 22 C""" 40 (optional) ! Dbb"""" Gbb"""" Abb"""" Dbb"""" Third Extension ! Cx"" Dx"" Gx"" (optional) ! D""" 4 E""" 11 A""" 29 ! Ebb"""" Fb"""" Bbb"""" Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 # !!!!!!!!!!! Dbb"" modes on 37) D#"" !! C0 (incomplete Lower ! !! Dbb! " "" Complete Upper, Compendium Musica Modes for 43Et Complete Locrian to Lydian modes from Ebb to A# Lower Modes Upper Modes (retrograde inversion around C) ! " C Locrian (Db+) Gb - 22 Eb - 11 C Phrygian (Ab+) Db - 4 Bb - 36 Db - 4 Bb - 36 C Aeolian (Eb+) Ab - 29 Ab - 29 Eb - 11 Eb - 11 C-0 Eb - 11 A - 32 Bb - 36 C Ionian (C+) G - 25 D-7 Mixolydian (F+) C Dorian (Bb+) 38 Eb - 11 C-0 Bb - 36 G - 25 C-0 F - 18 D-7 A - 32 Bb - 36 G - 25 A - 32 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 D-7 B - 39 C-0 F - 18 Middle Mode (self-symmetrical around C) G - 25 E - 14 D-7 F - 18 Bb - 36 G - 25 C-0 C Lydian (G+) C-0 C-0 F - 18 F - 18 Ab - 29 F - 18 G - 25 E - 14 D-7 B - 39 C-0 F - 18 D-7 A - 32 F# - 21 A - 32 G - 25 E - 14 Compendium Musica Polychromatic Layout for 43Et Generalised Isomorphic Keyboard G#!!!! 32 D#!!!! Third Extension 14 Eb!!! 14 (optional) 39 Fbb!! Second Extension Ab!!! 32 Bbbb!! 21 B#!!!! F!!! 21 3 C!!! 3 Gbb!! 28 Dbb!! Cbb!! Cx!!!! G!!! 28 D!!! 10 Abb!! First Extension 35 Ebb!! Dx!!!! A!!! 35 (optional) 17 E!!! 17 Bbb!! Necessary notes for 42 Fb!! complete Upper and Middle 24 modes on top row keys Start of 43Et note duplication Eb!! 13 38 Fbb! Bbbb! A#!!! Bb!! 38 E#!!! 20 B#!!! F!! 20 2 C!! 2 Gbb! 27 Dbb! Cbb! Cx!!! G!! 27 D!! 9 Abb! 34 Ebb! Dbb! Gx!!! Dx!!! A!! 34 16 E!! 16 Bbb! 41 Fb! B!! 41 Cb! 41 F#!! 23 Gb! 23 C#!! 5 Db! 5 5 30 G#!! Ab! 30 D#!! 12 Eb! 12 37 Fbb Bbbb A#!! Bb! 37 E#!! 19 B#!! F! 19 1 C! 1 Gbb 26 Dbb Cbb Cx!! G! 26 D! 8 Abb 33 Ebb Dbb Gx!! Dx!! A! 33 15 E! 15 Bbb 40 Fb C#! 4 Db 4 4 B! 40 Cb 40 F#! 22 Gb 22 22 G#! Ab 29 D#! 11 Eb 11 36 Fbb" Bbbb" A#! Bb 36 E#! 18 B#! F 18 0 C0 Gbb" 25 Dbb" Cbb" B#! C0 Fx! Cx! G 25 7 D7 Abb" 32 Ebb" Dbb" Gx! Dx! A 32 14 E 14 Bbb" 39 Fb" 21 B#!! C! 1 Fx!! 8 29 B#!!! C!! 2 Fx!!! 9 23 43 ET G#!!! Ab!! 31 D#!!! 13 Dbb!! Gx!!!! B!!! 42 Cb!! 42 F#!!! 24 Gb!! 24 C#!!! 6 Db!! 6 6 31 B#!!!! C!!! 3 Fx!!!! 10 (optional) 39 A#!!!! Bb!!! 39 E#!!!! F# 21 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 B 39 Cb" 39 Compendium Musica C# 3 Db! 3 3 28 Gb! 21 G# Ab! 28 D# 10 Eb! 10 35 Fbb!! Bbbb!! 17 B# F! 17 42 C! 42 Gbb!! 24 Dbb!! Cbb!! Cx G! 24 D! 6 Abb!! 31 Ebb!! Dbb!! Gx Dx A! 31 13 E! 13 Bbb!! 38 Fb!! F#! C#! 2 Db!! 2 2 27 B! 38 Cb!! 38 20 Gb!! 20 G#! Ab!! 27 D#! 9 Eb!! 9 Start of 43Et 34 Fbb!!! note duplication 16 B#! F!! 16 41 C!! 41 Gbb!!! 23 Dbb!!! Bbbb!!! A#! Bb!! 34 E#! Cbb!!! Cx! G!! 23 5 D!! 5 Abb!!! 30 Ebb!!! Dbb!!! Gx! Dx! A!! 30 E!! 12 Bbb!!! Necessary notes for 37 Fb!!! complete Lower and Middle 19 First Extension (optional) Second Extension (optional) Third Extension (optional) B!! 37 Cb!!! 37 F#!! 19 Gb!!! 19 C#!! 1 Db!!! 1 1 26 G#!! Ab!!! 26 D#!! 8 Eb!!! 8 33 Fbb!!!! Bbbb!!!! A#!! Bb!!! 33 E#!! 15 B#!! F!!! 15 40 22 C!!! 40 Gbb!!!! Cbb!!!! Cx!! G!!! 22 D!!! 4 Abb!!!! 29 11 Ebb!!!! Dbb!!!! Gx!! Dx!! A!!! 29 E!!! 11 Bbb!!!! Fb!!!! (foldout) Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 B#!! C!!! 40 Fx!! 4 Dbb!!!! B#! C!! 41 Fx! 12 modes on bottom row keys B# C! 42 Fx 6 20 40 A# Bb! 35 E# Compendium Musica Isomorphic Keyboard Patterns for 43Et C Lydian (G+) C-0 C-0 C Ionian (C+) F - 18 C-0 G - 25 C-0 D-7 G - 25 A - 32 D-7 E - 14 A - 32 B - 39 ! E - 14 ! F# - 21 (retrograde inversion around C) (retrograde inversion around C) ! ! C Locrian (Db+) Gb - 22 B - 39 C Phrygian (Ab+) Db - 4 Db - 4 Ab - 29 Ab - 29 Eb - 11 Eb - 11 Bb - 36 Bb - 36 F - 18 C-0 F - 18 C-0 C-0 C-0 C Mixolydian (F+) Bb - 36 G - 25 C Dorian (Bb+) F - 18 Eb - 11 Bb - 36 (self-symmetrical around C) C-0 C-0 F - 18 C-0 G - 25 C-0 D-7 G - 25 A - 32 ! D-7 E - 14 A - 32 (retrograde inversion around C) ! C Aeolian (Eb+) Ab - 29 Eb - 11 Bb - 36 F - 18 C-0 C-0 G - 25 D-7 41 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Compendium Musica (foldout) 42 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Compendium Musica Polychromatic Layout for 12nEt (12, 24, 36, 48, 60, 72, 84, 96, 108 ET) n Range 12ET o !or" 24ET 36ET !," !!or"" 48ET 60ET !!,"" !!!or""" 72ET 84ET !!!,""" 96ET !!!!or"""" 108ET !!!!,"""" 1 2 3 4 5 6 7 8 9 43 B#!!!! C#!!!! Cx!!!! D#!!!! Dx!!!! E#!!!! F#!!!! Fx!!!! G#!!!! Gx!!!! A#!!!! B!!!! B#!!!! = 1/4 tone, 1/2 semitone C!!!! (Bx!!!!) D!!!! Eb!!!! E!!!! F!!!! (Ex!!!!) G!!!! Ab!!!! A!!!! Bb!!!! (Ax!!!!) C!!!! = 1/6 tone, 1/3 semitone Dbb!!!! Fbb!!!! Fb!!!! Gbb!!!! Bbbb!!!! Bbb!!!! Cbb!!!! D#!!! Dx!!! E#!!! Fx!!! G#!!! Gx!!! A#!!! Cb!!!! B!!! Dbb!!!! Cx!!! Gb!!!! F#!!! Abb!!!! B#!!! Db!!!! C#!!! Ebb!!!! = 1/8 tone, 1/4 semitone = 1/10 tone, 1/5 semitone C!!! (Bx!!!) D!!! Eb!!! E!!! F!!! (Ex!!!) G!!! Ab!!! A!!! Bb!!! (Ax!!!) C!!! = 1/12 tone, 1/6 semitone Dbb!!! Fbb!!! Fb!!! Gbb!!! Bbbb!!! Bbb!!! Cbb!!! D#!! Dx!! E#!! Fx!! G#!! Gx!! A#!! Cb!!! B!! Dbb!!! Cx!! Gb!!! F#!! Abb!!! B#!! Db!!! C#!! Ebb!!! = 1/14 tone, 1/7 semitone = 1/16 tone, 1/8 semitone C!! (Bx!!) D!! Eb!! E!! F!! (Ex!!) G!! Ab!! A!! Bb!! (Ax!!) C!! = 1/18 tone, 1/9 semitone Dbb!! Db!! C#! Ebb!! Fbb!! Fb!! Gbb!! Bbbb!! Bbb!! Cbb!! D#! Dx! E#! Fx! G#! Gx! A#! Cb!! B! Dbb!! Cx! Gb!! F#! Abb!! B#! C! (Bx!) D! Eb! E! F! (Ex!) G! Ab! A! Bb! (Ax!) C! Dbb! Db! C# Ebb! Fbb! Fb! Gbb! Bbbb! Bbb! Cbb! D# Dx E# Fx G# Gx A# Cb! B Dbb! Cx Gb! F# Abb! B# C (Bx) D Eb E F (Ex) G Ab A Bb (Ax) C Dbb Db C#" Ebb Fbb Fb Gbb Bbbb Bbb Cbb D#" Dx" E#" Fx" G#" Gx" A#" Cb B" Dbb Cx" Gb F#" Abb B#" C" (Bx") D" Eb" E" F" (Ex") G" Ab" A" Bb" (Ax") C" Dbb" Db" C#"" Ebb" Fbb" Fb" Gbb" Bbbb" Bbb" Cbb" D#"" Dx"" E#"" Fx"" G#"" Gx"" A#"" Cb" B"" Dbb" Cx"" Gb" F#"" Abb" B#"" C"" (Bx"") D"" Eb"" E"" F"" (Ex"") G"" Ab"" A"" Bb"" (Ax"") C"" Dbb"" Db"" C#""" Ebb"" Fbb"" Fb"" Gbb"" Bbbb"" Bbb"" Cbb"" D#""" Dx""" E#""" Fx""" G#""" Gx""" A#""" Cb"" B""" Dbb"" Cx""" Gb"" F#""" Abb"" B#""" C""" (Bx""") D""" Eb""" E""" F""" (Ex""") G""" Ab""" A""" Bb""" (Ax""") C""" Dbb""" Db""" C#"""" Ebb""" Fbb""" Fb""" Gbb""" Bbbb""" Bbb""" Cbb""" D#"""" Dx"""" E#"""" Fx"""" G#"""" Gx"""" A#"""" Cb""" B"""" Dbb""" Cx"""" Gb""" F#"""" Abb""" B#"""" C"""" (Bx"""") D"""" Eb"""" E"""" F"""" (Ex"""") G"""" Ab"""" A"""" Bb"""" (Ax"""") C"""" Dbb"""" Db"""" Ebb"""" Fbb"""" Fb"""" Gbb"""" Gb"""" Abb"""" Bbbb"""" Bbb"""" Cbb"""" Cb"""" Dbb"""" = 1/2 tone, 1 semitone Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 B#!!! B#!! B#! B# B#" B#"" B#""" B#"""" Compendium Musica 44 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Compendium Musica Polychromatic Layout for 53Et Minimum Complete 53Et System Third Extension ! (optional) ! (53 notes + (2 x 8) duplicate notes = 69 Notes) Db!!!! 8 C#!!! 8 Gb!!!! 30 F#!!! 30 Cb!!!! 52 B!!! 52 ! Ebb!!!! Fb!!!! Bbb!!!! Second Extension ! D!!! 12 E!!! 21 A!!! 43 (optional) ! Cx!! Dx!! Gx!! ! Dbb!!!! Gbb!!!! Abb!!!! Dbb!!!! First Extension ! C!!! 3 F!!! 25 G!!! 34 C!!! 3 (optional) ! B#!! E#!! Fx!! (incomplete Upper (incomplete Upper modes on 16) modes on 38) modes on 47) Fbb!!!! Bbbb!!!! Cbb!!!! Eb!!! 16 Ab!!! 38 Bb!!! 47 Complete Lydian, Ionian, !!! ! !! ! Dbb!!! !! ! C"" 2 ! ! Mixolydian, Dorian 1 Upper modes on each key, plus Lower modes Dorian 2 on 46, 15, 37 !!! B#! Aeolian on 24, 46, 15, 37 Dbb!! Phrygian on 2, 24, 46, 15, 37 C" 1 B# Locrian on 33, 2, 24, 46, 15, 37 (3 extensions required for Dbb! complete Lower modes) C0 B#" Dbb C$ 52 Complete Locrian, Phrygian, B#"" Aeolian, Dorian 2 Lower modes on each key, plus Upper modes Dorian 1 on 7, 38, 16 " ! Dbb" "" ! C$$ 51 "" ! B#""" """ ! """ Db""" 7 C#"" 7 D#!! !!!!!!!!!!!!!!!!!!!!!!!!!!! Db"" 6 C#" 6 !!!!!!!!!!!!!!!!!!!!!!!!!!! Db" 5 C# 5 !!!!!!!!!!!!!!!!!!!!!!!!!!! Db 4 C#$ 4 !!!!!!!!!!!!!!!!!!!!!!!!!!! Db$ 3 C#$$ 3 !!!!!!!!!!!!!!!!!!!!!!!!!!! Db$$ 2 C#$$$ 2 B#!! (incomplete Upper Ebb""" Fbb!!! Fb""" Gbb!!! D"" 11 Eb"" 15 E"" 20 F"" 24 Cx! D#" Dx! E#! Ebb"" Fbb!! Fb"" Gbb!! D" 10 Eb" 14 E" 19 F" 23 Cx D# Dx E# Ebb" Fbb! Fb" Gbb! D9 Eb 13 E 18 F 22 Cx" D#$ Dx" E#" Ebb Fbb Fb Gbb D$ 8 Eb$ 12 E$ 17 F$ 21 Cx"" D#$$ Dx"" E#"" Ebb$ Fbb" Fb$ Gbb" D$$ 7 Eb$$ 11 E$$ 16 F$$ 20 Cx""" D#$$$ Dx""" E#""" Gb""" 29 F#"" 