micromechanics: overall properties of heterogeneous materials Sia Nemat-Nasser Department of Applied Mechanics and Engineering Sciences University of California, San Diego La Jolla, CA 6 92093-0416, USA Muneo Hori Earthquake Research Institute University of Tokyo Tokyo, Japan Second Revised Edition 1999 ELSEVIER Amsterdam - Lausanne - New York - Oxford - Shannon - Singapore - Tokyo TABLE OF CONTENTS PREFACE TABLE OF CONTENTS v ix PARTI OVERALL PROPERTIES OF HETEROGENEOUS MATERIALS PRECIS: PART 1 CHAPTER I AGGREGATE PROPERTIES AND AVERAGING METHODS 9 SECTION 1. AGGREGATE PROPERTIES 1.1. REPRESENTATIVE VOLUME ELEMENT (RVE) 1.2. SCOPE OF THE BOOK 1.3. DESCRIPTION OF RVE 1.4. REFERENCES 11 11 16 19 23 SECTION 2. AVERAGING METHODS 2.1. AVERAGE STRESS AND STRESS RATE 2.2. AVERAGE STRAIN AND STRAIN RATE 2.3. AVERAGE RATE OF STRESS-WORK 2.3.1. Uniform Boundary Tractions 2.3.2. Linear Boundary Velocities 2.3.3. Other Useful Identities 2.3.4. Virtual Work Principle 2.4. INTERFACES AND DISCONTINUITIES 2.5. POTENTIAL FUNCTION FOR MACRO-ELEMENTS 2.5.1. Stress Potential 2.5.2. Strain Potential 2.5.3. Relation between Macropotentials 2.5.4. On Definition of RVE 2.5.5. Linear Versus Nonlinear Response 2.5.6. General Relations Between Macropotentials 2.5.7. Bounds on Macropotential Functions 27 27 29 31 33 34 34 35 35 38 40 41 42 44 45 45 50 TABLE OF CONTENTS 2.6. STATISTICAL HOMOGENEITY, AVERAGE QUANTITIES, AND OVERALL PROPERTIES 2.6.1. Local Average Fields 2.6.2. Limiting Process and Limit Fields 2.7. NONMECHANICAL PROPERTIES 2.7.1. Averaging Theorems 2.7.2. Macropotentials 2.7.3. Basic Inequalities 2.8. COUPLED MECHANICAL AND NONMECHANICAL PROPERTIES 2.8.1. Field Equations 2.8.2. Averaging Theorems 2.8.3. Stress/Electric-field Potential 2.8.4. Strain/Electric-displacement Potential 2.8.5. Basic Inequalities 2.9. REFERENCES 53 55 58 59 59 60 61 63 63 65 66 67 68 71 CHAPTER II ELASTIC SOLIDS WITH MICROCAVITIES AND MICROCRACKS 73 SECTION 3. LINEARLY ELASTIC SOLIDS 3.1. HOOKE' S LAW AND MATERIAL SYMMETRY 3.1.1. Elastic Moduli 3.1.2. Elastic Compliances 3.1.3. Elastic Symmetry 3.1.4. Plane Strain/Plane Stress 3.2. RECIPROCAL THEOREM, SUPERPOSITION, AND GREEN'S FUNCTION 3.2.1. Reciprocal Theorem 3.2.2. Superposition 3.2.3. Green's Function 3.3. REFERENCES 75 75 75 77 78 82 SECTION 4. ELASTIC SOLIDS WITH TRACTION-FREE DEFECTS 4.1. STATEMENT OF PROBLEM AND NOTATION 4.2. AVERAGE STRAIN FOR PRESCRIBED MACROSTRESS 4.3. OVERALL COMPLIANCE TENSOR FOR POROUS ELASTIC SOLIDS 4.4. AVERAGE STRESS FOR PRESCRIBED MACROSTRAIN 4.5. OVERALL ELASTICITY TENSOR FOR POROUS ELASTIC SOLIDS 4.6. REFERENCES 93 93 95 86 87 87 88 91 97 98 100 102 TABLE OF CONTENTS SECTION 5. ELASTIC SOLIDS WITH MICROCAVITIES XI 103 5.1. EFFECTIVE MODULI OF AN ELASTIC PLATE CONTAINING CIRCULAR HOLES 103 5.1.1. Estimates