, Ck 3 al . A 1 . ? SYMPOSIUM (IDS'86) . . Cambridge, Massachusetts, U.S.A-August 13-16, 1986 * t . * . . i % EXPERIMENTAL ANALYSIS OF THE DIFFERENT PHASES LN THE DRYING OF NATURAL RUBBER '1 0 i : : 1 #and J.C: BENE?" / * ORSTOM : I n s t i t u t F r a n ç a i s d e Recherche I IR* Scientifiqu,e pour l e 0 1 Développement en Coopération. L a b o r a t o i r e del Génie C i v i l , U n i v e r s i t é des Sciences e t Techniques Place E. B a t a i l l o n ,'34060 Montpellier Cedex, France du Languedoc , I I 1.INTRODUCTION I Latex has t h e a s p e c t of a rubber p a r t i c l e d i s p e r s i o n i n a water serum containing o r g a n i c and i m i n e r a l elements i n s o l u t i o n I t s content i n .. s o l i d matter i a approximately 30 t o 40% 90% of which being formed of rubber p a r t i c l e s , The r e m a i n d e r . i s made up of non-rubber elements (proteins,sugars,etc;.) [I). The composition of : l a t e x i s complex and prone t o changes l i n k e d t o v a r i o u s parameters : c l o n a l c h a r a c t e r i s t i c s , c l i m a t i c i n f l u e n c e , e t c ; . From t h e l a t e x c o l l e c t i o n on p l a n t a t i o n t o t h e i n d u s t r i a l use under i t s v a r i o u s forms, numerous process a r e involved t o o b t a i n a f i n i s h e d product. Drying is one of t h e s e i n t e r m e d i a t e processes ; i t i s a d e l i c a t e o p e r a t i o n which g r e a t l y a f f e c t s t h e product's q u a l i t y . To d a t e , t h e r e has been l i t t l e work c a r r i e d o u t on t h e d e s c r i p t i o n of t h e i n t e r n a l s t r u c t u r e . and t h e mechanisms brought. i n t o play during t h e drying s t a g e , The purpose o f . t h i s study i s t o analyze serum t r a n s f e r s ( water+solutes) i n a.natura1 .rubber sample with t h r e e experimental methods: I ) k i n e t i c s of drying ; 2) measurement d u r i n g t h e I k i n e t i c s t u d y , of t h e t e m p e r a t u r e ' d i f f e r e n c e between t h e s a m p l e and t h a t of t h e drying atmosphere; 3 ) measurement of t h e f r e e z i n g p o i n t ' temperature of t h e serum contained i n t h e product , a t d i f f e r e n t s t a g e s of t h e d r y i n g k i n e t i c s , . , t 2; EXPERIMENTATION ! 2.1 Sample p r e p a r a t i o n The latex used,whose dry rubber content(DRC) i s 37% , comes f r o n the Ivory Coast , Latex i s then d i l u t e d with water i n o r d e r t o o b t a i n a 15% r e f e r e n c e DRC Coagulation i s obtained by adding a q u a n t i t y of a c e t i c a c i d with a 4 . 8 PH. The coagulum obtained r e q u i r e s a maturation p e r i o d of about 20 hours during which a rubber p a r t c c l e p a r t i a l s o l i d i f i c a t i o n t a k e s place.The coagulum i s then laminated and washed t o o b t a i n a n average 10 mm t h i c k s h e e t , f r o m which w i l l be taken a 38 mm diameter sample with a punch. Before c o a g u l a t i o n a thermocouple is i n s e r t e d a t . t h e c e n t e r of t h e sample. . 