29 !!!!!!!!!!!!!!!!!!!!!!!!!!! Gb"" 28 F#" 28 !!!!!!!!!!!!!!!!!!!!!!!!!!! Gb" 27 F# 27 !!!!!!!!!!!!!!!!!!!!!!!!!!! Gb 26 F#$ 26 !!!!!!!!!!!!!!!!!!!!!!!!!!! Gb$ 25 F#$$ 25 !!!!!!!!!!!!!!!!!!!!!!!!!!! Gb$$ 24 F#$$$ 24 G#!! A#!! Abb!!! Bbbb!!! Bbb""" G"" 33 Ab"" 37 A"" 42 Fx! G#" Gx! Abb!! Bbbb!! Bbb"" G" 32 Ab" 36 A" 41 Fx G# Gx Abb! Bbbb! Bbb" G 31 Ab 35 A 40 Fx" G#$ Gx" Abb Bbbb Bbb G$ 30 Ab$ 34 A$ 39 Fx"" G#$$ Gx"" Abb" Bbbb" Bbb$ G$$ 29 Ab$$ 33 A$$ 38 Fx""" G#$$$ Gx""" Ebb"" Fb"" Ionian on 51, 29, 7, 38, 16 D""" 6 E""" 15 Lydian on 20, 51, 29, 7, 38, 16 Cx"""" Dx"""" Gx"""" (incomplete Lower (incomplete Lower (incomplete Lower modes on 6) modes on 15) Mixolydian on 29, 7, 38, 16 (3 extensions required for complete Upper modes) 45 Bbb"" Cbb!!! Cb""" 51 B"" 51 Bb"" 46 !!!!!!!!!!!!!!!!!!!!!!!!!!! Cb"" 50 A#" B" 50 Cbb!! Bb" 45 !!!!!!!!!!!!!!!!!!!!!!!!!!! Cb" 49 A# B 49 Cbb! Bb 44 !!!!!!!!!!!!!!!!!!!!!!!!!!! Cb 48 A#$ B$ 48 Cbb Bb$ 43 !!!!!!!!!!!!!!!!!!!!!!!!!!! Cb$ 47 A#$$ B$$ 47 Cbb" Bb$$ 42 !!!!!!!!!!!!!!!!!!!!!!!!!!! A#$$$ Cb$$ 46 B$$$ 46 Dbb!!! C"" 2 B#! # !! Dbb!! # ! C" 1 # !!!!!!!!!!!!!!!!! # ! o Dbb! # o ! C0 # !!!!!!!!!!!!!!!!! o B#" # o " Dbb # " o C$ 52 # " Dbb" # "" C$$ 51 B#""" modes on 37) Dbb"" Gbb"" Abb"" Dbb"" First Extension ! C""" 50 F""" 19 G""" 28 C""" 50 (optional) ! B#"""" E#"""" Fx"""" B#"""" Fbb"" Bbbb"" Cbb"" ! Eb""" 10 Ab""" 32 Bb""" 41 (optional) ! D#"""" G#"""" A#"""" Third Extension ! (optional) ! Db""" 1 C#"""" 1 Gb""" 23 F#"""" 23 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Cb""" 45 B"""" 45 # !!!!!!!!!!!!!!!!! B#"" ! ! ! B# A""" 37 Second Extension !! " "" Complete Upper and Lower modes on all keys * Compendium Musica Modes for 53Et Complete Locrian to Lydian modes from Ebb to A# Lower Modes Upper Modes (retrograde inversion around C) ! " Gb# - 27 C Locrian (Db!+) Eb - 13 Db! - 5 Bb - 44 Db# - 5 C Phrygian (Ab!+) Bb - 44 Ab# - 36 C Aeolian (Eb!+) Eb! - 14 C-0 F - 22 C Dorian 2 (Bb!+) C-0 Eb# - 14 Bb! - 45 D-9 Bb - 44 F - 22 C-0 C Dorian 3 * 46 C# - 1 D$ - 8 Bb - 44 C Dorian 1 (Bb+) D-9 A$ - 39 (not part of the above system of modes) Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 G - 31 D-9 B$ - 48 C-0 F - 22 A$ - 39 Bb - 44 G$ - 30 A - 40 F#$ - 26 E$ - 17 D$ - 8 Eb - 13 C$ - 52 Bb# - 45 G - 31 A$ - 39 G$ - 30 D-9 B$ - 48 C-0 F - 22 C Mixolydian (F+) A - 40 G - 31 E$ - 17 D$ - 8 F# - 23 Eb# - 14 (self-symmetrical around C) C Ionian (C+) D-9 F# - 23 G - 31 * (hybrid construct) Bb# - 45 Bb# - 45 C-0 A$ - 39 G - 31 G - 31 C-0 C Lydian (G+) C-0 Eb# - 14 Ab! - 36 F - 22 Eb# - 14 Ab# - 36 F - 22 G - 31 E$ - 17 C-0 F - 22 D$ - 8 A$ - 39 Compendium Musica Polychromatic Layout for 53Et Generalised Isomorphic Keyboard Db!!!! 8 C#!!! 8 8 30 (optional) 52 Fb!!!! E!!! 21 First Extension 21 43 12 34 3 (optional) 25 Necessary notes for 47 Fbb!!!! complete Upper modes 16 Eb!!! 16 Bbbb!!!! on top row keys 38 D#!! Ab!!! 38 Enharmonic dual keys 29 Second Extension (optional) Ebb!!!! Dbb!!!! A!!! 43 Dx!! D!!! 12 Abb!!!! Cx!! G!!! 34 Gx!! Dbb!!!! Gbb!!!! B#!! F!!! 25 Cbb!!!! E#!! Bb!!! 47 Db!!! 7 C#!! 7 C!!! 3 Fx!! G#!! Gb!!! 29 F#!! 29 Cb!!! 51 51 Fb!!! 20 E!! 20 Bbb!!! note duplication 42 Dx! A!! 42 Ebb!!! 11 D!! 11 Abb!!! Cx! G!! 33 B!! Dbb!!! 2 C!! 2 Gbb!!! 24 B#! F!! 24 Cbb!!! E#! Bb!! 46 Dbb!!! C!! 2 Fx! 46 Fbb!!! 15 Eb!! 15 Bbbb!!! 37 D#! Ab!! 37 Db!! 6 C#! 6 6 G#! Gb!! 28 F#! 28 Cb!! 50 Fb!! 19 E! 19 Bbb!! Dx A! 41 Ebb!! 10 D! 10 Abb!! Cx G! 32 B! Dbb!! 1 C! 1 Gbb!! 23 B# F! 23 Cbb!! E# Bb! 45 Dbb!! C! 1 Fx 45 Fbb!! 14 Eb! 14 Bbbb!! 36 D# Ab! 36 Db! 5 C# 5 5 G# Gb! 27 F# 27 Cb! 49 Fb! 18 E 18 Bbb! Dx" A 40 Ebb! 9 D9 Abb! Cx" G 31 B Dbb! 0 C0 Gbb! 22 B#" F 22 Cbb! E#" Bb 44 Dbb! C0 Fx" 44 Fbb! 13 Eb 13 Bbbb! 35 D#" Ab 35 4 Db 4 C#" 4 G#" Gb 26 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 49 Gx" 31 26 B# A# 49 40 50 Gx 32 27 B#! A#! 50 41 51 Gx! 33 28 B#!! A#!! Start of 53Et 53 ET Cb!!!! 52 B!!! 52 Bbb!!!! C!!! 3 7 47 Gb!!!! 30 F#!!! 30 Third Extension A#" B#" Compendium Musica F#! 26 Cb 48 48 Fb 17 E! 17 Bbb Dx!! A! 39 39 Ebb 8 30 Dbb 52 C! 52 21 B#!! D! 8 Abb Cx!! G! 30 Dbb Fx!! C! 52 Gbb F! 21 Cbb E#!! Bb! 43 Fbb 12 Eb! 12 Bbbb 34 D#!! Ab! 34 Db! 3 C#!! 3 3 G#!! Gb! 25 F#!! 25 Cb! 47 Fb! 16 E!! 16 Bbb! Dx!!! A!! 38 Ebb! 7 29 Dbb! 51 C!! 51 20 B#!!! Abb! Cx!!! G!! 29 Dbb! Fx!!! C!! 51 Gbb! Fbb! Gx!!! F!! 20 Cbb! E#!!! Bb!! 42 Start of 53Et 11 Eb!! 11 Bbbb! note duplication 33 D#!!! Ab!! 33 Enharmonic dual keys 24 Db!! 2 C#!!! 2 G#!!! Gb!! 24 F#!!! 24 Cb!! 46 46 Fb!! 15 E!!! 15 Bbb!! complete Lower modes Dx!!!! A!!! 37 First Extension 37 6 28 50 C!!! 50 (optional) 19 B#!!!! Ebb!! Dbb!! Abb!! Cx!!!! G!!! 28 Dbb!! Fx!!!! C!!! 50 Gbb!! Gx!!!! F!!! 19 Cbb!! E#!!!! Bb!!! 41 Fbb!! Second Extension 10 Eb!!! 10 Bbbb!! (optional) 32 D#!!!! Ab!!! 32 Third Extension 23 (optional) 45 Db!!! 1 C#!!!! 1 B!!! 46 D!!! 6 41 1 B#!!! A#!!! Necessary notes for on bottom row keys B!! 47 D!! 7 42 2 B#!! A#!! 47 38 B#!!!! A#!!!! G#!!!! Gb!!! 23 F#!!!! 23 (foldout) 48 Gx!! 43 25 B! 48 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Cb!!! 45 B!!!! 45 Compendium Musica Isomorphic Keyboard Patterns for 53Et C Lydian (G+) A - 40 C Ionian (C+) D-9 D-9 G - 31 C-0 G - 31 C-0 C-0 C-0 F - 22 F#! - 26 B! - 48 B! - 48 E! - 17 E! - 17 A! - 39 ! ! A! - 39 (retrograde inversion around C) (retrograde inversion around C) ! ! C Locrian (Db!+) D! - 8 C Phrygian (Ab!+) Eb" - 14 Bb" - 45 Ab" - 36 Eb" - 14 Db! - 5 Ab! - 36 Gb" - 27 Db" - 5 C-0 C-0 G - 31 C-0 F - 22 C-0 Bb - 44 F - 22 Eb - 13 Bb - 44 C Mixolydian (F+) G - 31 C Dorian 1 (Bb+) C-0 C-0 C-0 C-0 F - 22 F - 22 Bb - 44 Bb - 44 Eb - 13 E! - 17 A! - 39 A! - 39 D! - 8 D! - 8 G! - 30 ! ! G! - 30 (retrograde inversion around C) (retrograde inversion around C) ! ! C Aeolian (Eb!+) C Dorian 2 (Bb!+) F" - 23 C! - 52 C! - 52 C" - 1 C" - 1 Bb" - 45 F" - 23 Eb! - 14 Bb! - 45 Ab" - 36 Eb" - 14 D-9 A - 40 G - 31 C-0 D-9 C-0 49 G - 31 C-0 F - 22 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 C-0 Compendium Musica * C Dorian 3 Bb! - 45 Eb! - 14 (hybrid construct) (self-symmetrical around C) * (not part of the above D-9 G - 31 system of isomorphic patterns) C-0 C-0 F - 22 Bb - 44 A" - 39 D" - 8 (foldout) 50 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Compendium Musica Mode Roots for Minimum Complete 53Et System (53 notes + (2 x 8) duplicate notes = 69 Notes) Complete Mode Roots Complete Locrian to Lydian modes from Ebb! to A#" Syntonic Comma range = !!!!, !!!, !!, !, o, ", "", """, """" Cycle of Fifths Keys by ( 31n mod 53 ) Fifths 51 Lower Modes only Upper Lower Complete Upper and Lower Modes 24 Dx# F#!!! Gb!! 46 Gx# B!!! Cb!! 15 Cx# Dx!!!! E!!! (incomplete 37 Fx# Gx!!!! A!!! Lower Bbb!! 6 Bx Cx!!!! D!!! modes) Ebb!! 28 Ex Fx!!!! G!!! Abb!! Abb!! Bx# D#!!! Eb!! 33 Ex# G#!!! Ab!! 2 Ax# C#!!! Db!! C"" Fb!! Fbb! Cx" Bbbb! Fx" E#" (incomplete Lower modes) Ax B#!!!! C!!! Dbb!! Dbb!! 19 Dx E#!!!! F!!! Gbb!! Gbb!! Dx 41 Gx A#!!!! Bb!!! Cbb!! Cbb!! Gx 10 Cx D#!!!! Eb!!! Fbb!! Fbb!! Cx 32 Fx G#!!!! Ab!!! Bbbb!! Bbbb!! 1 B# C#!!!! Db!!! C" Fx B# 23 E# F#!!!! Gb!!! E# 45 A# B!!!! Cb!!! 14 D# E!!!! Fb!!! 36 G# A!!!! Bbb!!! 5 C# D!!!! Ebb!!! 27 F# 49 B 18 A# D# G# C# F# B E A D G C F Bb Eb Ab Db Gb Cb Fb Bbb Ebb G!!!! Abb!!! C!!!! Dbb!!! E F!!!! Gbb!!! Dx! 40 A Bb!!!! Cbb!!! Gx! 9 D Eb!!!! Fbb!!! Cx! 31 G Ab!!!! Bbbb!!! Fx! 0 C 22 C!!!! C Db!!!! B#! F Gb!!!! E#! 