of Three-Dimensional Moduli from Two-Dimensional Results 104 5.1.2. Effective Moduli: Dilute Distribution of Cavities 106 5.1.3. Effective Moduli: Self-Consistent Estimates 111 5.1.4. Effective Moduli in x3-Direction 113 5.2. EFFECTIVE BULK MODULUS OF AN ELASTIC BODY CONTAINING SPHERICAL CAVITIES 115 5.3. ENERGY CONSIDERATION AND SYMMETRY PROPERTIES OF TENSOR H 117 5.4. CAVITY STRAIN 118 5.5. REFERENCES 119 SECTION 6. ELASTIC SOLIDS WITH MICROCRACKS 6.1. OVERALL STRAIN DUE TO MICROCRACKS 6.2. OVERALL COMPLIANCE AND MODULUS TENSORS OF HOMOGENEOUS LINEARLY ELASTIC SOLIDS WITH MICROCRACKS 6.3. EFFECTIVE MODULI OF AN ELASTIC SOLID CONTAINING ALIGNED SLIT MICROCRACKS 6.3.1. Crack Opening Displacements 6.3.2. Effective Moduli: Dilute Distribution of Aligned Microcracks 6.3.3. Effective Moduli: Dilute Distribution of Aligned Frictional Microcracks 6.4. EFFECTIVE MODULI OF AN ELASTIC SOLID CONTAINING RANDOMLY DISTRIBUTED SLIT MICROCRACKS 6.4.1. Effective Moduli: Random Dilute Distribution of Open Microcracks 6.4.2. Effective Moduli: Self-Consistent Estimate 6.4.3. Effective Moduli in Antiplane Shear: Random Dilute Distribution of Frictionless Microcracks 6.4.4. Plane Stress, Plane Strain, and Three-Dimensional Overall Moduli 6.4.5. Effect of Friction and Load-Induced Anisotropy 6.5. EFFECTIVE MODULI OF AN ELASTIC BODY CONTAINING ALIGNED PENNY-SHAPED MICROCRACKS 6.5.1. Crack-Opening-Displacements 6.5.2. Effective Moduli: Dilute Distribution of Aligned Microcracks 6.6. EFFECTIVE MODULI OF AN ELASTIC BODY CONTAINING RANDOMLY DISTRIBUTED PENNY-SHAPED MICROCRACKS 6.6.1. Dilute Open Microcracks with Prescribed Distribution 6.6.2. Effective Moduli: Random Dilute Distribution of Microcracks 6.6.3. Effective Moduli: Self-Consistent Estimates 121 121 123 124 125 125 129 131 131 135 137 140 141 147 147 147 151 151 154 158 Xll TABLE OF CONTENTS 6.7. EFFECTIVE MODULI OF AN ELASTIC BODY CONTAINING PENNY-SHAPED MICROCRACKS PARALLEL TO AN AXIS 6.8. INTERACTION EFFECTS 6.8.1. Crack-Opening-Displacements and Associated Strains 6.8.2. Dilute Distribution of Parallel Crack Arrays 6.8.3. Randomly Oriented Open Slit Crack Arrays Parallel to an Axis 6.9. BRITTLE FAILURE IN COMPRESSION 6.9.1. Introductory Comments 6.9.2. Bridgman Paradoxes 6.9.3. A New Look at Microcracking in Compression 6.9.4. Model Calculations: Axial Splitting 6.9.5. Model Calculations: Faulting 6.9.6. Model Calculations: Brittle-Ductile Transition 6.10. DYNAMIC BRITTLE FAILURE IN COMPRESSION 6.10.1. Strain-rate Effect on Brittle Failure in Compression 6.10.2. Illustrative Examples of Dynamic Brittle Failure in Compression 6.11. REFERENCES 197 200 CHAPTER III ELASTIC SOLIDS WITH MICRO-INCLUSIONS 207 SECTION 7. OVERALL ELASTIC MODULUS AND COMPLIANCE TENSORS 7.1. MACROSTRESS PRESCRIBED 7.2. MACROSTRAIN PRESCRIBED 