2.2 Experimental device d e s c r i p t i o n ; . The measurement c o n t a i n e r c o n s i s t i n g i n a beaker i s l o c a t e d i n a thermostable b a t h ( F i g . ] ) tthermo-regulated with an immersed thermostat. P a r t i a l p r e s s u r e w i t h i n t h e beaker i s maintained steady with aqueous s u l f u r i c acid.The thermocouple placed i n the sample measures t h e Tfltemperature, a second thermocouple l o c a t e d c l o s e t o t h e sample measures the temperature of the d r y i n g a i r T a . , 2.3 Operating procedure . The sample i s placed i n t h e measurement container A s t h e experimentproceeds the sample mass and Ta and TE temperatures a r e measured. A t r e g u l a r time i n t e r v a l s f r e e z i n g t r i a l s a r e performed. The sample i s taken o u t of t h e measurement c o n t a i n e r and placed i n a r e f r i g e r a t i n g Wc,meanwhile t h e thermocouple a t t h e system a t c e n t e r of t h e sample measures i t s temperature progress.,P,rior t o and following t h e f r e e z i n g operation weighings were taken t o check t h a t no s i g n i f i c a n t mass loss occured a s a r e s u l t The f r e e z i n g o p e r a t i o n which l a s t s 20 minutes on average does n o t s i g n i f i c a n t l y a l t e r the sample drying process The experiments were performed under t h e following condition$ : Ta = 4 9 ' C ; r e l a t i v e humidity of t h e a i r hr=47%. A t t h e end of t h e experiment t h e sample reaches i t s s t e a d y s t a t e mass i t i s then thoroughly dries above a concentrated s u l f u r i c a c i d s o l u t i o n f o r c i n g t h e r e l a t i v e humidity of t h e a i r t o be lower than p.01 % , - _ I - , . . , , I 3.EXPERIMENTAL RESULT ANALYSIS i . 3.1 Dryingkinetics.Variation of t h e temperature d i f f e r e n c e between the drying a i r and the sample F i g u r e 2 shows t h e k i n e t i c s of drying of t h e rubber sample as w e l l a s t h e temperature d i f f e r e n c e between the dry a i r Ta and Khe sample Tf, over time. Two drying periods can be observed from t h e water c o n t e n t changes; the f i r s t , c a l l e d "constant r a t e period",between 80% and 33% ; t h e second between 33% and 2.5% during which t h e t h e drying speed markedly slows down i s r e f e r e d t o a s t h e d i f f u s i o n period [2] , [3J. The Ta-Tf d i f f e r e n c e over t i m e confirms t h a t two drying periods occur. Once the product temperature i s set Ta-Tf temperature d e v i a t i o n s t a b i l i z e s a t 9.8"C f o r a c o n s t a n t r a t e drying p e r i o d then decreases f o r a d i f f u s i o n period u n t i l reaching a low v a l u e (Ta-Tf = 0.3OC) .During t h e c o n s t a n t . fi. R.S.T.O. 1\11. Fonds Docunientaire 43685 cnte i 8 ex /t NO: r a t e period, t h e sample s u r f a c e i s . s a t u r e d with serum,a)heat and mass t r a n s f e r balance occurs on t h e product s u r f ace, To t h i s Balance corresponds. a w e t a i r temperature Tw which f o r t h e above mentioned a i r c h a r a c t e r i s t i c s i s 38OC; t h i s temperature i s c l o s e t o t h e Tf v a l u e measured (TE=' 38.7%). 3.2 Analysis of t h e f r e e z i n g p o i n t temperature lowering of t h e serum contained i n t h e sample ! F i g u r e 3 shows t h e r e f r i g e r a t i n g temperature v a r i a t i o n s over t i m e of t h e sample a t di'fferent .. . drying moments. TWO curve t r e n d s can lie observed, The f i r s t which corresponds t o curves CJ t o C,i's. I c h a r a c t e r i z e d by temperature l e v e l i n g s , the . i f r e e z i n g ' t e m p e r a t u r e i s p r a c t i c a l l y steady and equal t o -4.2"C. The second one (curves C and C ) i s c h a r a c t e r i z e d by temperature rises l i n z e d t o appearance of overfusion., These r i s