44 Bb Cb!!!! 13 Eb Fb!!!! A#! D#! G#! C#! F#! B! E! A! D! G! C! F! Bb! Eb! Ab! Db! Gb! Cb! Fb! Bbb! Ebb! 35 Ab 4 Db 26 Gb Abb!!!! 48 Cb Dbb!!!! 17 Fb Gbb!!!! Dx!! Dx!! 39 Bbb Cbb!!!! Gx!! Gx!! 8 Ebb Fbb!!!! Cx!! Cx!! Abb 52 Dbb 21 43 Bbb!!!! C"""" Ebb!!!! Fx!! Fx!! B#!! B#!! Gbb E#!! E#!! Cbb A#!! D#!! G#!! C#!! F#!! B!! E!! A!! D!! G!! C!! F!! A#!! D#!! G#!! C#!! F#!! B!! E!! A!! D!! G!! C!! F!! Bb!! 12 Fbb 34 Bbbb 3 Ebbb Bbbb!!!! C! C""" 25 Abbb 47 Dbbb 16 Gbbb Dx!!! 38 Cbbb Gx!!! 7 Fbbb Cx!!! 29 Bbbbb Fx!!! C!! (incomplete 51 Ebbbb B#!!! Upper 20 Abbbb E#!!! modes) 42 Dbbbb A#!!! Bb!! D"" G"" C"" F"" Bb"" Eb"" Ab"" Db"" Gb"" Cb"" Fb"" Bbb"" Ebb"" B#" 50 C!!! Lower Upper Modes only Modes Eb!! Ab!! Db!! Gb!! Cb!! Fb!! Bbb!! Ebb!! 11 30 Upper Modes A#" D#" G#" C#" F#" B" E" A" D" G" C" F" Bb" Eb" Ab" Db" Gb" Cb" Fb" Bbb" Ebb" Ebb""" D"" G"" C"" F"" Bb"" Eb"" Ab"" Db"" Gb"" Cb"" Fb"" Bbb"" Ebb"" (incomplete Abb""" Lower Dbb""" modes) Gbb""" Cbb""" Fbb""" Bbbb""" Abb"" Abb"" Dbb"" Dbb"" Gbb"" Gbb"" Dx"""" Cbb"" Cbb"" Gx"""" Fbb"" Fbb"" Cx"""" Bbbb"" Bbbb"" Fx"""" B#"""" E#"""" A#"""" D#"""" G#"""" C#"""" Abb" F#"""" Dbb" B"""" Gbb" Dx""" Cbb" Gx""" A"""" Fbb" Cx""" D"""" Fx""" G"""" B#""" C"""" Bbbb" E"""" E#""" F"""" A#""" Bb"""" D#""" Eb"""" G#""" Ab"""" C#""" Db"""" Abb F#""" Gb"""" Dbb B""" Cb"""" Gbb Dx"" Dx"" E""" Fb"""" Cbb Gx"" Gx"" A""" Bbb"""" Fbb Cx"" Cx"" D""" Ebb"""" Bbbb Fx"" Fx"" G""" Abb"""" B#"" B#"" C""" Dbb"""" E#"" E#"" F""" Gbb"""" A#"" D#"" G#"" C#"" F#"" B"" E"" A"" A#"" (incomplete Bb""" Cbb"""" D#"" Upper Eb""" Fbb"""" G#"" modes) Ab""" Bbbb"""" (incomplete Upper modes) Abb! Dbb! Gbb! Dx" Cbb! Gx" Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 C#"" Db""" F#"" Gb""" B"" Cb""" E"" Fb""" A"" Bbb""" Compendium Musica Modes for 53Et Complete Modes on Fbb! ! o " Fbb! Eb!! Eb!! Eb!! Ab!! Ab!! Ab!! Ab!! Db!! Db!! Db!! Db!! Gb!! Bbbb! Gb!! Gb!! Gb!! Cb!! Cb!! Cb!! Cb!! Fb!! Fb!! Fb!! Fb!! Bbb!! Bbb!! Bbb!! Bbb!! Ebb!! Ebb!! Ebb!! Abb!! Abb!! Abb!! Dbb!! Dbb!! Ebb!! Complete Locrian to Lydian modes from Ebb! to A#" roots Cb"" Ebb"" Ebb"" Abb"" Abb"" Abb"" Dbb"" Dbb"" Dbb"" Dbb"" Gbb"" Gbb"" Gbb"" Gbb"" Cbb"" Cbb"" Cbb"" Fbb"" Fbb"" Ab" Eb"" Ab"" Gb"" Gb"" Gb"" Cb"" Fb"" A" Cb" Cb" Cb" Fb" Fb" Fb" Bbb" Bbb" Bbb" Bbb" Bbb" Bbb" Bbb" Ebb" Ebb" Ebb" Ebb" Ebb" Ebb" Ebb" Abb" Abb" Abb" Abb" Abb" Abb" Dbb" Dbb" Dbb" Dbb" Dbb" D" D" D" D" D" G" G" G" G" G" C" C" C" C" C" F" Gbb" Gbb" Gbb" Gbb" Cbb" Cbb" Cbb" Fbb" Fbb" A C Eb D D G G C C C C C C F Eb Eb Eb Eb Ab Ab Ab Db Db Gb Gb Gb Gb Gb Gb Gb Cb Cb Cb Cb Cb Cb Fb Fb Fb Fb Bbb Bbb Bbb Ebb Ebb Ebb Ebb Ebb Ebb Ebb Abb Abb Abb Abb Abb Abb Dbb Dbb Dbb Dbb Dbb Gbb Gbb Gbb Gbb Cbb Cbb Cbb Fbb Fbb A! C! Db! Db! Db! Gb! Gb! Cb! Fb! Fb! Fb! Fb! Fb! Fb! Fb! Bbb! Bbb! Bbb! Bbb! Bbb! Bbb! Bbb! Ebb! Ebb! Ebb! Ebb! Ebb! Ebb! Abb! Gbb! Gbb! Gbb! Gbb! Cbb! Cbb! Cbb! F! Db! Gb! Abb! D! C! Db! Cb! Dbb! E! A! C! Db! Cb! Abb! E! A! Eb! Gb! Dbb! E! A! F! Cb! Abb! E! A! Bb! Gb! Dbb! E! A! F! Cb! Abb! E! A! Bb! Gb! Dbb! E! F! Cb! Abb! B! Bb! Gb! Dbb! F#! B! F! Cb! E!! C!! Bb!! F#! F#! C! Db! A#!! G!! G!! G!! C!! C!! F!! F!! F!! F!! Bb!! Bb!! A"" Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 E#!! E#!! E#!! A#!! A#!! A#!! D#!! C#!! F#!! A!! C!! E#!! C#!! E!! G!! B#!! C#!! E!! A!! B#!! C#!! E!! D!! B#!! D#!! B!! A!! Fx!! B#!! G#!! F#!! D!! Cx!! Fx!! D#!! B!! A!! Cx!! Fx!! G#!! F#!! Gx!! Cx!! D#!! B!! Gx!! Fx!! G#!! F#!! D!! Dx!! G#!! B!! D!! Bb!! G#! B! C! Ab! D#! F#! C! Eb! D#! B! C! Eb! D#! C#! G! Ab! D#! G#! D! Ab! D#! G#! D! Eb! D#! C#! G! Ab! A#! D#! C#! D! Eb! E#! A#! G#! G! Ab! E#! A#! C#! D! Eb! E#! A#! G#! G! Ab! E#! F#! Bb! B#! A#! B! F! B#! E#! F#! Bb! B#! A#! B! F! B#! E#! F#! Bb! Fx! B#! A#! B! Bb! Fx! C#! D! Cx! Cx! Fx! G#! G! Gx! Cx! C#! D! Gx! Fx! G#! G! Eb! Dx! C#! G! Ab! Bbbb D D Ab Fb A G Db Bbb B D Ab Fb F# G Db Bbb C# F# D Ab Fb C# F# G Db Bbb C# F# D Ab C# C# A Eb D# F# A Eb A# C# A F E# A# F# A Bb E# A# C# A F E# A# G# E Bb E# A# D# B F E# A# D# B Bb E# G# E F B# D# E Bb B# G# B F B# D# E Bb B# G# B F Fx B# D# E Bb Fx G# B Cx Cx Fx D# E Gx Cx G# B Gx Fx G# E Bb Dx F# G Db Bbb A# G Db Bbbb" D" D" G" Db" Cb" F#" E" Eb" Fb" C#" A" Ab" Cb" G#" C#" E" Eb" Fb" G#" C#" E" Eb" Cb" G#" C#" A" Ab" Gb" G#" C#" A" Ab" Db" G#" C#" E" Eb" Db" G#" G#" A" Ab" Gb" D#" E" Eb" Db" D#" A" Ab" Gb" D#" E" Eb" Db" D#" A" Ab" Gb" D#" E" Eb" Db" D#" B" F" Gb" A#" D#" F#" Bb" Db" E#" A#" B" F" Gb" E#" A#" F#" Bb" B#" E#" B" Bb" B#" A#" F#" F" B#" E#" B" Bb" B#" A#" F#" F" Fx" B#" C#" G" Cx" E#" B" Bb" Fx" A#" F#" F" Cx" Fx" E#" B" Bb" Cx" Fx" A#" F#" Bb" Gb" D"" B" C" F" Fb" 52 Eb"" Cb"" Cb" Ebb! Eb"" Cb"" Fb" Cb Eb"" C" Bbbb"" F"" F"" Gb"" Ebb"" Ebb"" C"" Bb"" Db"" Fb"" C"" F"" Ab"" Bbb"" C"" Bb"" Ab"" Fb"" G"" F"" Db"" Bbb"" D"" G"" Bb"" Ab"" Fb"" D"" G"" Bb"" Db"" Bbb"" Abb"" C"" Db"" Bbb"" Gbb!! D"" G"" Eb!! Fx"" E#"" E#"" E#"" A#"" A#"" A#"" D#"" D#"" D#"" D#"" G#"" G#"" G#"" G#"" C#"" C#"" C#"" F#"" F#"" F#"" F#"" B"" B"" B"" E"" E"" E"" E"" A"" A"" A"" B#"" A#"" C#"" B"" B#"" Dx" Gx" Gx" Compendium Musica Modes for 53Et Complete modes on C Complete Modes on C Lower Modes C Locrian (Db!+) F! Upper Modes C Phrygian (Ab!+) C Aeolian (Eb!+) C Dorian 2 (Bb!+) F! - 23 C! - 1 F! - 23 C! - 1 F! - 23 Bb! - 45 C! F! Bb! - 45 Bb! - 45 Bb! - 45 Eb! - 14 Eb! - 14 Eb! - 14 Eb! - 14 Ab! - 36 Ab! - 36 Ab! - 36 Db! Db! Db! - 5 Db! - 5 Gb! Gb! - 27 Bb! Bb! Bb! Eb! Eb! Eb! Eb! Ab! Ab! Ab! A D G G D G G D G C C C C C C F F F F F F Bb Bb Bb Bb Eb C Eb A" D" G" C" E" A" D" G" C Lydian (G+) All Modes on C Eb! - 14 Db! - 5 G - 31 D-9 G - 31 C-0 C-0 C-0 F - 22 F - 22 F - 22 Bb - 44 Bb - 44 A - 40 D-9 G - 31 C-0 G - 31 D-9 G - 31 C-0 C-0 C-0 F - 22 F - 22 F - 22 Bb - 44 Bb - 44 A - 40 D-9 G - 31 C-0 A - 40 D-9 G - 31 C-0 F - 22 Bb - 44 Eb - 13 F#" B" E" A" Eb - 13 Gb! - 27 C" - 52 Db! - 5 Bb - 44 G" - 30 Keys: Db!+ / Ab!+ / Eb!+ / Bb!+ Ab! - 36 D" - 8 Eb! - 14 C-0 F - 22 A" - 39 Bb+ / F+ / C+ / G+ Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Bb! - 45 G - 31 E" - 17 F#" - 26 B" - 48 E" - 17 A" - 39 B" - 48 E" - 17 A" - 39 D" - 8 E" - 17 A" - 39 D" - 8 G" - 30 A" - 39 D" - 8 G" - 30 C" - 52 Eb - 13 53 C Ionian (C+) Ab! - 36 Eb - 13 B" E" A" D" C Mixolydian (F+) Gb! - 27 A D G C Dorian 1 (Bb+) F! - 23 D-9 B" - 48 C! - 1 A - 40 F#" - 26 F#" - 26 B" - 48 E" - 17 A" - 39 D" - 8 G" - 30 C" - 52 Compendium Musica Modes for 53Et Renaissance Polyphony C Major plus Music Ficta F Major plus Music Ficta F! - 23 Bb! - 45 Bb! - 45 Eb! - 14 A - 40 D-9 D-9 G - 31 G - 31 C-0 C-0 F - 22 Bb - 44 F - 22 Bb - 44 Eb - 13 F#" - 26 B" - 48 E" - 17 A" - 39 D" - 8 B" - 48 E" - 17 A" - 39 D" - 8 G" - 30 G#"" - 34 C#"" - 3 F#"" - 25 C#"" - 3 F#"" - 25 B"" - 47 Bb! - 45 Bb - 44 C-0 F - 22 D" - 8 A" - 39 F#"" - 25 G - 31 E" - 17 C#"" - 3 F! - 23 D-9 B" - 48 Eb! - 14 A - 40 Eb - 13 F#" - 26 F - 22 Bb - 44 G" - 30 G#"" - 34 D" - 8 B"" - 47 C-0 A" - 39 F#"" - 25 Combined Eb! - 14 Eb - 13 G" - 30 D" - 8 B"" - 47 54 F - 22 Bb - 44 C-0 A" - 39 F#"" - 25 Bb! - 45 G - 31 E" - 17 C#"" - 3 F! - 23 D-9 B" - 48 G#"" - 34 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 A - 40 F#" - 26 E" - 17 C#"" - 3 Bb! - 45 G - 31 D-9 B" - 48 Compendium Musica 5 Limit Just Intonation and 53 Tone Equal Temperament (all 5 Limit ratios calculated by Perfect Fifths and Syntonic Commas) Syntonic Comma = (81/80) = 21.51 cents Holdrian Comma = 2^(1/53) = 22.64 cents !,",!!,"",!!!,""" = Syntonic Comma sharp, flat 5 Limit Ratios 53ET Ratio Cents +/- from 12ET 2^(53/53) 2^(52/53) 2^(51/53) 2^(50/53) 2^(49/53) 2^(48/53) 2^(47/53) 2^(46/53) 2^(45/53) 2^(44/53) 2^(43/53) 2^(42/53) 2^(41/53) 2^(40/53) 2^(39/53) 2^(38/53) 2^(37/53) 2^(36/53) 2^(35/53) 2^(34/53) 2^(33/53) 2^(32/53) 2^(31/53) 2^(30/53) 2^(29/53) 2^(28/53) 2^(27/53) 2^(26/53) 2^(25/53) 2^(24/53) 2^(23/53) 2^(22/53) 2^(21/53) 2^(20/53) 2^(19/53) 2^(18/53) 2^(17/53) 2^(16/53) 2^(15/53) 2^(14/53) 2^(13/53) 2^(12/53) 2^(11/53) 2^(10/53) 2^(9/53) 2^(8/53) 2^(7/53) 2^(6/53) 2^(5/53) 2^(4/53) 2^(3/53) 2^(2/53) 2^(1/53) 2^(0/53) 2 1.974014 1.948365 1.923050 1.898064 1.873402 1.849061 1.825036 1.801323 1.777918 1.754817 1.732017 1.709512 1.687301 1.665377 1.643739 1.622382 1.601302 1.580496 1.559960 1.539692 1.519686 1.499941 1.480452 1.461216 1.442231 1.423492 1.404996 1.386741 1.368723 1.350939 1.333386 1.316061 1.298961 1.282084 1.265426 1.248984 1.232756 1.216738 1.200929 1.185325 1.169924 1.154723 1.139720 1.124911 1.110295 1.095869 1.081630 1.067577 1.053705 1.040015 1.026502 1.013164 1 1200 1177.36 1154.72 1132.08 1109.43 1086.79 1064.15 1041.51 1018.87 996.23 973.58 950.94 928.30 905.66 883.02 860.38 837.74 815.09 792.45 769.81 747.17 724.53 701.89 679.25 656.60 633.96 611.32 588.68 566.04 543.40 520.75 498.11 475.47 452.83 430.19 407.55 384.91 362.26 339.62 316.98 294.34 271.70 249.06 226.42 203.77 181.13 158.49 135.85 113.21 90.57 67.92 45.28 22.64 0 0 -22.64 -45.28 32.08 9.43 -13.21 -35.85 41.51 18.87 -3.77 -26.42 -49.06 28.30 5.66 -16.98 -39.62 37.74 15.09 -7.55 -30.19 47.17 24.53 1.89 -20.75 -43.40 33.96 11.32 -11.32 -33.96 43.40 20.75 -1.89 -24.53 -47.17 30.19 7.55 -15.09 -37.74 39.62 16.98 -5.66 -28.30 49.06 26.42 3.77 -18.87 -41.51 35.85 13.21 -9.43 -32.08 45.28 22.64 0 55 Dbb! *Dbb Dbb" 65536/32805 1048576/531441 83886080/43046721 1198.05 1176.54 1155.03 53Et +/- 53Et +/- from Just from Just 1.95 0.82 -0.32 * (2^8) / (3/2)^12 deviates from 53Et by only 0.82 cents! !Utonality -----(25/24) Cb!!! 243/125 1150.83 3.88 Cb"" Cb! Cb Cb" Cb"" 48/25 256/135 4096/2187 327680/177147 26214400/14348907 1129.33 1107.82 1086.31 1064.81 1043.30 2.75 1.61 0.48 -0.66 -1.79 Bbb!!! 216/125 946.92 4.02 Bbb"" Bbb! Bbb Bbb" Bbb"" 128/75 2048/1215 32768/19683 2621440/1594323 209715200/129140163 925.42 903.91 882.40 860.90 839.39 2.88 1.75 0.61 -0.52 -1.66 ! -----! ! ! ----------! -----! 