7.3. EIGENSTRAIN AND EIGENSTRESS TENSORS 7.3.1. Eigenstrain 7.3.2. Eigenstress 7.3.3. Uniform Eigenstrain and Eigenstress 7.3.4. Consistency Conditions 7.3.5. H- and J-Tensors 7.3.6. Eshelby's Tensor for Special Cases 7.3.7. Transformation Strain 7.4. ESTIMATES OF OVERALL MODULUS AND COMPLIANCE TENSORS: DILUTE DISTRIBUTION 7.4.1. Macrostress Prescribed 7.4.2. Macrostrain Prescribed 7.4.3. Equivalence between Overall Compliance and Elasticity Tensors 7.5. ESTIMATES OF OVERALL MODULUS AND COMPLIANCE 162 167 168 170 172 174 174 176 180 184 187 188 193 195 209 209 212 213 215 216 216 218 220 221 223 225 226 227 228 TABLE OF CONTENTS TENSORS: SELF-CONSISTENT METHOD 7.5.1. Macrostress Prescribed 7.5.2. Macrostrain Prescribed 7.5.3. Equivalence of Overall Compliance and Elasticity Tensors Obtained by Self-Consistent Method 7.5.4. Overall Elasticity and Compliance Tensors for Polycrystals 7.6. ENERGY CONSIDERATION AND SYMMETRY OF OVERALL ELASTICITY AND COMPLIANCE TENSORS 7.6.1. Macrostrain Prescribed 7.6.2. Macrostress Prescribed 7.6.3. Equivalence of Overall Compliance and Elasticity Tensors Obtained on the Basis of Elastic Energy 7.6.4. Certain Exact Identities Involving Overall Elastic Energy 7.7. REFERENCES SECTION 8. EXAMPLES OF ELASTIC SOLIDS WITH ELASTIC MICRO-INCLUSIONS 8.1. RANDOM DISTRIBUTION OF SPHERICAL MICRO-INCLUSIONS 8.1.1. Effective Moduli: Dilute Distribution of Spherical Inclusions 8.1.2. Effective Moduli: Self-Consistent Estimates 8.2. EFFECTIVE MODULI OF AN ELASTIC PLATE CONTAINING ALIGNED REINFORCING-FIBERS 8.2.1. Effective Moduli: Dilute Distribution of Fibers 8.2.2. Effective Moduli: Self-Consistent Estimates 8.2.3. Effective Moduli in Antiplane Shear: Dilute-Distribution and Self-Consistent Estimates 8.3. THREE-DIMENSIONAL ANALYSIS OF PLANE STRAIN AND PLANE STRESS STATES 8.3.1. Reduction of Three-Dimensional Moduli to Two-Dimensional Moduli 8.3.2. Two-Dimensional Nominal Eshelby Tensor 8.3.3. Computation of Nominal Eshelby Tensor for Plane Stress 8.4. REFERENCES Xlll 229 230 231 231 233 235 236 237 238 240 242 245 245 246 248 250 254 255 256 259 259 260 261 262 SECTION 9. UPPER AND LOWER BOUNDS FOR OVERALL ELASTIC MODULI 265 9.1. HASHIN-SHTRIKMAN VARIATIONAL PRINCIPLE 267 9.1.1. Macrostress Prescribed 267 9.1.2. Macrostrain Prescribed 271 9.2. UPPER AND LOWER BOUNDS FOR ENERGY FUNCTIONALS 275 9.2.1. Stiff Micro-Inclusions 276 9.2.2. Compliant Micro-Inclusions 278 9.2.3. Bounds for Elastic Strain and Complementary Elastic Energies 278 9.3. GENERALIZED BOUNDS ON OVERALL ENERGIES 280 XIV TABLE OF CONTENTS 9.3.1. Correlation Tensors 281 9.3.2. Upper and Lower Bounds on Overall Energies 283 9.3.3. Subregion Approximation Method 286 9.4. DIRECT ESTIMATES OF OVERALL MODULI 287 9.4.1. Boundary-Value Problems for Equivalent Homogeneous Solid 