e s p r o g r e s s i v e l y l e v e l off due t o t h e water c o n t e n t d c r e a s e of the fi sample. For a water c o n t e n t Felow 7X no I c h a r a c t e r i s t i c s i g n a l making ï t p a s s l b l e t o d e t e c t the change from t h e l i q u i d to s o l i d s t a t e of s e r u m can be observed (C ) , Overfusion a p p e a r s f o r a water c o n t e n t i n c l i j e d between 53% and 338. Overfusion seems t h u s t o determine the l i m i t between t h e two mass t r a n s f e r mectiani'sms n o t i c e d i n f i g u r e 2. This t r a n s i t i o n could €i& associated : with a p o r a l space s h r i n k i h g on t h e sample surface!. pores t a k i n g t h e so c a l l e d "ink. b o t t l e " shape which. favours t h e appearance of overfusion[4]. .recovered during s y n e r e s i s , showed t h a t t h e lowering of t h e f r e e z i n g p o i n t i s , i n this c a s e , a p n r o x i r a t e l y 4-C. '?hiS.value being more o r less equal t o t h e lowering of t h e f r e e z i n g p o i n t of t h e serum contained i n t h e sample during t h e c o n s t a n t r a t e period, t h e i n f l u e n c e of t h e p o r a l space, during t h i s ,phase, can be considered n e g l i g i b l e : 8220. I n t h e s e c o n d i t i o n s , t h e r e l a t i o n (2) .becomes : m e r e n* i s t h e mole number of s o l u t e s p e r ,kilograms of 'dry rubber. .Figure 5 ahows t h e n,* .vaiiat.iop according t o ' _ il?, 3 , 3 Comparison of t h e t h r e e me.thods.. Figure 4 shows a s y n t h e s i s of t h r e g a n a l y s i s methods. According t o t h e water content; the drying rate dw/dt, th&,.Ta-.Tf temperature d i f f e r e n c e and ' ' t h e lowering of t h e f r e e z i n g poïnt.0 '1 T.-#'-T-. (TO=213'K T being t h e f r e e z i n g temperature: o f serum), a r e shown i n t h i s f i g u r e which a l s o . i n d i a a t e s t h e t h r e e methods concur i n locati'ng a t about 40% t h e water c o n t e n t during t h e t r a n s i t i o n from a consdant r a t e p e r i o d dryi'ng t o di'ffusion drying. , . 3.4 Analysis of t h e a o l u t e c o n c e n t r a t i o n , v a r i a t i o n ; of serum through cryometri'cs ,4.CONCLUSION ! The t h r e e experimental methods s e t i n j o p e r a t i o n c l e a r y show two drying phases of rubber j c h a r a c t e r i z e d by v e r y d i f f e r e n t t r a n s f e r I mechanisms a r e w e l l understood during t h e , . . j c o n s t a n t r a t e period, those, occuring during t h e j d i f f u s i o n phase are s t i l l t o be b e t t e r defined. 'REFERENCES I LE BRAS J., Elements de Sciences et : r ' 'Technologie du Caoutchouc, 1951. ! [Z] GALE R . S . , A survey f a c t o r s involved i n an / e x p e r i m e n t a l study of t h e drying of s h e e t rubber. ,J. Rubb. Res, I n s t . Malaya, 16, 38, 1959. ' [3]. GALE R.S., Drying of s h e e t rubber i n t h e f a l l i n g r a t e period. Trans,. I n s t n . Chem. Engrs., 15, 150, 1962. [4]. H0MSHAI.I L.G., L'eau e t l e s s o l u t é s dans l e s milieux poreux: Etude p a r m i c r o c a l o r i m é t r i e 1 basse température de l ' e f f e t des s u r f a c e s e t de l a p o r o s i t é , Thése de Doc-Ing., U n i v e r s i t é de P a r i s V I I , 1980. [s] ..GUGGENHEIM E.A., Thermodynamique, Dunod, P a r i s , 1965. . . (3 = Q1+!82 . .