743.01 4.16 Abb!! Abb! Abb Abb" 1024/675 16384/10935 262144/177147 20971520/14348907 721.51 700.00 678.49 656.99 3.02 1.89 0.75 -0.38 ! ! ------ ! ------ -------------------------------------------------------------------------------------------------------------- -----! Gb!!! 729/500 652.79 3.81 Gb"" Gb" Gb Gb" Gb"" 36/25 64/45 1024/729 81920/59049 6553600/4782969 631.28 609.78 588.27 566.76 545.26 2.68 1.54 0.41 -0.73 -1.86 Fb!!! 162/125 448.88 3.95 Fb"" Fb! Fb Fb" Fb"" 32/25 512/405 8192/6561 655360/531441 52428800/43046721 427.37 405.87 384.36 362.85 341.35 2.82 1.68 0.55 -0.59 -1.72 Ebb""" 144/125 244.97 4.09 Ebb"" Ebb! Ebb Ebb" Ebb"" 256/225 4096/3645 65536/59049 5242880/4782969 419430400/387420489 223.46 201.96 180.45 158.94 137.44 2.95 1.82 0.68 -0.45 -1.59 4.22 Dbb!! Dbb! 2048/2025 32768/32805 19.55 -1.95 3.09 1.95 C""" 1024000/531441 1135.48 -3.41 ! ! ------ Bb!!! 59049/32000 1060.61 3.54 (25/24) Bb!! Bb" Bb Bb" Bb"" 729/400 9/5 16/9 1280/729 102400/59049 1039.10 1017.60 996.09 974.58 953.08 2.41 1.27 0.14 -1.00 -2.13 ! ----------! (16/15) (16/15) ! ! -----Ab!!! 6561/4000 856.70 3.68 (25/24) Ab!! Ab" Ab Ab" Ab"" 81/50 8/5 128/81 10240/6561 819200/531441 835.19 813.69 792.18 770.67 749.17 2.54 1.41 0.27 -0.86 -2.00 ! -----! (16/15) ! ! -----(25/24) ! -----648/625 ! ------ F!!! 177147/128000 562.56 3.47 ! ! ------ F!! F! F F" F"" 2187/1600 27/20 4/3 320/243 25600/19683 541.06 519.55 498.04 476.54 455.03 2.34 1.20 0.07 -1.07 -2.20 (25/24) F""" 2048000/1594323 433.53 -3.34 ! ! ------ ! -----! (16/15) ! ! -----! ----------! ! ! ------ ! -----! (16/15) Eb!!! 19683/16000 358.65 3.61 (25/24) Eb!! Eb" Eb Eb" Eb"" 243/200 6/5 32/27 2560/2187 204800/177147 337.15 315.64 294.13 272.63 251.12 2.48 1.34 0.20 -0.93 -2.07 ! -----! Db!!! 2187/2000 154.74 3.75 (25/24) Db!! Db" Db Db" Db"" 27/25 16/15 256/243 20480/19683 1638400/1594323 133.24 111.73 90.22 68.72 47.21 2.61 1.48 0.34 -0.79 -1.93 ! -----! (16/15) ! ------ -------------------------------------------------------------------------------------------------------------- ------ Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 -----! (16/15) (25/24) 41.06 0 -1.14 -2.27 ! ! ------ ------------------------------------------------------------------------------------------------------------------! (25/24) 128/125 1200 1178.49 1156.99 (16/15) (25/24) Dbb""" 2/1 160/81 12800/6561 (16/15) (25/24) 192/125 C C" C"" (16/15) (25/24) Abb""" 53Et +/from Just (16/15) ! ! ----------- (16/15) ! ! ------ Compendium Musica Otonality! Avg.-> 1.8723 (75 values) 53Et +/- 53Et +/- 53Et +/- from Just from Just from Just 53ET Ratio Cents +/- from 12ET 2^(53/53) 2^(52/53) 2^(51/53) 2^(50/53) 2^(49/53) 2^(48/53) 2^(47/53) 2^(46/53) 2^(45/53) 2^(44/53) 2^(43/53) 2^(42/53) 2^(41/53) 2^(40/53) 2^(39/53) 2^(38/53) 2^(37/53) 2^(36/53) 2^(35/53) 2^(34/53) 2^(33/53) 2^(32/53) 2^(31/53) 2^(30/53) 2^(29/53) 2^(28/53) 2^(27/53) 2^(26/53) 2^(25/53) 2^(24/53) 2^(23/53) 2^(22/53) 2^(21/53) 2^(20/53) 2^(19/53) 2^(18/53) 2^(17/53) 2^(16/53) 2^(15/53) 2^(14/53) 2^(13/53) 2^(12/53) 2^(11/53) 2^(10/53) 2^(9/53) 2^(8/53) 2^(7/53) 2^(6/53) 2^(5/53) 2^(4/53) 2^(3/53) 2^(2/53) 2^(1/53) 2^(0/53) 2 1.974014 1.948365 1.923050 1.898064 1.873402 1.849061 1.825036 1.801323 1.777918 1.754817 1.732017 1.709512 1.687301 1.665377 1.643739 1.622382 1.601302 1.580496 1.559960 1.539692 1.519686 1.499941 1.480452 1.461216 1.442231 1.423492 1.404996 1.386741 1.368723 1.350939 1.333386 1.316061 1.298961 1.282084 1.265426 1.248984 1.232756 1.216738 1.200929 1.185325 1.169924 1.154723 1.139720 1.124911 1.110295 1.095869 1.081630 1.067577 1.053705 1.040015 1.026502 1.013164 1 1200 1177.36 1154.72 1132.08 1109.43 1086.79 1064.15 1041.51 1018.87 996.23 973.58 950.94 928.30 905.66 883.02 860.38 837.74 815.09 792.45 769.81 747.17 724.53 701.89 679.25 656.60 633.96 611.32 588.68 566.04 543.40 520.75 498.11 475.47 452.83 430.19 407.55 384.91 362.26 339.62 316.98 294.34 271.70 249.06 226.42 203.77 181.13 158.49 135.85 113.21 90.57 67.92 45.28 22.64 0 0 -22.64 -45.28 32.08 9.43 -13.21 -35.85 41.51 18.87 -3.77 -26.42 -49.06 28.30 5.66 -16.98 -39.62 37.74 15.09 -7.55 -30.19 47.17 24.53 1.89 -20.75 -43.40 33.96 11.32 -11.32 -33.96 43.40 20.75 -1.89 -24.53 -47.17 30.19 7.55 -15.09 -37.74 39.62 16.98 -5.66 -28.30 49.06 26.42 3.77 -18.87 -41.51 35.85 13.21 -9.43 -32.08 45.28 22.64 0 -----" B"" B" B B" B!! 1594323/819200 19683/10240 243/128 15/8 50/27 1152.79 1131.28 1109.78 1088.27 1066.76 1.93 0.79 -0.34 -1.48 -2.61 " ----------" B!!! 4000/2187 1045.26 -3.75 (16/15) A"" A" A A" A!! 177147/102400 2187/1280 27/16 5/3 400/243 948.88 927.37 905.87 884.36 862.85 2.07 0.93 -0.20 -1.34 -2.48 " -----" A!!! 32000/19683 841.35 -3.61 (16/15) (16/15) G""" 1594323/1024000 766.47 3.34 " " ------ G"" G" G G! G!! 19683/12800 243/160 3/2 40/27 3200/2187 744.97 723.46 701.96 680.45 658.94 2.20 1.07 -0.07 -1.20 -2.34 (16/15) " " -----(25/24) " " -----(25/24) (25/24) " -----648/625 " -----(25/24) 256000/177147 637.44 " " -----(25/24) " -----" A#"" A#" A# A#! A#"" 387420489/209715200 4782969/2621440 59049/32768 3645/2048 225/128 1062.56 1041.06 1019.55 998.04 976.54 1.59 0.45 -0.68 -1.82 -2.95 A#""" 125/72 955.03 -4.09 " " ------ G#"" G#" G# G#! G#"" 43046721/26214400 531441/327680 6561/4096 405/256 25/16 858.65 837.15 815.64 794.13 772.63 1.72 0.59 -0.55 -1.68 -2.82 (25/24) G#!!! 125/81 751.12 -3.95 F#"" F#" F# F#" F#"" 4782969/3276800 59049/40960 729/512 45/32 25/18 654.74 633.24 611.73 590.22 568.72 1.86 0.73 -0.41 -1.54 -2.68 F#!!! 1000/729 547.21 -3.81 (16/15) " " ----------- 531441/409600 6561/5120 81/64 5/4 100/81 450.83 429.33 407.82 386.31 364.81 2.00 0.86 -0.27 -1.41 -2.54 E!!! 8000/6561 343.30 -3.68 " -----" (16/15) " " ------ --------------------------------------------------------------------------------------------------------------------- ------ B#""" 125/64 1158.94 -4.22 E#" E# E#! E#!! 14348907/10485760 177147/131072 10935/8192 675/512 543.01 521.51 500.00 478.49 0.38 -0.75 -1.89 -3.02 E#""" 125/96 456.99 -4.16 (25/24) " -----" " " ------ D#"" D#" D# D#! D#"" 129140163/104857600 1594323/1310720 19683/16384 1215/1024 75/64 360.61 339.10 317.60 296.09 274.58 1.66 0.52 -0.61 -1.75 -2.88 D#!!! 125/108 253.08 -4.02 14348907/13107200 177147/163840 2187/2048 135/128 25/24 156.70 135.19 113.69 92.18 70.67 1.79 0.66 -0.48 -1.61 -2.75 250/243 49.17 -3.88 (16/15) 59049/51200 729/640 9/8 10/9 800/729 246.92 225.42 203.91 182.40 160.90 2.13 1.00 -0.14 -1.27 -2.41 (25/24) " -----" D!!! 64000/59049 139.39 -3.54 (16/15) (16/15) C""" 531441/512000 64.52 3.41 " " ------ C#"" C#" C# C#! C#"" " " ------ C"" C" C 6561/6400 81/80 1/1 43.01 21.51 0 2.27 1.14 0 (25/24) C#!!! 56 -1.95 -3.09 " -----" D"" D" D D" D!! (25/24) 1201.95 1180.45 (25/24) (16/15) (16/15) " " ----------- " -----" -3.47 E"" E" E E" E!! 32805/16384 2025/1024 (25/24) " " ------------------------------------------------------------------------------------------------------------------- -----" G!!! " -----" (16/15) ------ --------------------------------------------------------------------------------------------------------------------- ------ B#! B#!! " ----------" " ------ * (3/2)^12 / (2^7) deviates from 53Et by only -0.82 cents! B#" *B# B#! 