288 9.4.2. Simplified Integral Operators 290 9.4.3. Approximate Correlation Tensors 291 9.4.4. Optimal Eigenstrains and Eigenstresses 294 9.5. GENERALIZED VARIATIONAL PRINCIPLES; EXACT BOUNDS 296 9.5.1. Generalization of Energy Functionals and Bounds 296 9.5.2. Inequalities among Generalized Energy Functionals 302 9.5.3. Functionals with Simplified Integral Operators 303 9.5.4. Exact Bounds Based on Simplified Functionals 310 9.5.5. Calculation of Bounds 314 9.5.6. Alternative Formulation of Exact Inequalities: Direct Evaluation of Exact B ounds 316 9.6. UNIVERSAL BOUNDS FOR OVERALL MODULI 320 9.6.1. Equivalence of Two Approximate Functionals 321 9.6.2. Summary of Exact Inequalities 322 9.6.3. Universal Bounds for Overall Moduli of Ellipsoidal RVE (1) 323 9.6.4. Universal Bounds for Overall Moduli of Ellipsoidal RVE (2) 327 9.6.5. Relation between Universal Bounds and Estimated Bounds 328 9.7. BOUNDS FOR OVERALL NONMECHANICAL MODULI 330 9.7.1. Generalized Hashin-Shtrikman Variational Principle 331 9.7.2. Consequence of Universal Theorems 333 9.7.3. Universal Bounds for Overall Conductivity 335 9.8. BOUNDS FOR OVERALL MODULI OF PIEZOELECTRIC RVE'S 339 9.8.1. Generalized Hashin-Shtrikman Variational Principle 339 9.8.2. Consequence of Universal Theorems 343 9.8.3. Comments on Computing Bounds for Overall Moduli 346 9.9. REFERENCES 349 SECTION 10. SELF-CONSISTENT, DIFFERENTIAL, AND RELATED AVERAGING METHODS 10.1. SUMMARY OF EXACT RELATIONS BETWEEN AVERAGE QUANTITIES 10.1.1. Assumptions in Dilute-Distribution Model 10.1.2. Dilute Distribution: Modeling Approximation 10.2. SELF-CONSISTENT METHOD 10.3. DIFFERENTIAL SCHEME 10.3.1. Two-Phase RVE 10.3.2. Multi-Phase RVE 10.3.3. Equivalence between Overall Elasticity and Compliance Tensors 353 353 354 356 357 361 362 364 367 TABLE OF CONTENTS XV 10.4. TWO-PHASE MODEL AND DOUBLE-INCLUSION METHOD 10.4.1. Basic Formulation: Two-Phase Model 10.4.2. Comments on Two-Phase Model 10.4.3. Relation with Hashin-Shtrikman Bounds 10.4.4. Generalization of Eshelby's Results 10.4.5. Double-Inclusion Method 10.4.6. Multi-Inclusion Method 10.4.7. Multi-Phase Composite Model 10.4.8. Bounds on Overall Moduli by Double-Inclusion Method 10.5. EQUIVALENCE AMONG ESTIMATES BY DILUTE DISTRIBUTION, SELF-CONSISTENT, DIFFERENTIAL, AND DOUBLEINCLUSION METHODS 10.6. OTHER AVERAGING SCHEMES 10.6.1. Composite-Spheres Model 10.6.2. Three-Phase Model 10.7. REFERENCES 368 369 373 374 375 378 381 382 384 SECTION 11. ESHELBY'S TENSOR AND RELATED TOPICS 11.1. EIGENSTRAIN AND EIGENSTRESS PROBLEMS 11.1.1. Green's Function for Infinite Domain 11.1.2. The Body-Force Problem 11.1.3. The Eigenstrain- or Eigenstress-Problem 11.2. ESHELBY'S TENSOR 11.2.1. Uniform Eigenstrains in an Ellipsoidal Domain 11.2.2. Eshelby' s Tensor for an Isotropic Solid 11.2.3. Eshelby's