RevLimitSumSer.nb H* evaluate limits, list terms of a sequence, and plot terms of a sequence *LLimit@Sin@xD x, x ® 0D 1 Limit@H1 + 1 nL ^ n, n ® InfinityD ã Limit@n ! 5 ^ n, n ® ¥D ¥ 00 1 encountered. Power::infy : Infinite expression 0 ¥::indet : Indeterminate expression 0 ComplexInfinity encountered. Indeterminate 0 ^ Infinity 0 Table@1 n ^ 2, 8n, 1, 5<D :1, 1 1 , 4 1 , 9 1 , 16 25 > ListPlot@Table@1 n ^ 2, 8n, 1, 5<DD 1.0 0.8 0.6 0.4 1 2 3 4 5 H* Take derivatives of all orders. Find indefinite integrals evaluate definite integrals exactly and approximately to any specified number of decimal places. *LD@1 x, xD 1 x2 1 DB , 8x, 2<F x 2 x3 1 RevLimitSumSer.nb 1 DB , 8x, 3<F x 6 x4 1 TableBDB , 8x, n<F, 8n, 0, 3<F x 1 1 2 6 : ,, ,> 2 3 x x x x4 Integrate@1 x ^ 2, xD 1 x Integrate@1 x ^ 2, 8x, 1, 10<D 9 10 Integrate@1 H1 + x ^ 2L, xD ArcTan@xD Integrate@1 H1 + x ^ 2L, 8x, 1, 5<D Π - + ArcTan@5D 4 NIntegrate@1 H1 + x ^ 2L, 8x, 1, 5<D 0.588003 Integrate@1 x ^ 2, 8x, 1, Infinity<D 1 Integrate@1 H1 + x ^ 2L, 8x, - Infinity, Infinity<D Π Integrate@1 x ^ 2, 8x, 0, Infinity<D 1 Integrate::idiv : Integral of x2 à ¥ 0 does not converge on 80, ¥<. 1 âx x2 H* Find sum of finite and infinite series, exactly and decimal approximation *LSum@1 n ^ 2, 8n, 1, Infinity<D Π2 6 NSum@1 n ^ 2, 8n, 1, Infinity<D 1.64493 2 RevLimitSumSer.nb Sum@1 n !, 8n, 0, Infinity<D ã N@Sum@1 n !, 8n, 0, Infinity<D, 20D 2.7182818284590452354 Sum@1 n, 8n, 1, Infinity<D Sum::div : Sum does not converge. â ¥ 1 n=1 n H* Find power series of fHxL about x equal a up to order n HTaylor seriesL. Find coefficient in power series*LSeries@f@xD, 8x, 0, 5<D f@0D + f¢ @0D x + 1 2 f¢¢ @0D x2 + 1 6 fH3L @0D x3 + 1 24 fH4L @0D x4 + 1 120 fH5L @0D x5 + O@xD6 Normal@Series@f@xD, 8x, 0, 5<DD f@0D + x f¢ @0D + 1 2 x2 f¢¢ @0D + 1 6 x3 fH3L @0D + 1 24 x4 fH4L @0D + 1 120 x5 fH5L @0D SeriesCoefficient @f@xD, 8x, 0, 3<D 1 6 fH3L @0D Series@Log@1 + xD, 8x, 0, 10<D x2 x3 x- + x4 - 2 x5 + 3 4 x6 - 5 x7 x8 + 6 7 x9 + 8 x10 - 9 + O@xD11 10 Series@E ^ x, 8x, 0, 10<D x2 1+x+ x3 + 2 x4 + 6 x5 + 24 x6 + 120 x7 + 720 x8 + 5040 x9 x10 + 40 320 + 362 880 + O@xD11 3 628 800 Series@E ^ x, 8x, 1, 10<D ã + ã Hx - 1L + 1 720 1 2 ã Hx - 1L2 + ã Hx - 1L6 + ã Hx - 1L7 5040 1 6 + ã Hx - 1L3 + ã Hx - 1L8 40 320 + 1 24 ã Hx - 1L4 + ã Hx - 1L9 362 880 + 1 120 ã Hx - 1L5 + ã Hx - 1L10 + O@x - 1D11 3 628 800 H* the easiest way to find the Maclaurin series of arctan x is to integrate term by term from 0 to x the