43046721/41943040 531441/524288 32805/32768 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 44.97 23.46 1.95 0.32 -0.82 -1.95 Compendium Musica 5 Limit Just Intonation and 53 Tone Equal Temperament (all 5 Limit ratios calculated by Perfect Fifths and Syntonic Commas) Syntonic Comma = (81/80) = 21.51 cents Holdrian Comma = 2^(1/53) = 22.64 cents !,",!!,"",!!!,""" = Syntonic Comma sharp, flat 5 Limit Ratios !(3/2)^x 53ET Ratio Cents +/- from 12ET 2^n 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 2^(11/53) 2^(33/53) 2^(2/53) 2^(24/53) 2^(46/53) 2^(15/53) 2^(37/53) 2^(6/53) 2^(28/53) 2^(50/53) 2^(19/53) 2^(41/53) 2^(10/53) 2^(32/53) 2^(1/53) 2^(23/53) 2^(45/53) 2^(14/53) 2^(36/53) 2^(5/53) 2^(27/53) 2^(49/53) 2^(18/53) 2^(40/53) 2^(9/53) 2^(31/53) 2^(0/53) 2^(22/53) 2^(44/53) 2^(13/53) 2^(35/53) 2^(4/53) 2^(26/53) 2^(48/53) 2^(17/53) 2^(39/53) 2^(8/53) 2^(30/53) 2^(52/53) 2^(21/53) 2^(43/53) 2^(12/53) 2^(34/53) 2^(3/53) 2^(25/53) 2^(47/53) 2^(16/53) 2^(38/53) 2^(7/53) 2^(29/53) 2^(51/53) 2^(20/53) 2^(42/53) 1.154723 1.539692 1.026502 1.368723 1.825036 1.216738 1.622382 1.081630 1.442231 1.923050 1.282084 1.709512 1.139720 1.519686 1.013164 1.350939 1.801323 1.200929 1.601302 1.067577 1.423492 1.898064 1.265426 1.687301 1.124911 1.499941 1 1.333386 1.777918 1.185325 1.580496 1.053705 1.404996 1.873402 1.248984 1.665377 1.110295 1.480452 1.974014 1.316061 1.754817 1.169924 1.559960 1.040015 1.386741 1.849061 1.232756 1.643739 1.095869 1.461216 1.948365 1.298961 1.732017 249.06 747.17 45.28 543.40 1041.51 339.62 837.74 135.85 633.96 1132.08 430.19 928.30 226.42 724.53 22.64 520.75 1018.87 316.98 815.09 113.21 611.32 1109.43 407.55 905.66 203.77 701.89 0 498.11 996.23 294.34 792.45 90.57 588.68 1086.79 384.91 883.02 181.13 679.25 1177.36 475.47 973.58 271.70 769.81 67.92 566.04 1064.15 362.26 860.38 158.49 656.60 1154.72 452.83 950.94 49.06 47.17 45.28 43.40 41.51 39.62 37.74 35.85 33.96 32.08 30.19 28.30 26.42 24.53 22.64 20.75 18.87 16.98 15.09 13.21 11.32 9.43 7.55 5.66 3.77 1.89 0 -1.89 -3.77 -5.66 -7.55 -9.43 -11.32 -13.21 -15.09 -16.98 -18.87 -20.75 -22.64 -24.53 -26.42 -28.30 -30.19 -32.08 -33.96 -35.85 -37.74 -39.62 -41.51 -43.40 -45.28 -47.17 -49.06 57 D#""" 53Et +/- 53Et +/- 53Et +/- from Just from Just from Just 125/108 253.08 -4.02 G#""" 125/81 751.12 -3.95 C#""" 250/243 49.17 -3.88 F#""" 1000/729 547.21 -3.81 B""" 4000/2187 1045.26 -3.75 E""" 8000/6561 343.30 -3.68 A""" 32000/19683 841.35 -3.61 D""" 64000/59049 139.39 -3.54 G""" 256000/177147 637.44 -3.47 C""" 1024000/531441 1135.48 -3.41 F""" 2048000/1594323 433.53 -3.34 B#""" 125/64 1158.94 -4.22 E#""" 125/96 456.99 -4.16 A#""" 125/72 955.03 -4.09 Eb"" Ab"" Db"" Gb"" Cb"" Fb"" Bbb"" Ebb"" B#"" E#"" A#"" D#"" G#"" C#"" F#"" B"" E"" A"" D"" G"" C"" F"" Bb"" 204800/177147 819200/531441 1638400/1594323 6553600/4782969 26214400/14348907 52428800/43046721 209715200/129140163 419430400/387420489 2025/1024 675/512 225/128 75/64 25/16 25/24 25/18 50/27 100/81 400/243 800/729 3200/2187 12800/6561 25600/19683 102400/59049 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 251.12 749.17 47.21 545.26 1043.30 341.35 839.39 137.44 1180.45 478.49 976.54 274.58 772.63 70.67 568.72 1066.76 364.81 862.85 160.90 658.94 1156.99 455.03 953.08 -2.07 -2.00 -1.93 -1.86 -1.79 -1.72 -1.66 -1.59 -3.09 -3.02 -2.95 -2.88 -2.82 -2.75 -2.68 -2.61 -2.54 -2.48 -2.41 -2.34 -2.27 -2.20 -2.13 B#" E#" A#" D#" G#" C#" F#" B" E" A" D" G" C" F" Bb" Eb" Ab" Db" Gb" Cb" Fb" Bbb" Ebb" Abb" Dbb" 32805/32768 10935/8192 3645/2048 1215/1024 405/256 135/128 45/32 15/8 5/4 5/3 10/9 40/27 160/81 320/243 1280/729 2560/2187 10240/6561 20480/19683 81920/59049 327680/177147 655360/531441 2621440/1594323 5242880/4782969 20971520/14348907 83886080/43046721 1.95 500.00 998.04 296.09 794.13 92.18 590.22 1088.27 386.31 884.36 182.40 680.45 1178.49 476.54 974.58 272.63 770.67 68.72 566.76 1064.81 362.85 860.90 158.94 656.99 1155.03 -1.95 -1.89 -1.82 -1.75 -1.68 -1.61 -1.54 -1.48 -1.41 -1.34 -1.27 -1.20 -1.14 -1.07 -1.00 -0.93 -0.86 -0.79 -0.73 -0.66 -0.59 -0.52 -0.45 -0.38 -0.32 Compendium Musica Otonality! 53Et +/- 53Et +/- 53Et +/- 53Et +/- from Just from Just from Just from Just 53ET 4.09 2^(11/53) 2^(33/53) 2^(2/53) 2^(24/53) 2^(46/53) 2^(15/53) 2^(37/53) 2^(6/53) 2^(28/53) 2^(50/53) 2^(19/53) 2^(41/53) 2^(10/53) 2^(32/53) 2^(1/53) 2^(23/53) 2^(45/53) 2^(14/53) 2^(36/53) 2^(5/53) 2^(27/53) 2^(49/53) 2^(18/53) 2^(40/53) 2^(9/53) 2^(31/53) 2^(0/53) 2^(22/53) 2^(44/53) 2^(13/53) 2^(35/53) 2^(4/53) 2^(26/53) 2^(48/53) 2^(17/53) 2^(39/53) 2^(8/53) 2^(30/53) 2^(52/53) 2^(21/53) 2^(43/53) 2^(12/53) 2^(34/53) 2^(3/53) 2^(25/53) 2^(47/53) 2^(16/53) 2^(38/53) 2^(7/53) 2^(29/53) 2^(51/53) 2^(20/53) 2^(42/53) "Utonality B# E# A# D# G# C# F# B E A D G C F Bb Eb Ab Db Gb Cb Fb Bbb Ebb Abb Dbb 531441/524288 177147/131072 59049/32768 19683/16384 6561/4096 2187/2048 729/512 243/128 81/64 27/16 9/8 3/2 1/1 4/3 16/9 32/27 128/81 256/243 1024/729 4096/2187 8192/6561 32768/19683 65536/59049 262144/177147 1048576/531441 23.46 521.51 1019.55 317.60 815.64 113.69 611.73 1109.78 407.82 905.87 203.91 701.96 0 498.04 996.09 294.13 792.18 90.22 588.27 1086.31 384.36 882.40 180.45 678.49 1176.54 -0.82 -0.75 -0.68 -0.61 -0.55 -0.48 -0.41 -0.34 -0.27 -0.20 -0.14 -0.07 0 0.07 0.14 0.20 0.27 0.34 0.41 0.48 0.55 0.61 0.68 0.75 0.82 B#! E#! A#! D#! G#! C#! F#! B! E! A! D! G! C! F! Bb# Eb# Ab# Db# Gb# Cb! Fb! Bbb! Ebb! Abb! Dbb! 43046721/41943040 14348907/10485760 4782969/2621440 1594323/1310720 531441/327680 177147/163840 59049/40960 19683/10240 6561/5120 2187/1280 729/640 243/160 81/80 27/20 9/5 6/5 8/5 16/15 64/45 256/135 512/405 2048/1215 4096/3645 16384/10935 32768/32805 44.97 543.01 1041.06 339.10 837.15 135.19 633.24 1131.28 429.33 927.37 225.42 723.46 21.51 519.55 1017.60 315.64 813.69 111.73 609.78 1107.82 405.87 903.91 201.96 700.00 -1.95 0.32 0.38 0.45 0.52 0.59 0.66 0.73 0.79 0.86 0.93 1.00 1.07 1.14 1.20 1.27 1.34 1.41 1.48 1.54 1.61 1.68 1.75 1.82 1.89 1.95 D!! G!! C!! F!! Bb!! Eb!! Ab!! Db!! Gb## Cb## Fb## Bbb## Ebb## Abb!! Dbb!! A#!! D#!! G#!! C#!! F#!! B!! E!! A!! 58 59049/51200 19683/12800 6561/6400 2187/1600 729/400 243/200 81/50 27/25 36/25 48/25 32/25 128/75 256/225 1024/675 2048/2025 387420489/209715200 129140163/104857600 43046721/26214400 14348907/13107200 4782969/3276800 1594323/819200 531441/409600 177147/102400 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 246.92 744.97 43.01 541.06 1039.10 337.15 835.19 133.24 631.28 1129.33 427.37 925.42 223.46 721.51 19.55 1062.56 360.61 858.65 156.70 654.74 1152.79 450.83 948.88 2.13 2.20 2.27 2.34 2.41 2.48 2.54 2.61 2.68 2.75 2.82 2.88 2.95 3.02 3.09 1.59 1.66 1.72 1.79 1.86 1.93 2.00 2.07 Ebb### 144/125 244.97 Abb### 192/125 743.01 4.16 Dbb### 128/125 41.06 4.22 G!!! 1594323/1024000 766.47 3.34 C!!! 531441/512000 64.52 3.41 F!!! 177147/128000 562.56 3.47 Bb!!! 59049/32000 1060.61 3.54 Eb!!! 19683/16000 358.65 3.61 Ab!!! 6561/4000 856.70 3.68 Db!!! 2187/2000 154.74 3.75 Gb!!! 729/500 652.79 3.81 Cb!!! 243/125 1150.83 3.88 Fb!!! 162/125 448.88 3.95 Bbb!!! 216/125 946.92 4.02 Compendium Musica 7, 11 and 13 Limit Just Intonation and 53 Tone Equal Temperament 7 Limit Ratios 53ET Ratio Cents +/- from 12ET 2^(53/53) 2^(52/53) 2^(51/53) 2^(50/53) 2^(49/53) 2^(48/53) 2^(47/53) 2^(46/53) 2^(45/53) 2^(44/53) 2^(43/53) 2^(42/53) 2^(41/53) 2^(40/53) 2^(39/53) 2^(38/53) 2^(37/53) 2^(36/53) 2^(35/53) 2^(34/53) 2^(33/53) 2^(32/53) 2^(31/53) 2^(30/53) 2^(29/53) 2^(28/53) 2^(27/53) 2^(26/53) 2^(25/53) 2^(24/53) 2^(23/53) 2^(22/53) 2^(21/53) 2^(20/53) 2^(19/53) 2^(18/53) 2^(17/53) 2^(16/53) 2^(15/53) 2^(14/53) 2^(13/53) 2^(12/53) 2^(11/53) 2^(10/53) 2^(9/53) 2^(8/53) 2^(7/53) 2^(6/53) 2^(5/53) 2^(4/53) 2^(3/53) 2^(2/53) 2^(1/53) 2^(0/53) 2 1.974014 1.948365 1.923050 1.898064 1.873402 1.849061 1.825036 1.801323 1.777918 1.754817 1.732017 1.709512 1.687301 1.665377 1.643739 1.622382 1.601302 1.580496 1.559960 1.539692 1.519686 1.499941 1.480452 1.461216 1.442231 1.423492 1.404996 1.386741 1.368723 1.350939 1.333386 1.316061 1.298961 1.282084 1.265426 1.248984 1.232756 1.216738 1.200929 1.185325 1.169924 1.154723 1.139720 1.124911 1.110295 1.095869 1.081630 1.067577 1.053705 1.040015 1.026502 1.013164 1 1200 1177.36 1154.72 1132.08 1109.43 1086.79 1064.15 1041.51 1018.87 996.23 973.58 950.94 928.30 905.66 883.02 860.38 837.74 815.09 792.45 769.81 747.17 724.53 701.89 679.25 656.60 633.96 611.32 588.68 566.04 543.40 520.75 498.11 475.47 452.83 430.19 407.55 384.91 362.26 339.62 316.98 294.34 271.70 249.06 226.42 203.77 181.13 158.49 135.85 113.21 90.57 67.92 45.28 22.64 0 0 -22.64 -45.28 32.08 9.43 -13.21 -35.85 41.51 18.87 -3.77 -26.42 -49.06 28.30 5.66 -16.98 -39.62 37.74 15.09 -7.55 -30.19 47.17 24.53 1.89 -20.75 -43.40 33.96 11.32 -11.32 -33.96 43.40 20.75 -1.89 -24.53 -47.17 30.19 7.55 -15.09 -37.74 39.62 16.98 -5.66 -28.30 49.06 26.42 3.77 -18.87 -41.51 35.85 13.21 -9.43 -32.08 45.28 22.64 0 59 C!! C! 35/18 63/32 Cb B 28/15 B" 40/21 27/14 Bb"" 64/35 53Et +/- Avg.