Tensor for Anisotropic Media 11.3. SOME BASIC PROPERTIES OF ESHELBY'S TENSOR 11.3.1. Symmetry of the Eshelby Tensor 11.3.2. Conjugate Eshelby Tensor 11.3.3. Evaluation of Average Quantities 11.4. RELATIONS AMONG AVERAGE QUANTITIES 11.4.1. General Relations 11.4.2. Superposition of Uniform Strain and Stress Fields 11.4.3. Prescribed Boundary Conditions 11.5. REFERENCES 397 397 398 399 400 402 402 403 406 407 407 408 409 412 412 414 415 417 CHAPTER IV SOLIDS WITH PERIODIC MICROSTRUCTURE 419 SECTION 12. GENERAL PROPERTIES AND FIELD EQUATIONS 12.1. PERIODIC MICROSTRUCTURE AND RVE 12.2. PERIODICITY AND UNIT CELL 12.3. FOURIER SERIES 421 421 422 424 386 388 389 390 394 XVI TABLE OF CONTENTS 12.3.1. Displacement and Strain Fields 12.3.2. Stress Field 12.4. HOMOGENIZATION 12.4.1. Periodic Eigenstrain and Eigenstress Fields 12.4.2. Governing Equations 12.4.3. Periodic Integral Operators 12.4.4. Isotropic Matrix 12.4.5. Consistency Conditions 12.4.6. Alternative Formulation 12.5. TWO-PHASE PERIODIC MICROSTRUCTURE 12.5.1. Average Eigenstrain Formulation 12.5.2. Modification for Multi-Phase Periodic Microstructure 12.5.3. Properties of the g-Integral 12.6. ELASTIC INCLUSIONS AND CAVITIES 12.6.1. Elastic Spherical Inclusions 12.6.2. Elastic Ellipsoidal Inclusions 12.6.3. Cylindrical Voids 12.7. PERIODICALLY DISTRIBUTED MICROCRACKS 12.7.1. Limit of Eshelby's Solution 12.7.2. The g-Integral for a Crack 12.7.3. Piecewise Constant Distribution of Eigenstrain 12.7.4. Stress Intensity Factor of Periodic Cracks 12.7.5. Illustrative Examples 12.8. APPLICATION TO NONLINEAR COMPOSITES 12.9. REFERENCES 425 427 428 428 429 430 432 433 435 439 439 442 442 444 445 447 448 450 451 453 454 457 459 461 464 SECTION 13. OVERALL PROPERTIES OF SOLIDS WITH PERIODIC MICROSTRUCTURE 467 13.1. GENERAL EQUIVALENT HOMOGENEOUS SOLID 468 13.1.1. Notation and Introductory Comments 468 13.1.2. Macrofield Variables and Homogeneous Solutions 469 13.1.3. Periodic Microstructure versus RVE 471 13.1.4. Unit Cell as a Bounded Body 472 13.1.5. Equivalent Homogeneous Solid for Periodic Microstructure 473 13.2. HASHIN-SHTRIKMAN VARIATIONAL PRINCIPLE APPLIED TO PERIODIC STRUCTURES 476 13.2.1. Self-Adjointness 476 13.2.2. Hashin-Shtrikman Variational Principle and Bounds on Overall Moduli 478 13.2.3. Equivalence of Two Energy Functionals 479 13.2.4. Alternative Formulation of Exact Bounds 482 13.3. APPLICATION OF FOURIER SERIES EXPANSION TO ENERGY FUNCTIONALS 485 13.3.1. Fourier Series Representation of Eigenstress 485 TABLE OF CONTENTS 13.3.2. Truncated Fourier Series of Eigenstress Field 13.3.3. Matrix Representation of Euler Equations 13.4. EXAMPLE: ONE-DIMENSIONAL PERIODIC MICROSTRUCTURE 13.4.1. Exact Solution 13.4.2. Equivalent Homogeneous Solid with Periodic Eigenstress Field 13.4.3. Hashin-Shtrikman