Maclaurin series of 1H1+t^2 *L Normal@Series@ArcTan@xD, 8x, 0, 10<DD x3 x- x5 + 3 x7 - 5 x9 + 7 9 Integrate@Normal@Series@1 H1 + x ^ 2L, 8x, 0, 9<DD, xD x3 x- x5 + 3 x7 - 5 x9 + 7 9 3 RevLimitSumSer.nb Normal@Series@E ^ x, 8x, 0, 10<DD x2 1+x+ x3 + 2 x4 + 6 x5 + 24 x6 + 120 x7 + 720 x8 + 5040 x9 + 40 320 x10 + 362 880 3 628 800 Normal@Series@E ^ x, 8x, 0, 10<DD x2 1+x+ x3 + 2 x4 + 6 x5 + 24 x6 + 120 x7 + 720 x8 + 5040 x9 + 40 320 x10 + 362 880 3 628 800 H* The Maclaurin series of e^x is an alternating series when x equals minus 1. The series converges to 1e. The magnitude of the Hn+1Lst term is 1n! For three decimal place accuracy of the estimation of 1e require H1n!<.0005L and truncate the series at the nth term. Make a table. *L N@Table@1 n !, 8n, 1, 10<DD 91., 0.5, 0.166667, 0.0416667, 0.00833333, 0.00138889, 0.000198413, 0.0000248016 , 2.75573 ´ 10-6 , 2.75573 ´ 10-7 = H* For 3 place accuracy need up to 7th term, 1720 *L NSum@H- 1L ^ n n !, 8n, 0, 6<D 0.368056 H* The mathematica value of 1e is given below. The truncated series estimate is accurate to 3 decimal places but not 4 decimal places. If fewer than 7 terms are taken the estimate is not accurate to 3 decimal places *L N@ 1 ED 0.367879 NSum@H- 1L ^ n n !, 8n, 0, 5<D 0.366667 H* Use the Floor function for signs alternating in groups. The floor of x is the greatest integer less than or equal to x. Use H-1L^n for alternating signs and H-1L^Floor@nkD for signs alternating in groups of k *LFloor@0D 0 Floor@1 2D 0 Floor@1D 1 Floor@3 2D 1 Table@Floor@n 2D, 8n, 0, 3<D 80, 0, 1, 1< 4 RevLimitSumSer.nb Table@Floor@n 3D, 8n, 0, 8<D 80, 0, 0, 1, 1, 1, 2, 2, 2< Table@Floor@n 4D, 8n, 0, 11<D 80, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2< Table@H- 1L ^ HFloor@n 2DL, 8n, 0, 3<D 81, 1, - 1, - 1< Table@H- 1L ^ Floor@n 3D, 8n, 0, 8<D 81, 1, 1, - 1, - 1, - 1, 1, 1, 1< Table@H- 1L ^ Floor@n 4D, 8n, 0, 11<D 81, 1, 1, 1, - 1, - 1, - 1, - 1, 1, 1, 1, 1< H* Find binomial series and binomial coefficients *LSeries@H1 + xL ^ H1 2L, 8x, 0, 10<D x2 x 1+ 2 x3 + 8 5 x4 - 16 7 x5 + 128 21 x6 - 256 33 x7 + 1024 429 x8 715 x9 2048 2431 x10 + 32 768 65 536 + O@xD11 262 144 Binomial@1 2, 3D 1 16 H1 2L H- 1 2L H- 3 2L 3 ! 1 16 Series@H1 + xL ^ H5 2L, 8x, 0, 10<D 15 x2 5x 1+ + 2 5 x3 + 8 5 x4 - 16 3 x5 + 128 5 x6 - 256 5 x7 + 1024 45 x8 - 2048 32 768 Binomial@5 2, 6D 5 1024 H5 2L H3 2L H1 2L H- 1 2L H- 3 2L H- 5 2L 6 ! 5 1024 55 x9 + 143 x10 - 65 536 262 144 + O@xD11 5
© Copyright 2026 Paperzz