-> 53Et +/- Avg.-> from Just 4.72 from Just 8.75 1172.74 1151.23 1137.04 1115.53 1080.56 4.62 3.49 -4.96 -6.10 6.24 1044.86 -3.35 968.83 947.32 933.13 4.76 3.62 -4.83 C!! C! 125/63 96/49 Bb"" Bb Bb!! Bb! 140/81 7/4 A" 12/7 25/14 A A!! 105/64 Ab! Ab 14/9 G# 63/40 45/28 G" G!! G"" 32/21 54/35 35/24 Gb F# 7/5 10/7 F"" 48/35 857.09 3.28 821.40 786.42 764.92 750.73 729.22 -6.30 6.03 4.90 -3.56 -4.69 653.18 3.42 617.49 582.51 -6.17 6.17 546.82 -3.42 Ab 42/25 100/63 G"" G!! F! 35/27 21/16 Fb E 56/45 E" 80/63 470.78 449.27 435.08 413.58 378.60 4.69 3.56 -4.90 -6.03 6.30 128/105 342.91 -3.28 81/70 266.87 252.68 231.17 4.83 -3.62 -4.76 9/7 Eb"" F!! 7/6 D" D"" 8/7 E 35/32 Db! Db 28/27 C# 21/20 15/14 C" C"" 64/63 36/35 155.14 3.35 119.44 84.47 62.96 48.77 27.26 -6.24 6.10 4.96 -3.49 -4.62 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 D!! 63/50 25/21 D D!! F"" 49/36 168/125 64/49 Eb Eb! 49/32 G! 125/84 72/49 F" F!! 49/27 28/25 54/49 C" C"" 49/48 126/125 1186.21 1164.30 -8.85 -9.59 1031.79 9.72 1003.80 -7.58 898.15 7.51 799.89 -7.44 737.65 9.52 688.16 666.26 -8.91 -9.65 533.74 511.84 9.65 8.91 462.35 -9.52 400.11 7.44 301.85 -7.51 196.20 7.58 168.21 -9.72 35.70 13.79 9.59 8.85 Compendium Musica 11 Limit Ratios C!! 49/25 1165.02 Avg.-> 53Et +/- Avg.-> 53Et +/- Avg.-> from Just 10.82 from Just 8.07 from Just 3.45 -10.31 B Bb"" A!! 90/49 1052.57 49/30 Ab"" 849.38 848.66 80/49 -11.06 10.99 -10.93 Bb"" A!! Ab G!! F"" E!! 49/40 Eb"" D!! 351.34 350.62 60/49 49/45 147.43 10.93 -10.99 11.06 60 50/49 34.98 21/11 1119.46 -10.03 11/6 -7.85 18/11 11/7 16/11 11/8 1049.36 20/11 1035.00 852.59 782.49 648.68 551.32 22/15 15/11 663.05 536.95 7.92 -7.92 417.51 -9.96 Eb"" 11/9 347.41 -7.79 12/11 22/21 150.64 80.54 25/13 1132.10 -0.02 Cb! 24/13 1061.43 Bb!! 26/15 952.26 -1.32 A 22/13 910.79 -5.13 G#" 13/8 840.53 G"" 20/13 745.79 1.38 F#" 13/9 636.62 -2.66 Gb! 18/13 563.38 2.66 F!! 13/10 454.21 -1.38 Fb! 16/13 359.47 Eb 13/11 289.21 5.13 D"" 15/13 247.74 1.32 C#" 13/12 138.57 Db! 26/25 67.90 13/7 1071.70 2.72 -7.55 6.51 21/13 830.25 -2.79 7.48 9.96 14/11 D!! B" 7.79 E Db C"" 13 Limit Ratios 53Et +/- 11/10 165.00 7.85 -6.45 6.45 26/21 369.75 2.79 -7.48 -6.51 14/13 128.30 -2.72 10.03 10.31 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 0.02 7.55 53ET 2^(53/53) 2^(52/53) 2^(51/53) 2^(50/53) 2^(49/53) 2^(48/53) 2^(47/53) 2^(46/53) 2^(45/53) 2^(44/53) 2^(43/53) 2^(42/53) 2^(41/53) 2^(40/53) 2^(39/53) 2^(38/53) 2^(37/53) 2^(36/53) 2^(35/53) 2^(34/53) 2^(33/53) 2^(32/53) 2^(31/53) 2^(30/53) 2^(29/53) 2^(28/53) 2^(27/53) 2^(26/53) 2^(25/53) 2^(24/53) 2^(23/53) 2^(22/53) 2^(21/53) 2^(20/53) 2^(19/53) 2^(18/53) 2^(17/53) 2^(16/53) 2^(15/53) 2^(14/53) 2^(13/53) 2^(12/53) 2^(11/53) 2^(10/53) 2^(9/53) 2^(8/53) 2^(7/53) 2^(6/53) 2^(5/53) 2^(4/53) 2^(3/53) 2^(2/53) 2^(1/53) 2^(0/53) Compendium Musica 7, 11 and 13 Limit Just Intonation and 53 Tone Equal Temperament 7 Limit Ratios !(3/2)^x 2^n 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22 -23 -24 -25 -26 61 53ET Ratio Cents +/- from 12ET 2^(11/53) 2^(33/53) 2^(2/53) 2^(24/53) 2^(46/53) 2^(15/53) 2^(37/53) 2^(6/53) 2^(28/53) 2^(50/53) 2^(19/53) 2^(41/53) 2^(10/53) 2^(32/53) 2^(1/53) 2^(23/53) 2^(45/53) 2^(14/53) 2^(36/53) 2^(5/53) 2^(27/53) 2^(49/53) 2^(18/53) 2^(40/53) 2^(9/53) 2^(31/53) 2^(0/53) 2^(22/53) 2^(44/53) 2^(13/53) 2^(35/53) 2^(4/53) 2^(26/53) 2^(48/53) 2^(17/53) 2^(39/53) 2^(8/53) 2^(30/53) 2^(52/53) 2^(21/53) 2^(43/53) 2^(12/53) 2^(34/53) 2^(3/53) 2^(25/53) 2^(47/53) 2^(16/53) 2^(38/53) 2^(7/53) 2^(29/53) 2^(51/53) 2^(20/53) 2^(42/53) 1.154723 1.539692 1.026502 1.368723 1.825036 1.216738 1.622382 1.081630 1.442231 1.923050 1.282084 1.709512 1.139720 1.519686 1.013164 1.350939 1.801323 1.200929 1.601302 1.067577 1.423492 1.898064 1.265426 1.687301 1.124911 1.499941 1 1.333386 1.777918 1.185325 1.580496 1.053705 1.404996 1.873402 1.248984 1.665377 1.110295 1.480452 1.974014 1.316061 1.754817 1.169924 1.559960 1.040015 1.386741 1.849061 1.232756 1.643739 1.095869 1.461216 1.948365 1.298961 1.732017 249.06 747.17 45.28 543.40 1041.51 339.62 837.74 135.85 633.96 1132.08 430.19 928.30 226.42 724.53 22.64 520.75 1018.87 316.98 815.09 113.21 611.32 1109.43 407.55 905.66 203.77 701.89 0 498.11 996.23 294.34 792.45 90.57 588.68 1086.79 384.91 883.02 181.13 679.25 1177.36 475.47 973.58 271.70 769.81 67.92 566.04 1064.15 362.26 860.38 158.49 656.60 1154.72 452.83 950.94 49.06 47.17 45.28 43.40 41.51 39.62 37.74 35.85 33.96 32.08 30.19 28.30 26.42 24.53 22.64 20.75 18.87 16.98 15.09 13.21 11.32 9.43 7.55 5.66 3.77 1.89 0 -1.89 -3.77 -5.66 -7.55 -9.43 -11.32 -13.21 -15.09 -16.98 -18.87 -20.75 -22.64 -24.53 -26.42 -28.30 -30.19 -32.08 -33.96 -35.85 -37.74 -39.62 -41.51 -43.40 -45.28 -47.17 -49.06 D!! G!! C!! F!! Bb!! Eb!! B! E! A! D! G! C! 81/70 54/35 36/35 48/35 64/35 128/105 27/14 9/7 12/7 8/7 32/21 64/63 53Et +/- Avg.-> 53Et +/- Avg.-> from Just 4.72 from Just 8.75 252.68 750.73 48.77 546.82 1044.86 342.91 -3.62 -3.56 -3.49 -3.42 -3.35 -3.28 1137.04 435.08 933.13 231.17 729.22 27.26 -4.96 -4.90 -4.83 -4.76 -4.69 -4.62 G# C# F# B E 45/28 15/14 10/7 40/21 80/63 821.40 119.44 617.49 1115.53 413.58 -6.30 -6.24 -6.17 -6.10 -6.03 C 1/1 0.00 0.00 Ab Db Gb Cb Fb 63/40 21/20 7/5 28/15 56/45 C" F" Bb" Eb" Ab" Db" 63/32 21/16 7/4 7/6 14/9 28/27 A"" D"" G"" C"" F"" Bb"" 105/64 35/32 35/24 35/18 35/27 140/81 786.42 84.47 582.51 1080.56 378.60 6.03 6.10 6.17 6.24 6.30 1172.74 470.78 968.83 266.87 764.92 62.96 4.62 4.69 4.76 4.83 4.90 4.96 857.09 155.14 653.18 1151.23 449.27 947.32 3.28 3.35 3.42 3.49 3.56 3.62 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 G!! C!! F!! Bb!! C! F! E A D 63/50 42/25 28/25 Bb Eb Ab 25/14 25/21 100/63 G" C" 49/32 49/48 49/36 49/27 126/125 168/125 125/84 125/63 D"" G"" C"" F"" 54/49 72/49 96/49 64/49 737.65 35.70 533.74 1031.79 9.52 9.59 9.65 9.72 13.79 511.84 8.85 8.91 400.11 898.15 196.20 694.24 7.44 7.51 7.58 7.64 505.76 1003.80 301.85 799.89 -7.64 -7.58 -7.51 -7.44 688.16 1186.21 -8.91 -8.85 168.21 666.26 1164.30 462.35 -9.72 -9.65 -9.59 -9.52 Compendium Musica 11 Limit Ratios C!! 50/49 Bb!! Eb!! Ab!! 90/49 60/49 80/49 13 Limit Ratios 53Et +/- Avg.-> 53Et +/- Avg.-> 53Et +/- Avg.-> from Just 10.82 from Just 8.07 from Just 3.45 34.98 10.31 1052.57 350.62 848.66 -11.06 -10.99 -10.93 F!! Bb!! Eb!! 11/8 11/6 11/9 551.32 1049.36 347.41 15/11 20/11 536.95 1035.00 -7.92 -7.85 -7.79 Ab Db 21/11 14/11 11/7 22/21 1119.46 417.51 C"" 62 49/25 49/40 49/30 49/45 351.34 849.38 147.43 10.93 10.99 11.06 1165.02 -10.31 A"" D"" G"" 18/11 12/11 16/11 782.49 80.54 852.59 150.64 648.68 247.74 745.79 1.32 1.38 G#! C#! F#! 13/8 13/12 13/9 840.53 138.57 636.62 1132.10 A 22/13 910.79 -5.13 Eb 13/11 289.21 5.13 Gb" Cb" Fb" 18/13 24/13 16/13 67.90 563.38 1061.43 359.47 0.02 2.66 2.72 2.79 F"" Bb"" 13/10 26/15 454.21 952.26 25/13 21/13 14/13 830.25 128.30 -2.79 -2.72 -2.66 -0.02 7.48 7.55 -10.03 -9.96 9.96 10.03 Db" E"" A"" D"" 15/13 20/13 6.45 6.51 B! B E D!! G!! 11/10 22/15 165.00 663.05 7.79 7.85 7.92 26/25 13/7 26/21 1071.70 369.75 -6.51 -6.45 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 -1.38 -1.32 -7.55 -7.48 53ET 2^(11/53) 2^(33/53) 2^(2/53) 2^(24/53) 2^(46/53) 2^(15/53) 2^(37/53) 2^(6/53) 2^(28/53) 2^(50/53) 2^(19/53) 2^(41/53) 2^(10/53) 2^(32/53) 2^(1/53) 2^(23/53) 2^(45/53) 2^(14/53) 2^(36/53) 2^(5/53) 2^(27/53) 2^(49/53) 2^(18/53) 2^(40/53) 2^(9/53) 2^(31/53) 2^(0/53) 2^(22/53) 2^(44/53) 2^(13/53) 2^(35/53) 2^(4/53) 2^(26/53) 2^(48/53) 2^(17/53) 2^(39/53) 2^(8/53) 2^(30/53) 2^(52/53) 2^(21/53) 2^(43/53) 2^(12/53) 2^(34/53) 2^(3/53) 2^(25/53) 2^(47/53) 2^(16/53) 2^(38/53) 2^(7/53) 2^(29/53) 2^(51/53) 2^(20/53) 2^(42/53) Compendium Musica Just Third and Fifth Tuning (all 5 Limit ratios calculated by Perfect Fifths and Syntonic Commas) Deviations +/- from 12ET C = 1/1 Syntonic Comma = (81/80) = 21.51 cents !,",!!,"",!!!,""" = Syntonic Comma sharp, flat Dbb! 65536/32805 -1.95 Bbb 32768/19683 -17.60 Fb 8192/6561 -33.24 Db" 20480/19683 -31.28 -46.92 F"" 25600/19683 Ebb!