Variational Principle 13.5. PIECEWISE CONSTANT APPROXIMATION AND UNIVERSAL BOUNDS 13.5.1. Piecewise Constant Approximation of Eigenstress Field 13.5.2. Computation of Energy Functions and Universal Bounds 13.5.3. General Piecewise Constant Approximation of Eigenstress Field 13.6. EXAMPLES 13.6.1. Example (1): One-Dimensional Periodic Structure 13.6.2. Example (2): Three-Dimensional Periodic Structure 13.7. REFERENCES SECTION 14. MIRROR-IMAGE DECOMPOSITION OF PERIODIC FIELDS 14.1. MIRROR IMAGES OF POSITION VECTORS AND VECTORS 14.2. MIRROR-IMAGE SYMMETRY/ANTISYMMETRY OF TENSOR FIELDS 14.2.1. Mirror-Image (MI) Sym/Ant of Tensor Fields 14.2.2. MI Sym/Ant Decomposition of Tensor Fields 14.2.3. Components of MI Sym/Ant Parts 14.2.4. Operations on MI Sym/Ant Parts of Tensor Fields 14.3. MIRROR-IMAGE SYMMETRY AND ANTISYMMETRY OF FOURIER SERIES 14.3.1. MI Sym/Ant of Complex Kernel 14.3.2. MI Sym/Ant of Fourier Series 14.4. BOUNDARY CONDITIONS FOR A UNIT CELL 14.4.1. Symmetry of Unit Cell 14.4.2. MI Sym/Ant Fields for a Symmetric Unit Cell 14.4.3. Surface Data for MI Sym/Ant Set of Periodic Fields in a Symmetric Unit Cell ' 14.4.4. Homogeneous Fields 14.5. FOURIER SERIES EXPANSION OF MI SYM/ANT SET OF PERIODIC FIELDS 14.5.1. MI Sym/Ant Decomposition of Governing Field Equations 14.5.2. Isotropic Equivalent Homogeneous Solid 14.6. APPLICATION OF HASHIN-SHTRIKMAN VARIATIONAL PRINCIPLE XV11 487 488 491 491 493 494 497 497 499 502 505 505 506 510 511 511 516 516 517 519 520 521 521 522 526 526 527 529 531 532 532 535 537 XV111 TABLE OF CONTENTS 14.6.1. Inner Product of Stress and Strain 14.6.2. Application of MI Sym/Ant Decomposition to Energy Functional 14.6.3. Application of MI Sym/Ant Decomposition to Quadratic Forms 14.6.4. Two-Phase Periodic Structure 14.7. REFERENCES APPENDIX A APPLICATION TO INELASTIC HETEROGENEOUS SOLIDS A. 1. SOURCES OF INELASTICITY A.2. RATE-INDEPENDENT PHENOMENOLOGICAL PLASTICITY A.2.1. Constitutive Relations: Smooth Yield Surface A.2.2. Flow Potential and Associative Flow Rule A.2.3. The J2-FI0W Theory with Isotropic Hardening A.2.4. The J2-FI0W Theory with Kinematic Hardening A.2.5. The J2-FI0W Theory with Dilatancy and Pressure Sensitivity A.2.6. Constitutive Relations: Yield Vertex A.2.7. Crystal Plasticity A.2.8. Aggregate Properties A.3. RATE-DEPENDENT THEORIES A.3.1. Rate Dependent J2-Plasticity A.3.2. Empirical Models A.3.3. Physically-based Models A.3.4. Drag-controlled Plastic Flow A.3.5. Viscoplastic J2-FI0W Theory A.3.6. Nonlinear Viscoplastic Model A. 3.7. Rate-Dependent Crystal Plasticity A.4. REFERENCES 537 538 540 543 546 547 547 548 549 550 551 552 553 554 556 557 558 559 559 560 563 566 566 5 67 568 APPENDIX B HOMOGENIZATION THEORY B.I. SUMMARY OF AVERAGE FIELD THEORY B.2. SUMMARY OF HOMOGENIZATION THEORY B.3. EXTENSION