(I.) On t h e s u p p o s i t i o n the. serum behaves a s an i d e a l d i l u t e d s o l u t i o n [5] :- Where R i s t h e c o n s t a n t of perfec! gases, To t h e f r e e z i n g temperature of pure water, Lo t h e l a t e n t f r e e z i n g h e a t , Mo t h e molar mass of pure water, ms the s o l u t i o n m o l a l i t y . . .40%, a l i n e passing through t h e o r i g i n i s ' ' j o b t a i n e d , thus v e r i f y i n g r e l a t i o n (3). During , c o n s t a n t r a t e drying, t h e c o n c e n t r a t i o n of s o l u t e s i n t h e serum w i t h i n rubber, remains c o n s t a n t , t h u s explaining a mass t r a n s f e r of serum towards t h e s u r f a c e . The experiment d e v i a t i o n when compared t o r e l a t i o n (3) during t h e d i f f u s i o n phase (w<40X) can be explained i n t h r e e ways: 1) p o r a l space i n f l u e n c e ( b f O ) , 2) t r a p p i n g of t h e s o l u t e s i n r s t r u c t u r e , 3 ) water evaporation and t r a n s f e r i n t o !gaseous phase towards t h e s u r f a c e , which would ' be ' accompnied by an enrichment of t h e serum i n s o l u t e s . C e r t a i n s t u d i e s [ZJ tend t o show t h a t : r u b b e r remains s a t u r a t e d i n l i q u i d phase during the whole drying period, which would e n t a i l t h e - e l i m i n a t i o n of t h e t h i r d hypothesis. The c u r r e n t r e s e a r c h aims t o a s s e s s a l l t h r e e hypotheses i n ' o r d e r t o d e s c r i b e t r a n s f e r s during the d i f f u s i o n phase. I [I]. The lowering of ttie f r e e z i n g p o i n t of t h e . 9 serum contained i n ruS6er can Lie due t o t h e ' ' . . presence of s o l u t e s and t o t h e p o r a l space s t r u c t u r e . I f @ p l i s t h e c o n t r i S u t i o n due t o tlie presence of s o l u t e s and t h e D i t h a t due t o t h e p o r a l space, t h e n ? Measurements taken on t h e f r e e serum fk. 'For water contents g r e a t e r than approximately - . ACKNOWLEDGEMENT This r e s e a r c h was c a r r i e d o u t with support of GRECO CNRS: Drying and t r a n s p o r t mechanisms i n ! . . _ - v .* V nun-satunated porous media, and of the Coordinated Regional Programme for the Drying of crops and Food Products. liisulating Ileaker , O Thermometer top Immersed thermostat . fy-O sample solution / / / / / / / / A / / / / / / / / / / / / / / / / / * / / / / A Figure 1 : Diagram showing the rubber sample drying experimental device. EO !O O Y:, I 15 60 c3 I m H LO 40 bt c7 3 5 20 O 24 48 72 96 120 144 168 192 Time, hours. Figure 2: Variations of the sample water content and the temperTture difference between the drying air and the sample over time. The subscript letter Ci identifies the different moments when the sample is.taken out for freezing. 1 I 0 - - -2.5 o . - -5 - -7.5 -10 -12.5 -15 -17.5-20 Figure 4 : C h a r a c t e r i s t i c curves obtained when drying a n a t u r a l rubber sample. I I o 5 l l 15 10 I 20 - 25 T h e . alnutel Figure 3: Cooling temperature v a r i a t i o n over t i m e a t d i f f e r e n t moments of t h e drying k i n e t i c s of a n a t u r a l rubber sample. T h e s u b s c r i p t l e t t e r s C i i d e n t i f y t h e d i f f e r e n t moments when t h e sample is taken o u t f o r f r e e z i n g . I LI e z2 .c P IC( 1 .! M \ 24 3 1 å rl tl a o.: O O 10 20 30 40 50 60 70 80 w, z Figure 5: Variation of mole number of s o l u t e p e r kilograins of dry rubber i n the sample according t o t h e water content. I - - .. , --
© Copyright 2026 Paperzz