+ Dbb 1048576/531441 -23.46 Abb 262144/177147 -21.51 -37.15 Cb" 327680/177147 Ebb+ Fb" 655360/531441 Cb"+ -52.79 2048000/1594323 -35.19 Gb" 81920/59049 Fb+ Cb+ Db"+ Ab"" 819200/531441 -50.83 Eb""+ F""" -19.55 Bbb+ Gb"+ Db"" 1638400/1594323 Ebb 65536/59049 Ab"+ Eb"" 204800/177147 -48.88 Bb""+ -66.47 C""" 1024000/531441 Bb"" 102400/59049 Eb"+ F""+ -64.52 G""" 256000/177147 C""+ -62.56 D""" 41.06 Abb!!! 192/125 Dbb!!! 128/125 64000/59049 Ebb!!!+ Abb!! 1024/675 21.51 Ebb!! 256/225 Bbb!!+ 5.87 Cb! 256/135 Gb!+ 23.46 7.82 Gb! 64/45 Db!+ Ab 128/81 -7.82 -23.46 C" 160/81 Eb 32/27 -5.87 -21.51 G" 40/27 -37.15 -52.79 C#""" 250/243 Fb!! 32/25 Cb!!+ 9.78 11.73 -3.91 -19.55 D" 10/9 -35.19 -50.83 G#""" 125/81 B""+ Cb!! 48/25 Ab! 8/5 13.69 F 4/3 -1.96 C 1/1 -17.60 A" 5/3 -15.64 Bb!+ C+ G+ A"+ E"" 100/81 27.37 Eb!+ Bb 16/9 43.01 Bbb!!!+ Gb!!+ Db! 16/15 F+ D"+ A"" 400/243 25.42 Ab!+ Bb+ G"+ Bbb!! 128/75 Fb!!+ -60.61 E"+ B"+ B"" 50/27 -33.24 F#"" 25/18 -31.28 C#"" 25/24 -48.88 D#""" 125/108 -46.92 A#""" 125/72 -44.97 54.74 Ab!!! F#""+ 52.79 Db!!! 2187/2000 Ab!!!+ 56.70 6561/4000 Eb!!!+ Bb!! 729/400 39.10 23.46 D! 729/640 F!! 2187/1600 41.06 25.42 A! 2187/1280 C!!+ A!+ 9.78 -5.87 D#" 1215/1024 B#"" 2025/1024 -19.55 19683/16000 11.73 -3.91 A#" 3645/2048 F!!!+ 43.01 27.37 E! 6561/5120 29.33 13.69 G# 6561/4096 E#" 10935/8192 -0.0013 G!!+ F# 729/512 58.65 C!! 6561/6400 G!! 19683/12800 D!!+ E!+ B 243/128 Eb!!! Bb!!!+ C# B!+ 2187/2048 F#!+ C#+ 63 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 -1.96 Compendium Musica Dbb!! 2048/2025 19.55 Ebb!!+ Abb! 16384/10935 0.0013 Ebb! 4096/3645 Bbb!+ -15.64 Cb 4096/2187 -13.69 -29.33 -44.97 C"" 12800/6561 -43.01 G"" 3200/2187 44.97 E""" 8000/6561 Bbb!!! 216/125 Gb!! 36/25 15.64 0.00 G 3/2 31.28 F" 320/243 -41.06 D"" 800/729 C"+ -56.70 B""" 46.92 Fb!!! 162/125 -13.69 -29.33 Db!! 27/25 E#""" 125/96 1.96 D 9/8 F#""" 48.88 Cb!!! 243/125 -11.73 G#"" 25/16 -27.37 D#"" 75/64 -43.01 B#""" 125/64 -41.06 1000/729 33.24 50.83 Ab!! 81/50 35.19 Eb!! 243/200 37.15 C! 81/80 21.51 G! 243/160 5.87 E 81/64 7.82 Bb!!+ F! 27/20 19.55 3.91 A 27/16 Gb!!! 729/500 Db!!!+ G!+ F!!+ D!+ E+ B" 15/8 60.61 E""+ -54.74 Eb!!+ 17.60 F#"+ -39.10 Gb!!!+ A+ E" 5/4 4000/2187 C!+ D+ Eb+ A""+ Bb! 9/5 F!+ 44.97 -25.42 Ab!!+ Eb! 6/5 59049/32000 Bb" 1280/729 Cb!!!+ Db!!+ Bb!!! -9.78 F"+ Fb!!!+ 29.33 Db 256/243 -11.73 D""+ -58.65 Fb! 512/405 Ab+ -27.37 G""+ Ebb!!! 144/125 Gb 1024/729 Eb" 2560/2187 Bb"+ 3.91 Cb!+ Db+ Ab" 10240/6561 32000/19683 Bbb! 2048/1215 Fb!+ Gb+ A""" 1.96 B+ F#+ F#" 45/32 -9.78 C#" 135/128 -7.82 G#" 405/256 -25.42 A#"" 225/128 -23.46 E#"" 675/512 -21.51 C#"+ F!!! 177147/128000 62.56 C!!! 531441/512000 64.52 G!!! 1594323/1024000 66.47 D!! 59049/51200 46.92 A!! 177147/102400 48.88 E!! 531441/409600 50.83 B!! 1594323/819200 B! 19683/10240 31.28 F#! 59049/40960 33.24 C#! 177147/163840 35.19 G#! 531441/327680 37.15 15.64 D# 19683/16384 17.60 A# 59049/32768 19.55 E# 177147/131072 21.51 B# 531441/524288 B#" 32805/32768 1.95 52.79 A!!+ 64 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 23.46 Compendium Musica Partch 43 Tone Scale 1/1 =G =392 * 2^n A½! 12/11 150.64 1/11 Limit C5/6! 14/11 417.51 B"# 9/7 435.08 A"# 8/7 231.17 1/7 Limit C#1/6# 10/7 617.49 Utonality # 81/80 1/5 Limit G# 81/80 21.51 Ab# 16/15 111.73 (81/80) 1/3 Limit 3 Limit G 1/1 0 A 9/8 203.91 Otonality 7 Limit 11 Limit 65 Ab1/6! 21/20 84.47 Eb# 8/5 813.69 (81/80) (81/80) Bb 32/27 294.13 C 4/3 498.04 F 16/9 996.09 B! 5/4 386.31 G½# 33/32 53.27 C"! 21/16 470.78 Bb½# 11/9 347.41 Db1/6! 7/5 582.51 C½# 11/8 551.32 G½! 64/33 1146.73 ½! /3! 5 /6! approximately 1/2 semitone flat "# /6# approximately 1/3 semitone sharp 2 F#1/6# 40/21 1115.53 (81/80) Bb"! 7/6 266.87 Ab2/3# 11/10 165.00 E"# 12/7 933.13 C# 27/20 519.55 A! 10/9 182.40 ! 81/80 D"# 32/21 729.22 F# 2/3! 20/11 1035.00 Bb# 6/5 315.64 (81/80) 5 Limit E½! 18/11 852.59 D½! 16/11 648.68 1 F# 9/5 1017.60 D 3/2 701.96 E 27/16 905.87 (81/80) (81/80) D! 40/27 680.45 E! 5/3 884.36 approximately 5/6 semitone flat approximately 1/6 semitone sharp # syntonic comma (81/80) sharp ! syntonic comma (81/80) flat G 2/1 1200 (81/80) F#! 15/8 1088.27 G! 160/81 1178.49 /6! "! 1 Eb"! 14/9 764.92 approximately 2/3 semitone flat F"! 7/4 968.83 D5/6# 11/7 782.49 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 approximately 1/3 semitone flat /6# /3# approximately 5/6 semitone sharp ½# approximately 1/2 semitone sharp 5 2 F½# 11/6 1049.36 approximately 1/6 semitone flat approximately 2/3 semitone sharp Compendium Musica Partch 43 Tone Scale Harmonic Structure (from which can be derived scales, modes, chords and tonalities) 1/1 =G =392 * 2^n -(also the Roots of 3 incomplete Tertiary Tonalities Primary Ratios Otonality! (Bold = Roots) Secondary Ratios D"# (O) 32/21 729.22 F#1/6# 40/21 1115.53 Partch Tuning Notes = 8/7, 11/8 C D 4/3 3/2 498.04 701.96 (7/6) (9/7) (7/6) B"# A"# (O) E"# (O) 8/7 12/7 (3/2) 9/7 231.17 933.13 435.08 1 (U) C# /6# (7/6) (9/7) (11/9) D5/6# 10/7 G 617.49 1/1 11/7 Otonality! 0 782.49 (11/9) (9/7) (7/6) Bb½# (U) F½# 11/9 (3/2) 11/6 347.41 1049.36 (11/6) (11/9) C D 4/3 3/2 498.04 701.96 without the 5 Limit major third) $Utonality Ab2/3# 11/10 165.00 Secondary Ratio (U) C½# 11/8 551.32 (3/2) (U) G½# 33/32 53.27 $Utonality (Bold = Roots) Primary Ratios Secondary Otonality! Primary Ratios Ab! (O) 16/15 111.73 Ratios (Bold = Roots) Bb (O) 32/27 294.13 G% 160/81 1178.49 F (O) 16/9 996.09 (U) D" 40/27 680.45 Eb! (O) 8/5 813.69 Bb! (O) 6/5 315.64 (U) C (O) 4/3 498.04 (U) A" 10/9 182.40 (U) G (O) 1/1 0 (U) E" 5/3 884.36 F! (O) 9/5 1017.60 (U) D (O) 3/2 701.96 (U) B" 5/4 386.31 C! (O) 27/20 519.55 (U) A 9/8 203.91 (U) F#" 15/8 1088.27 $Utonality (Bold = Roots) G½% (O) 64/33 1146.73 (3/2) D½% (O) 16/11 648.68 F#2/3% 20/11 1035.00 Secondary Ratio Otonality! Partch Tuning Notes = 7/4, 16/11 Primary Ratios -The 8/7, 11/8, 7/4 and 16/11 intervals are prescribed by Partch to tune the 7 and 11 limit ratios. Without a doubt a difficult task to tune these intervals accurately by ear. After which the rest of the 7 and 11 limit ratios present no problems. The 5 limit ratios present no tuning problems. 66 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 (Bold = Roots) Ratios -(also the Roots of 3 incomplete Tertiary Tonalities Primary Ratios C D 4/3 3/2 498.04 701.96 (11/9) (11/6) E½% A½% (O) 12/11 (3/2) 18/11 150.64 852.59 (7/6) (9/7) (11/9) 5 C /6% G $Utonality Db1/6% (O) 14/11 1/1 417.51 0 7/5 (11/9) (9/7) (7/6) 582.51 Eb"% (U) Bb"% (U) F"% 14/9 (3/2) 7/6 7/4 764.92 266.87 968.83 (7/6) (9/7) (7/6) C D 4/3 3/2 498.04 701.96 (U) E 27/16 905.87 Secondary Primary Ratios Otonality! G# 81/80 21.51 without the 5 Limit major third) Ab1/6% 21/20 84.47 (U) C"% 21/16 470.78 Secondary Ratios $Utonality (Bold = Roots) Compendium Musica Partch 43 Tone Scale 1/1 =G =392 * 2^n 0 Primary Ratios 1 - 42 2 - 41 3 - 40 4 - 39 56/55 64/63 45/44 121/120 21.51 31.77 31.19 27.26 38.91 14.37 G 1/1 0 G" 81/80 21.51 G½" 33/32 53.27 Ab1/6! 21/20 84.47 Ab" 16/15 111.73 Secondary Ratios G! 160/81 1178.49 G½! 64/33 1146.73 F#1/6" 40/21 1115.53 F#! 15/8 1088.27 G 2/1 1200 False Ionian Scales 67 7 - 36 49/48 17.40 21.51 27.26 35.70 A½! 12/11 150.64 2 Ab /3" 11/10 165.00 A! 10/9 182.40 A 9/8 203.91 A#" 8/7 231.17 Bb#! 7/6 266.87 F½" 11/6 1049.36 F#2/3! 20/11 1035.00 F" 9/5 1017.60 F 16/9 996.09 F#! 7/4 968.83 E#" 12/7 933.13 1/1 =G =392 * 2^n D#" 32/21 729.22 9/8 E#" 12/7 933.13 10/9 F#1/6" 40/21 1115.53 63/55 A½! 12/11 150.64 22/21 A#" 8/7 231.17 E½! 18/11 852.59 10/9 F#2/3! 20/11 1035.00 16/15 G½! 64/33 1146.73 9/8 A½! 12/11 150.64 121/ Bb½" 11/9 347.41 9/8 C½" 11/8 551.32 128/ D½! 16/11 648.68 9/8 E 27/16 905.87 10/9 F#! 15/8 1088.27 16/15 G 1/1 0 9/8 A 9/8 203.91 10/9 B! 5/4 386.31 8/7 C#1/6" 10/7 617.49 21/20 D 3/2 701.96 9/8 Bb" 6/5 315.64 10/9 C 4/3 498.04 21/20 Db1/6! 