OF HOMOGENIZATION THEORY B.4. EFFECT OF STRAIN GRADIENT B.5. REFERENCES 573 573 575 578 580 584 APPENDIX C UNIFORM FIELD THEORY C.I. APPLICATION OF UNIFORM FIELD THEORY TO THERMOELASTICITY OF HETEROGENEOUS SOLIDS C.2. VERIFICATION OF AVERAGE FIELD THEORY C.3. APPLICATION OF UNIFORM FIELD THEORY TO COMPOSITES WITH ALIGNED FIBERS C.4. REFERENCES 587 587 589 592 594 TABLE OF CONTENTS APPENDIX D IMPROVABLE BOUNDS ON OVERALL PROPERTIES OF HETEROGENEOUS FINITE SOLIDS D. 1. BOUNDS ON POTENTIALS FOR GENERAL BOUNDARY DATA D. 1.1. Weak Kinematical or Statistical Admissibility D. 1.2. Bounds on Potentials D. 1.3. Calculation of Bounds on Overall Potentials D.I.4. Bounds by Discretization D.2. LINEAR COMPOSITES D.2.1. Examples of Closed-form Bounds D.3. REFERENCES XIX 595 595 595 597 599 602 602 604 611 TABLE OF CONTENTS XXI PART 2 INTRODUCTION TO BASIC ELEMENTS OF ELASTICITY THEORY PRECIS: PART 2 617 CHAPTER V FOUNDATIONS 621 SECTION 15. GEOMETRIC FOUNDATIONS 15.1. VECTOR SPACE 15.2. ELEMENTARY CONCEPTS IN THREE-DIMENSIONAL SPACE 15.2.1. Rectangular Cartesian Coordinates 15.2.2. Transformation of Coordinates 15.3. TENSORS IN THREE-DIMENSIONAL VECTOR SPACE 15.3.1. Vector as First-Order Tensor 15.3.2. Second-Order Tensor 15.3.3. Higher-Order Tensors 15.3.4. Remarks on Second-Order Tensors 15.4. DEL OPERATOR AND THE GAUSS THEOREM 15.5. SPECIAL TOPICS IN TENSOR ALGEBRA 15.5.1. Second-Order Base Tensors 15.5.2. Matrix Operations for Second- and Fourth-Order Tensors 15.5.3. Second-Order Symmetric Base Tensors 15.5.4. Matrix Operations for Second- and Fourth-Order Symmetric Tensors 15.6. SPECTRAL REPRESENTATION OF FOURTH-ORDER SYMMETRIC TENSORS 15.7. CYLINDRICAL AND SPHERICAL COORDINATES 15.8. REFERENCES 623 623 642 645 649 SECTION 16. KINEMATIC FOUNDATIONS 16.1. DEFORMATION AND STRAIN MEASURES 16.2. INFINITESIMAL STRAIN MEASURE 16.2.1. Extension, Shear Strain, and Rotation 16.2.2. Pure Deformation 16.2.3. Compatibility Conditions 16.2.4. Two-Dimensional Case 16.3. REFERENCES 651 651 654 655 656 660 663 664 SECTION 17. DYNAMIC FOUNDATIONS 17.1. EULER'S LAWS 667 667 624 624 627 627 627 628 630 630 632 635 635 636 637 638 XX11 TABLE OF CONTENTS 17.2. TRACTION VECTORS AND STRESS TENSOR 17.2.1. Traction Vectors 17.2.2. Stress Tensor 17.2.3. Cauchy's Laws 17.2.4. Principal Stresses 17.3. GEOMETRICAL REPRESENTATION OF STRESS TENSOR 17.3.1. Mohr's Circle 17.3.2. Quadratic Form 17.4. REFERENCES 669 669 671 672 673 674 675 676 677 SECTION 18. CONSTITUTIVE RELATIONS 18.1. STRAIN ENERGY DENSITY 18.1.1. Conservation Laws 18.1.2. Strain Energy Density Function w 18.2. LINEAR ELASTICITY 18.2.1. Elasticity 18.2.2. Linear Elasticity 18.3. ELASTICITY AND COMPLIANCE TENSORS 18.3.1. Positive-Definiteness 18.3.2. Strong Ellipticity 18.4. REFERENCES 679 679 679 681 682 682 683 684 684 685 686 CHAPTER VI ELASTOSTATIC PROBLEMS OF LINEAR ELASTICITY 687 SECTION 19. BOUNDARY-VALUE PROBLEMS AND EXTREMUM PRINCIPLES 19.1. BOUNDARY-VALUE PROBLEMS 19.2. KINEMATICALLY AND STATICALLY ADMISSIBLE FIELDS 19.2.1. Kinematically Admissible Displacement Field 19.2.2. Statically Admissible Stress Field 19.3. POTENTIAL ENERGY 19.3.1. Virtual Work Principle 19.3.2. Variational Principle for Kinematically Admissible Displacement Fields 19.3.3. Minimum Potential Energy 19.4. COMPLEMENTARY ENERGY ,19.4.1. Virtual Work Principle for Virtual Stress 19.4.2. Variational Principle for Statically Admissible Stress Fields 19.4.3. Minimum Complementary Energy 19.5. GENERAL VARIATIONAL PRINCIPLES 19.5.1. General Potential Energy 19.5.2. Jump Conditions at Discontinuity Surfaces 689 689 691 691 692 693 693 694 694 696 696 697 697 699 699 701 TABLE OF CONTENTS XX111 19.6. REFERENCES 704 SECTION 20. THREE-DIMENSIONAL PROBLEMS 20.1. HELMHOLTZ' S DECOMPOSITION THEOREM 20.2. WAVE EQUATIONS 20.3. PAPKOVICH-NEUBER REPRESENTATION 20.3.1. Papkovich-Neuber Representation 20.3.2. Galerkin Vector 20.4. CONCENTRATED FORCE IN INFINITE AND SEMI-INFINITE SOLIDS 20.4.1. Green's Second Identity 20.4.2. Infinitely Extended Solid 20.4.3. Semi-Infinite Body with Normal Concentrated Forces 20.4.4. Semi-Infinite Body with Tangential Concentrated Forces 20.5. REFERENCES 705 705 706 709 709 711 SECTION 21. SOLUTIONS OF SINGULAR PROBLEMS 21.1. AIRY'S STRESS FUNCTION 21.1.1. Solution to Equilibrium Equations 21.1.2. Governing Equation for Airy's Stress Function 21.1.3. Analytic Functions 21.1.4. Bi-Harmonic Functions 21.2. GREEN'S FUNCTION AND DISLOCATION 21.2.1. Green's Function 21.2.2. Dislocation 21.2.3. Center of Dilatation and Disclination 21.3. THE HILBERT PROBLEM 21.3.1. Holomorphic Functions 21.3.2. The Cauchy Integral 21.3.3. The Hilbert Problem 21.3.4. Examples 21.4. TWO-DIMENSIONAL CRACK PROBLEMS 21 A.I. Crack and Dislocations 21.4.2. Integral Equation for Dislocation Density 21.4.3. Example 21.4.4. Alternative Integral Equation for Crack Problem 21.4.5. Finite-Part Integral 21.5. ANISOTROPIC CASE 21.5.1. Airy's Stress Function and Muskhelishvili's Complex Potentials for Anisotropic Materials 21.5.2. Dislocation in Anisotropic Medium 21.5.3. Crack in Anisotropic Medium 21.5.4. Full or Partial Crack Bridging 21.6. DUALITY PRINCIPLES IN ANISOTROPIC ELASTICITY 723 723 723 724 725 726 728 728 731 732 734 734 735 736 738 739 740 740 741 742 744 745 712 712 712 714 717 720 746 748 751 753 754 XXIV TABLE OF CONTENTS 21.6.1. A General Duality Principle 21.6.2. An Example 21.6.3. Dual Boundary Conditions 21.6.4. Fundamental Elasticity Matrix with Repeated Eigenvalues 21.6.5. Examples of Duality 21.7. REFERENCES AUTHOR INDEX SUBJECT INDEX 759 760 763 765 767 768 771 779
© Copyright 2026 Paperzz