7/5 582.51 8/7 Eb" 8/5 813.69 10/9 F 16/9 996.09 9/8 G 1/1 0 16/15 Ab" 16/15 111.73 9/8 D 3/2 701.96 Ab" 16/15 111.73 108 10 - 33 64/63 16/15 D½! 16/11 648.68 9 - 34 81/80 C#1/6" 10/7 617.49 B#" 9/7 435.08 8 - 35 100/99 10/9 9/8 A#" 8/7 231.17 6 - 37 55/54 Secondary Ratios Primary Ratios 5 - 38 81/80 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 121 Compendium Musica 11 - 32 12 - 31 13 - 30 14 - 29 15 - 28 64/63 81/80 55/54 45/44 56/55 27.26 21.51 31.77 38.91 31.19 Bb! 6/5 315.64 Bb½! 11/9 347.41 16 - 27 18 - 25 19 - 24 20 - 23 21 - 22 49/48 64/63 81/80 55/54 56/55 17.58 35.70 27.26 21.51 31.77 31.19 C /6" 14/11 417.51 5 B" 5/4 386.31 17 - 26 99/98 B#! 9/7 435.08 C½! 11/8 551.32 C 4/3 498.04 C#" 21/16 470.78 Bb 32/27 294.13 Db1/6" 7/5 582.51 C! 27/20 519.55 50/49 34.98 D#! 32/21 729.22 E 27/16 905.87 E" 5/3 884.36 E½" 18/11 852.59 False Ionian Scales D#! 32/21 729.22 9/8 Bb 32/27 294.13 9/8 Db1/6" 7/5 582.51 C! 27/20 519.55 68 E#! 12/7 933.13 D5/6! 11/7 782.49 Eb! 8/5 813.69 D" 40/27 680.45 Eb#" 14/9 764.92 D 3/2 701.96 1/1 =G =392 * 2^n 10/9 C 4/3 498.04 10/9 10/9 Eb#" 14/9 764.92 10/9 D 3/2 701.96 F#1/6! 40/21 1115.53 1701/ 1600 G! 81/80 21.51 640/ D5/6! 11/7 782.49 112/ 567 A#! 8/7 231.17 49/44 C5/6" 14/11 417.51 55/49 C#1/6! 10/7 617.49 16/15 D#! 32/21 729.22 F 16/9 996.09 10/9 G" 160/81 1178.49 9/8 A" 10/9 182.40 16/15 Bb 32/27 294.13 D" 40/27 680.45 297/ 9/8 F#" 7/4 968.83 15/14 F#" 15/8 1088.27 28/25 Ab1/6" 21/20 84.47 10/9 Bb#" 7/6 266.87 9/8 C#" 21/16 470.78 16/15 Db1/6" 7/5 582.51 9/8 E 27/16 905.87 16/15 F! 9/5 1017.60 9/8 G! 81/80 21.51 10/9 A 9/8 203.91 8/7 B#! 9/7 435.08 21/20 C! 27/20 519.55 280 99 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 D½" 16/11 648.68 C#1/6! 10/7 617.49 Compendium Musica Partch 43 Tone Scale 1/1 =C D½! 12/11 150.64 1/11 Limit F5/6! 14/11 417.51 E"# 9/7 435.08 D"# 8/7 231.17 1/7 Limit F#1/6# 10/7 617.49 Utonality # 81/80 1/5 Limit C# 81/80 21.51 Db# 16/15 111.73 (81/80) 1/3 Limit 3 Limit C 1/1 0 D 9/8 203.91 Otonality 7 Limit 11 Limit 69 Db1/6! 21/20 84.47 Ab# 8/5 813.69 (81/80) (81/80) Eb 32/27 294.13 F 4/3 498.04 Bb 16/9 996.09 E! 5/4 386.31 C½# 33/32 53.27 F"! 21/16 470.78 Eb½# 11/9 347.41 Gb1/6! 7/5 582.51 F½# 11/8 551.32 C½! 64/33 1146.73 ½! /3! 5 /6! approximately 1/2 semitone flat "# /6# approximately 1/3 semitone sharp 2 B1/6# 40/21 1115.53 (81/80) Eb"! 7/6 266.87 Db2/3# 11/10 165.00 A"# 12/7 933.13 F# 27/20 519.55 D! 10/9 182.40 ! 81/80 G"# 32/21 729.22 B2/3! 20/11 1035.00 Eb# 6/5 315.64 (81/80) 5 Limit A½! 18/11 852.59 G½! 16/11 648.68 1 Bb# 9/5 1017.60 G 3/2 701.96 A 27/16 905.87 (81/80) (81/80) G! 40/27 680.45 A! 5/3 884.36 approximately 5/6 semitone flat approximately 1/6 semitone sharp # syntonic comma (81/80) sharp ! syntonic comma (81/80) flat C 2/1 1200 (81/80) B! 15/8 1088.27 C! 160/81 1178.49 /6! "! 1 Ab"! 14/9 764.92 approximately 2/3 semitone flat Bb"! 7/4 968.83 G5/6# 11/7 782.49 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 Bb½# 11/6 1049.36 approximately 1/6 semitone flat approximately 1/3 semitone flat 5 /6# approximately 5/6 semitone sharp 2 /3# approximately 2/3 semitone sharp ½# approximately 1/2 semitone sharp Compendium Musica Partch 43 Tone Scale Harmonic Structure (from which can be derived scales, modes, chords and tonalities) 1/1 =C -(also the Roots of 3 incomplete Tertiary Tonalities Primary Ratios Otonality! (Bold = Roots) Secondary Ratios G"# (O) 32/21 729.22 B1/6# 40/21 1115.53 Partch Tuning Notes = 8/7, 11/8 F G 4/3 3/2 498.04 701.96 (7/6) (9/7) (7/6) E"# D"# (O) A"# (O) 8/7 12/7 (3/2) 9/7 231.17 933.13 435.08 1 (U) F# /6! (7/6) (9/7) (11/9) G5/6# 10/7 C 617.49 1/1 11/7 Otonality! 0 782.49 (11/9) (9/7) (7/6) Eb½# (U) Bb½# 11/9 (3/2) 11/6 347.41 1049.36 (11/6) (11/9) F G 4/3 3/2 498.04 701.96 without the 5 Limit major third) $Utonality Db2/3# 11/10 165.00 Secondary Ratio (U) F½# 11/8 551.32 (3/2) (U) C½# 33/32 53.27 $Utonality (Bold = Roots) Primary Ratios Secondary Otonality! Primary Ratios Db! (O) 16/15 111.73 Ratios (Bold = Roots) Eb (O) 32/27 294.13 C% 160/81 1178.49 Bb (O) 16/9 996.09 (U) G" 40/27 680.45 Ab! (O) 8/5 813.69 Eb! (O) 6/5 315.64 (U) F (O) 4/3 498.04 (U) D" 10/9 182.40 (U) C (O) 1/1 0 (U) A" 5/3 884.36 Bb! (O) 9/5 1017.60 (U) G (O) 3/2 701.96 (U) E" 5/4 386.31 F! (O) 27/20 519.55 (U) D 9/8 203.91 (U) B" 15/8 1088.27 $Utonality (Bold = Roots) C½% (O) 64/33 1146.73 (3/2) G½% (O) 16/11 648.68 B2/3% 20/11 1035.00 Secondary Ratio Otonality! Partch Tuning Notes = 7/4, 16/11 Primary Ratios -The 8/7, 11/8, 7/4 and 16/11 intervals are prescribed by Partch to tune the 7 and 11 limit ratios. Without a doubt a difficult task to tune these intervals accurately by ear. After which the rest of the 7 and 11 limit ratios present no problems. The 5 limit ratios present no tuning problems. 70 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 (Bold = Roots) Ratios -(also the Roots of 3 incomplete Tertiary Tonalities Primary Ratios F G 4/3 3/2 498.04 701.96 (11/9) (11/6) A½% D½% (O) 12/11 (3/2) 18/11 150.64 852.59 (7/6) (9/7) (11/9) 5 F /6% C $Utonality Gb1/6% (O) 14/11 1/1 417.51 0 7/5 (11/9) (9/7) (7/6) 582.51 Ab"% (U) Eb"% (U) Bb"% 14/9 (3/2) 7/6 7/4 764.92 266.87 968.83 (7/6) (9/7) (7/6) F G 4/3 3/2 498.04 701.96 (U) A 27/16 905.87 Secondary Primary Ratios Otonality! C# 81/80 21.51 without the 5 Limit major third) Db1/6% 21/20 84.47 (U) F"% 21/16 470.78 Secondary Ratios $Utonality (Bold = Roots) Compendium Musica Partch 43 Tone Scale 1/1 =C 0 Primary Ratios 1 - 42 2 - 41 3 - 40 4 - 39 7 - 36 9 - 34 10 - 33 64/63 45/44 121/120 100/99 81/80 64/63 49/48 21.51 31.77 31.19 27.26 38.91 14.37 17.40 21.51 27.26 35.70 C 1/1 0 C½" 33/32 53.27 Db1/6! 21/20 84.47 Db" 16/15 111.73 Secondary Ratios C! 160/81 1178.49 C½! 64/33 1146.73 B1/6" 40/21 1115.53 B! 15/8 1088.27 C 2/1 1200 False Ionian Scales D½! 12/11 150.64 Db2/3" 11/10 165.00 D! 10/9 182.40 D 9/8 203.91 D#" 8/7 231.17 Eb#! 7/6 266.87 Bb½" 11/6 1049.36 B2/3! 20/11 1035.00 Bb" 9/5 1017.60 Bb 16/9 996.09 Bb#! 7/4 968.83 A#" 12/7 933.13 1/1 =C D#" 8/7 231.17 9/8 E#" 9/7 435.08 10/9 F#1/6" 10/7 617.49 16/15 G#" 32/21 729.22 9/8 A#" 12/7 933.13 10/9 B1/6" 40/21 1115.53 63/55 D½! 12/11 150.64 22/21 D#" 8/7 231.17 G½! 16/11 648.68 9/8 A½! 18/11 852.59 10/9 B2/3! 20/11 1035.00 16/15 C½! 64/33 1146.73 9/8 D½! 12/11 150.64 121/ Eb½" 11/9 347.41 9/8 F½" 11/8 551.32 128/ G½! 16/11 648.68 G 3/2 701.96 9/8 A 27/16 905.87 10/9 B! 15/8 1088.27 16/15 C 1/1 0 9/8 D 9/8 203.91 10/9 E! 5/4 386.31 8/7 F#1/6" 10/7 617.49 21/20 G 3/2 701.96 9/8 Eb" 6/5 315.64 10/9 F 4/3 498.04 21/20 Gb1/6! 7/5 582.51 8/7 Ab" 8/5 813.69 10/9 Bb 16/9 996.09 9/8 C 1/1 0 16/15 Db" 16/15 111.73 Db" 16/15 111.73 8 - 35 56/55 C" 81/80 21.51 71 6 - 37 55/54 Secondary Ratios Primary Ratios 5 - 38 81/80 108 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 121 Compendium Musica 11 - 32 12 - 31 13 - 30 14 - 29 15 - 28 16 - 27 17 - 26 18 - 25 19 - 24 20 - 23 21 - 22 64/63 81/80 55/54 45/44 56/55 99/98 49/48 64/63 81/80 55/54 56/55 27.26 21.51 31.77 38.91 31.19 17.58 35.70 27.26 21.51 31.77 31.19 Eb! 6/5 315.64 Eb½! 11/9 347.41 F5/6" 14/11 417.51 E" 5/4 386.31 E#! 9/7 435.08 F½! 11/8 551.32 F 4/3 498.04 F#" 21/16 470.78 Eb 32/27 294.13 Gb1/6" 7/5 582.51 F! 27/20 519.55 50/49 34.98 G#! 32/21 729.22 A 27/16 905.87 A" 5/3 884.36 A½" 18/11 852.59 False Ionian Scales G#! 32/21 729.22 9/8 Eb 32/27 294.13 9/8 Gb1/6" 7/5 582.51 F! 27/20 519.55 72 G5/6! 11/7 782.49 Ab! 8/5 813.69 G" 40/27 680.45 Ab#" 14/9 764.92 G 3/2 701.96 1/1 =C B1/6! 40/21 1115.53 1701/ G" 40/27 680.45 297/ 9/8 Bb#" 7/4 968.83 9/8 A 27/16 905.87 A#! 12/7 933.13 10/9 F 4/3 498.04 10/9 10/9 Ab#" 14/9 764.92 10/9 G 3/2 701.96 D#! 8/7 231.17 49/44 F5/6" 14/11 417.51 55/49 F#1/6! 10/7 617.49 16/15 G#! 32/21 729.22 Bb 16/9 996.09 10/9 C" 160/81 1178.49 9/8 D" 10/9 182.40 16/15 Eb 32/27 294.13 28/25 Db1/6" 21/20 84.47 10/9 Eb#" 7/6 266.87 9/8 F#" 21/16 470.78 16/15 Gb1/6" 7/5 582.51 9/8 C! 81/80 21.51 10/9 D 9/8 203.91 8/7 E#! 9/7 435.08 21/20 F! 27/20 519.55 C! 81/80 21.51 640/ G5/6! 11/7 782.49 112/ 15/14 B" 15/8 1088.27 16/15 Bb! 9/5 1017.60 1600 280 567 99 Polychromatic Notation and Extended Tonality © Copyright Juhan Puhm 2016 G½" 16/11 648.68 F#1/6! 10/7 617.49
© Copyright 2025 Paperzz